Egr-1特异脱氧核酶下调cyclin D1、TGF-β1和MMPs抑制大鼠血管平滑肌细胞增殖和迁移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     经皮腔内冠状动脉介入术(percutaneous coronary intervention,PCI)是目前广泛应用的治疗冠心病手段之一,但PCI术后半年内血管重建部位再狭窄(restenosis,RS)影响了它的远期疗效。RS的机制很复杂,包括早期的血管弹性回缩和后期的血管平滑肌细胞(vascular smooth muscle cell,VSMC)增生、迁移、细胞外基质的产生以及血管重塑等。寻找抑制PCI术后RS的方法仍是当前研究的热点。脱氧核酶(deoxyribozyme,DRz)是一种具有酶催化活性的DNA分子,作为一种基因抑制剂有着实际的治疗作用。早期生长反应因子-1(early growth responsefactor-1,Egr-1)是一种锌指结构转录因子,在动脉损伤等外界刺激下被激活,诱导VSMC的分裂、增殖和内膜增生。本研究应用合成的Egr-1特异脱氧核酶(DNAenzyme/10-23DRz,ED5)及杂码ED5(scrambled ED5,ED5SCR),转染至体外培养的大鼠胸主动脉平滑肌细胞中,观察其对大鼠VSMC增殖、凋亡和迁移的影响,探讨其抑制VSMC增殖和迁移的作用机制。
     实验方法
     1、寡脱氧核苷酸(oligodeoxynucleotide,ODN)ED5、ED5SCR的合成
     ED5、ED5SCR由大连宝生物工程有限公司合成。ED5碱基序列为:5′-CCGCTGCCAGGCTAGCTACAACGACCCGGACGT-3′,ED5SCR碱基序列为:5′-GCCAGCCGCGGCTAGCTACAACGATGGCTCCAC-3′,两侧下划线所示部分为寡核苷酸识别序列,中间为保守的催化活性区,在3′和5′端各有两个磷酸二酯键进行硫代磷酸修饰,以增加其稳定性。部分5′端用FITC标记,以便于在荧光显微镜下观察转染后基因的分布。
     2、大鼠VSMC培养及实验分组
     采用组织块贴壁法原代培养:体重120~150g Wistar大鼠(中国医科大学实验动物中心提供),无菌条件下取出胸主动脉,中膜切块贴壁,滴加含20%胎牛血清(fetal bovine serum,FBS)、100U/ml青霉素、100μg/ml链霉素pH7.4的Dulbecco'smodified Eagle medium(DMEM),置于37℃、5%CO_2饱和湿度培养箱内培养。0.25%胰酶消化传代,传代以后使用含10%FBS、100U/ml青霉素、100μg/ml链霉素pH7.4的DMEM维持细胞生长。经形态学观察和采用α-平滑肌肌动蛋白(α-SM-actin)免疫细胞化学染色鉴定为VSMC。选取3~8代细胞进行实验。
     实验分组为:对照组、ED5组、ED5SCR组。实验时各组细胞均使用含10%FBS的不含抗生素DMEM培养;ED5组转染0.1μmol/L ED5;ED5SCR组转染0.1μmol/LED5SCR。
     3、VSMC ODN的转染
     VSMC使用含10%FBS不含抗生素的DMEM培养,生长至70%后更换无血清无抗生素DMEM培养30h,进行第一次基因转染,18h后更换含10%FBS无抗生素的DMEM进行二次转染。FuGENE6/ODN转染复合物制备:在1.5ml无菌Eppendorf管中加入无血清无抗生素DMEM,再取适量的FuGENE6加入Eppendorf管中混匀并孵育5min,按FuGENE6与ODN 3:1(体积与质量之比)的比例分别加入ED5、ED5SCR并混匀,室温孵育15min。以0.1μmol/L浓度将转染复合物逐滴加入相应分组细胞中,转染结果用荧光显微镜和流式细胞仪(flowcytometry,FCM)检测。
     4、实验检测方法
     噻唑蓝[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide,MTT]比色法和5-溴脱氧尿嘧啶(5-bromodeoyuridine,BrdU)掺入法测定ODN转染对VSMC增殖的影响;FCM分析ODN转染对VSMC细胞周期分布的影响;用FCM和荧光显微镜检测ODN转染对VSMC凋亡的影响;用改良的Boyden小室法(Transwell)、划痕损伤模型测定ODN转染对VSMC迁移的影响;用RT-PCR检测Egr-1、PCNA、TGF-β1、p53、p21、Bax、MMP-14、MMP-2、TIMP-2mRNA表达的变化,用Westernblot检测细胞Egr-1、PCNA、TGF-β1、p53、p21、MMP-14、MMP-2、TIMP-2蛋白表达水平,免疫细胞化学法检测Egr-1、cyclin D1蛋白表达。
     实验结果
     1、组织块贴壁法培养5~6天后可见细胞从组织块边缘处长出,3周后长成单层,呈典型“峰-谷”样生长。VSMC特异性标志蛋白α-SM-actin免疫细胞化学染色阳性。贴壁法培养可获得高纯度的VSMC,可传代培养至24代,10代以后细胞的增殖能力逐渐降低。
     2、倒置荧光显微镜检测ED5、ED5SCR转染VSMC阳性率分别为70.6±1.52%、72±2.73%,可以看到大多数为细胞浆染色,少数为细胞核染色,其机理为细胞内吞作用。流式细胞仪检测ED5、ED5SCR转染VSMC的摄取率分别为13.5%、15.2%。
     3、ED5组VSMC的MTT吸光度值较ED5SCR、对照组显著降低,转染后24、48、72h,ED5对VSMC增殖抑制率分别为25%、20%、18%,ED5SCR组与对照组比较无差别。ED5可明显抑制10%FBS诱导的体外培养的大鼠胸主动脉平滑肌细胞增殖。
     4、BrdU掺入实验显示:对照组、ED5组与ED5SCR组BrdU标记率分别为30.46±4.38%、15.37±2.32%、29.17±4.15%。与其它两组相比,ED5组BrdU标记率明显减少,差异具有显著性(P<0.01);ED5SCR与对照组比较无差别。说明ED5转染显著抑制S期DNA的合成,抑制VSMC增殖。
     5、细胞周期分析显示,ED5组G_0/G_1期细胞百分比高于对照组、ED5SCR组,而S期比例低于对照组、ED5SCR组,细胞增殖指数降低,表明ED5可阻止细胞周期由G_0/G_1期向S期推进,使细胞停留在G_0/G_1期,从而抑制VSMC增殖。
     6、FCM AnnexinⅤ/FITC、PI双染及Hoechst33342/PI荧光双染测定ED5、ED5SCR对VSMC凋亡无影响。
     7、划痕损伤模型测定转染72h后,对照组、ED5组与ED5SCR组VSMC迁移距离分别为159.62±9.57、65.35±5.04、162.84±8.43μm,结果发现同其它两组相比,ED5明显抑制VSMC迁移(P<0.01),而ED5SCR对VSMC迁移无影响。
     8、改良的Boyden小室法测定ED5转染后6h,VSMC迁移抑制率为32.18%(P<0.01)。ED5SCR对VSMC迁移无影响。
     9、RT-PCR检测到:与ED5SCR、对照组相比,ED5转染抑制VSMC Egr-1、PCNA、TGF-β1、MMP-14、MMP-2mRNA表达,对p53、p21、Bax、TIMP-2mRNA表达无影响。
     10、Western blot检测到:与ED5SCR、对照组相比,ED5转染抑制VSMC Egr-1、PCNA、TGF-β1、MMP-14、MMP-2蛋白表达,对p53、p21、TIMP-2蛋白表达无影响。未检测到Bax蛋白表达。
     11、免疫细胞化学检测到ED5转染抑制VSMC Egr-1、cyclin D1蛋白表达,ED5SCR对VSMC Egr-1、cyclin D1蛋白表达无影响。
     结论
     1、ED5可特异地抑制Egr-1及其相关基因的表达,抑制10%FBS诱导的体外培养的大鼠胸主动脉平滑肌细胞增殖,此作用与其阻止细胞周期由G_0/G_1期向S期推进,抑制S期细胞合成,抑制cyclin D1、TGF-β1表达有关。ED5SCR无上述作用。
     2、ED5可特异地抑制Egr-1,抑制MMP-14表达,减少MMP-2的激活,抑制VSMC的迁移。ED5SCR无上述作用。
     3、ED5、ED5SCR对VSMC凋亡无影响。
Objective
     Percutaneous coronary intervention(PCI) is now one of widely used methods to treat coronary artery disease,but restenosis following PCI during 6 months limits its long-term benefits.The biological mechanisms are complex,involving elastic recoil in the first instance,followed by extracellular maxtrix production,smooth muscle cell proliferation and migration,and remodeling of the vessel.Therefore the hunt for efficient inhibitors of restenosis remains an ongoing challenge.Deoxyribozyme(DRz) is a DNA molecule with the activity of enzyme catalysis(DNAenzyme),which has practical therapeutic implications as a new category of gene-inhibitor.Early growth response factor-1(Egr-1)is a zinc finger structural factor that is activated under the outside stimulation of arterial injury leading to the splitting,migration and proliferation of vascular smooth muscle cell(VSMC)and neointimal hyperplasia.The aim of this study was to generate a novel DNAenzyme targeting Egr-1(10-23DRz,ED5)and a scrambled ED5(ED5SCR)as control to observe the effect of ED5 on proliferation, apoptosis and migration of rat vascular smooth muscle cells(VSMCs)and study its mechanism of inhibiting proliferation and migration.
     Methods
     1.Oligodeoxynucleotide(ODN) synthesis
     ED5 and ED5SCR were synthesized by Takara and the base sequence of ED5 was:5'-CCGCTGCCAGGCTAGCTACAACGACCCGGACGT-3',ED5SCR:5'-GCCA GCCGCGGCTAGCTACAACGATGGCTCCAC-3',recognition sequence underlined; catalytic domain in the middle.ODN was modified by phosphorothioic acid at the 3' end and 5' end for increasing stability,and a small part was labelled with fluorescein isothiocyanate(FITC) at the 5' end for visualization of cellular uptake of ODN after transfection under fluorescence microscope.
     2.VSMC culture and experimental grouping
     Adherent culture was to be applied.Rat primary aortic smooth muscle cells were derived from the thoracic aorta medial explants of weighing 120-150g Wistar rats (Provided by China Medical University).The primary cells were cultured in Dulbecco's Modified Eagle Medium(DMEM),pH7.4,containing 20%fetal bovine serum(FBS), 100U/ml penicillin and 100μg/ml streptomycin at 37℃in a humidified atmosphere of 5%CO_2.Cells were passaged by washing once in phosphate buffered solution(PBS) followed by trypsinization.Subcultured strains were cultured in DMEM,pH7.4, containing 10%FBS,100U/ml penicillin and 100μg/ml streptomycin.Cultured cells were idenfied as VSMCs by morphology and immunocytochemistry forα-SM-actin.Subcultured strains were used between passages 3 and 8.
     VSMCs were divided into three groups:the control group,the ED5-treated group and the ED5SCR-treated group according to ODN used.Each group of cells were cultured in DMEM containing 10%FBS without antibiotics,the ED5 group was transfected with 0.1μmol/L ED5;the ED5SCR group was transfected with 0.1μmol/L ED5SCR.
     3.ODN transfection
     VSMCs were cultured in DMEM containing 10%FBS without antibiotics, subconfluent VSMCs(70%) were growth-arrested in serum-free conditions for 30h before transfecting with ODN(0.1μmol/L) using FuGENE6.Cells were transfected a second time in the presence of 10%FBS 18h following the initial transfection.The transfected results were detected by fluorescence microscope and flow cytometry (FCM).
     Preparation of FuGENE6 Reagent:ODN complex:add corresponding FuGENE6 Transfection Reagent to the serum-free medium in 1.5ml sterile Eppendorf tubes,mix and incubate for 5 minutes at room temperature.Add ODN to each tube respectively, using 3:1 ratio of FuGENE6 Transfection Reagent(μl) to ODN(μg),mix and incubate the transfection Reagent:ODN complex for 15 minutes at room temperature,then add the complex to the cells.
     4.Experiment methods
     The effect of ODN on proliferation of VSMC was observed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT)metabolism measuring and 5-bromodeoxyuridine(BrdU) incorporation assay.FCM was performed to track cell cycle progression.Apoptosis in cultured VSMC was quantified by FCM and fluorescence microscope.The modified Boyden's chamber method (Transwell) and wound-healing assay were used to examine the abilities of VSMC migration.RT-PCR was done to detect the mRNA level of Egr-1,PCNA,TGF-β1,p53, p21,Bax,MMP-14,MMP-2 and TIMP-2.Western blot was performed to measure the protein expression of Egr-1,PCNA,TGF-β1,p53,p21,Bax,MMP-14,MMP-2 and TIMP-2.The protein expression of Egr-1,cyclin D1 was measured by immunocytochemistry.
     Results
     1.Tissue explants adherent method was used to culture VSMCs,a few of cells erupted 5 to 6 days later and approached confluence approximately 3 weeks.VSMCs were characterized by specific hill-and-valley appearance and by positiveα-SM-actin immunocytochemical staining.Highly purified primary VSMCs were gained and can be propagated about 24 population doublings(PD).After PD 10,the cells lost the proliferation ability gradually.
     2.The ODN was readily detectable apparently within the cytoplasm and,to a lesser extent,the nucleus by the fluorescence microscope as a result of endocytosis. The green fluorescent could be seen localized in the cytoplasm of 70.6±1.52%,72±2.73%VSMCs respectively on the 24th hour after transfecting of FITC labelled ED5 and ED5SCR.Uptaking rate of FITC-ED5 and FITC-ED5SCR detected by FCM was 13.5%、15.2%respectively.
     3.The optical density(OD) of MTT decreased significantly in VSMCs transfected with ED5 compared with that in VSMCs non-transfected.The inhibition ratio of VSMC proliferation was 25%,20%,18%respectively after transfecting of ED5 on the 24th,48th and 72th hour.There was no significant change between the ED5SCR and control group.ED5 can significantly inhibite 10%FBS induced VSMC proliferation.
     4.The labeling ratio of BrdU of the group control,ED5 and ED5SCR was 30.46±4.38%、15.37±2.32%、29.17±4.15%respectively.Many proliferous cells were labelled by BrdU in the control and ED5SCR group,while the proliferous cells lablled by BrdU were obviously decreased in the ED5 group(P<0.01).There was no significant change between the ED5SCR and control group.The results of BrdU incorporation show that ED5 can significantly inhibite the DNA synthesis in S phase, and inhibite 10%FBS induced VSMC proliferation.
     5.FCM analysis indicated that the G_0/G_1 phase fraction ratio of the ED5 group was higher than the control group and ED5SCR group,while its S-phase fraction ratio was lower than the control group and ED5SCR group,the proliferation index of the ED5 group decreased significantly.The result suggested that ED5 blocked VSMC cycle in G_0/G_1 phase,inhibited the proliferation of VSMC.
     6.There was no significant difference about the ratio of apoptosis in VSMC among these groups by FCM analysis detected with Annexin V/FITC combined PI and fluorescence microscope detected with Hoechst33342/PI double labelled assay.
     7.Wound-healing assay showed that the migration lenth of the group control,ED5 and ED5SCR was 159.62±9.57、65.35±5.04、162.84±8.43μm respectively.The results suggested that ED5 inhibited VSMC migration after mechanical injury(P<0.01). ED5SCR had no effect to VSMC migration.
     8.The modified Boyden's chamber method showed that the number of VSMC migration was reduced by 32.18%at 6 hour after transfecting of ED5.ED5SCR had no contribution to VSMC migration.
     9.The results of RT-PCR showed that the mRNA transcription of Egr-1,PCNA, TGF-β1,MMP-14 and MMP-2 were decreased obviously in the ED5 group compared with the control group and ED5SCR group,while the mRNA transcription of p53,p21, Bax and TIMP-2 had no significant change.
     10.The results of Western blot showed that protein translation of Egr-1,PCNA, TGF-β1,MMP-14 and MMP-2 were decreased obviously in the ED5 group compared with the control group and ED5SCR group,while the protein translation of p53,p21 and TIMP-2 had no significant change.The result of Bax was not shown.
     11.The result of immunocytochemistry showed that protein translation of Egr-1, cyclin D1 was decreased obviously in the ED5 group compared with the control and ED5SCR group.ED5SCR had no effect to the protein translation of Egr-1,cyclin D1.
     Conclusion
     1.ED5 gene transfection may specially suppress the expression of Egr-1 and corresponding genes with Egr-1.ED5 can significantly inhibite 10%FBS induced VSMC proliferation.This effect may be related to its blocking VSMC cell cycle in G_0/G_1 phase,inhibiting the DNA synthesis in S phase,decreasing the expression of cyclin D1 and TGF-β1.ED5SCR gene transfection does not have the same effect as ED5.
     2.ED5 gene transfection may specially suppress the expression of Egr-1,regulate the expression of MMP-14,decrease activation of MMP-2,and inhibit VSMC migration.ED5SCR gene transfection does not have the same effect as ED5.
     3.ED5 and ED5SCR gene transfection does not influence the ratio of apoptosis in VSMC.
引文
1 Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty:serial angiographic follow-up Of 229 patients. J Am Coll Cardiol.1988;12:616-623.
    
    2 Holmes DR Jr, Vlietstra RE, Smith HC, et al. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am J Cardiol. 1984;53:77C-81C.
    
    3 Kent KM. Restenosis after percutaneous transluminal coronary angioplasty.Am J Cardiol. 1988; 61:67G-70G.
    
    4 Sarkar R, Meinberg EG, Stanley JC, et al. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circ Res. 1996;78:225-230.
    
    5 Li Y, Breaker RR. Deoxyribozymes: new players in the ancient game of biocatalysis. Curr Opin Struc Biol.1999; 9:315-323.
    
    6 Breaker RR. DNAenzymes. Nat Biotechnol. 1997; 15:427-431.
    
    7 Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci.1997; 94:4262-4266.
    
    8 Santiago FS, Lowe HC, Kavurma MM, et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury.Nat Med. 1999; 5:1264-1269.
    
    9 Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Phyiol. 2002; 193:287-292.
    
    10 Khachigian LM. Early growth response-1 in cardiovascular pathobiology. Circ Res.2006; 98:186-191.
    
    11 Takahashi Y, Fujioka Y, Takahashi T, et al. Chylomicron remnants regulate early growth response factor-1 in vascular smooth muscle cells. Life Sci. 2005; 77:670-682.
    
    12 Yasumoto H, Kim S, Zhan Y, et al. Dominant negative c-jun gene transfer inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia in rats. Gene Ther. 2001; 8:1682-1689.
    
    13 Kume M, Komori K, Matsumoto T, et al. Administration of a decoy against the activator protein-1 binding site suppresses neointimal thickening in rabbit balloon-injured arteries.Circulation.2002;105:1226-1232.
    14 Ohtani K,Egashira K,Usui M,et al.Inhibition of neointimal hyperplasia after balloon injury by cis-element 'decoy' of early growth response gene-1in hypercholesterolemic rabbits.Gene Therapy.2004;11:126-132.
    15 Lowe HC,Fahmy RC,KavurmaMM,et al.Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronaryin-stent restenosis.Circ Res.2001;89:670-677.
    16 Blaschke F,Bruemmer D,Law RE.Egr-1 is a major vascular pathogenic transcription factor in atherosclerosis and restenosis.Rev Endocr Metab Disord.2004;5:249-254.
    17 Khachigian LM.Catalytic DNAs as potential therapeutic agents and sequence-specific molecular tools to dissect biological function.J Clin Invest.2000;106:1189-1195.
    18 潘秀颉,林丽,任安经,等.内皮素-1 10-23脱氧核酶对离体灌流大鼠心脏急性缺血性心律失常的影响.心脏杂志.2004;15:526-529.
    19 赵加明,李明亮,杨展,等.脱氧核酶对端粒酶RNA的切割和乳腺癌细胞凋亡相关基因表达的作用.第一军医大学学报.2005;25:638-642.
    20 Elizabeth F.DNAcuts its teeth-as an enzyme.Science,1999,286:2441-2442.
    21 Schubert S,Furste J,Werk D,et al.Gaining target access for deoxyribozymes.J Mol Biol.2004;339:355-363.
    22 沃健儿,吴晓玲,朱海红,等.脱氧核酶抑制乙型肝炎病毒基因表达的实验研究.浙江大学学报(医学版).2003;32:112-115.
    23 于乐成,顾长海,王升启,等.脱氧核酶对丙型肝炎病毒RNA的剪切活性.中华肝脏病杂志.2003;11:156-158.
    24 R.I.弗雷谢尼.动物细胞培养-基本技术指南(第四版).北京:科学出版社.2006;398-401.
    25 Sugihara H,Hattori T,Fukuda M.Inmunohistochemical detection of bromodeoxyuridine in formalin-fixed tissues.Histochemistry.1986;5:193-195.
    26 Takahashi M,Hokunan K,Unno T.S-phase cell in the guinea pig endolymphatic sac.Acta Otolaryngol.1994;14:259-263.
    27 Naltamuta S,Talccda Y,Kamo M,et al.Application of bromodeoxyuridine(BrdU)and anti-BrdU monoclonal antibody for the in vivo analysis of proliferative characteristics of human leukemia cells in bone marrows.Oncology.1991;8:285-289.
    28 王建中.临床流式细胞分析.上海:上海科学技术出版社.2005;103-110.
    29 Muller DW.The role of proto-oncogenes in coronary restenosis.Prag Cardiovasc Dis.1997;40:117-128.
    30 Tsurimoto T.PCNA binding proteins.Front Biosci.1999;4:D849-858.
    31 李甘地.组织病理技术.北京:人民卫生出版社.2002;121-122.
    32 Kim SJ,Park K,Rudkin BB,et al.Nerve growth factor induces transcription of transforming growth factor-betal 1 through a specific promoter cement in PC12 cells.J Biol Chem.1994;269:3739-3744.
    33 Fu M,Zhu X,Zhang J,et al.Egr-1 target genes in human endothelial cells identified by microarray analysis.Gene.2003;315:33-41.
    34 McCaffrey TA,Fu C,Du B,et al.High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis.J Clin Invest.2000;105:653-662.
    35 Goetze S,Kintscher U,Kaneshiro K,et al.TNF alpha induces expression of transcription factors c-los,Egr-1 and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2.Atherosclerosis.2002;159:93-101.
    36 Chamberlain J,Gunn J,Francis SE,et al.TGF-beta is active and correlates with activators of TGF-beta,following porcine coronary angioplasty.Cardiovasc Res.2001;50:125-136.
    37 MajeskyMW,Lindner V,Twardzik DR.Production of transforming growth factor beta 1 during repair of arterial injury.J Clin Invest.1991;88:904-910.
    38 Nikol S,Isner JM,Pickering JG,et al.Expression of transforming growth factor-beta 1 is increased in human vascular restenosis lesions.J Clin Invest.1992;90:1582-1592.
    39 Wolf YG,Rasmussen LM,Ruoslahti E.Antibodies against transforming growth factor-beta 1 suppress intimal hyperplasia in a rat model.J Clin Invest.1994;93:1172-1178.
    40 Smith JD, Bryant SR, Couper LL, et al. Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. Circ Res. 1999; 84:1212-1222.
    
    41 Cao X, Mathendran R, Guy GR, et al. Detection and characterization of cellular Egr-1 binding to its recognition site. J Biol Chem. 1993;268:16949-16957.
    1 Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty:serial angiographic follow-up Of 229 patients. J Am Coll Cardiol. 1988;12:616-623.
    
    2 Holmes DR Jr, Vlietstra RE, Smith HC, et al. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am J Cardiol. 1984;53:77C-81C.
    
    3 Kent KM. Restenosis after percutaneous transluminal coronary angioplasty.Am J Cardiol.1988; 61:67G-70G.
    
    4 Khachigian LM. DNAzymes: cutting a path to a class of therapeutics. Curr Opin Mol Ther.2002; 4:119-121.
    
    5 Lowe HC, Fahmy RG, Kavurma MM, et al. Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in porcine coronary in-stent restenosis. Circ Res. 2001; 89:670-677.
    
    6 Khachigian, LM. Deoxyribozymes as inhibitors of vascular muscle cell growth. Curr Pharm Biotechnol. 2004; 5:337-339.
    
    7 Santiago FS, Lowe HC, Kavurma MM, et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smoomth muscle proliferation and regrowth after injury. Nat Med. 1999; 5:1264-1269.
    
    8 Faxon DP, Coats W, Currier J. Remodeling of the coronary artery after vascular injury. Prog Cardiovasc Dis. 1997; 40:129-140.
    
    9 Feldman LJ, Mazighi M, Scheuble A, et al. Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation. 2001; 103:3117-3122.
    
    10 Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behaviour.Annu Rev Cell Dev Biol.2001; 17:463-516.
    
    11 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res. 2003;92:827-839.
    
    12 Tyagi SC, Meyer L, Schmailtz RA, et al. Proteinases and restenosis in the human coronary artery: extracellular matrix production exceeds the expression of proteolytic activity. Arteriosclerosis. 1995; 116:43-57.
    
    13 Rodr(?)guez-Pla A, Bosch-Gil JA, Rossello-Urgell J, et al.Metalloproteinase-2 and -9 in giant cell arteritis. Circulation. 2005;112:264-269.
    
    14 Hlawaty H, San Juan A, Jacob MP, et al. Inhibition of MMP-2 gene expression with small interfering RNA in rabbit vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007; 293:H3593-3601.
    
    15 Zaltsman AB, Newby AC. Increased secretion of gelatinases A and B from the aortas of cholesterol fed rabbits: relationship to lesion severity. Atherosclerosis. 1997; 130:61-70.
    
    16 Schwartz SM. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest. 1997; 100:87-89.
    
    17 Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases:evolution, structure and function. Biochim Biophys Acta. 2000; 1477:267-283.
    
    18 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res. 2003;92:827-839.
    
    19 Nagase H.Cell surface activation of progelatinase A(proMMP-2) and cell migration. Cell Res. 1998;8:179-186.
    
    20 Rajavashisth TB, Xu XP, Jovinge S. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation. 1999; 9:3103-3109.
    
    21 Jenkins GM, Crow MT, Bilato C, et al. Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Circulation. 1998; 7:82-90.
    
    22 Haas TL, Stitelman D, Davis SJ, et al. Egr-1 mediates extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase in endothelium. J Biol Chem. 1999; 274:22679-22685.
    
    23 Santiago FS, Atkins DG, Khachigian LM. Vascular smooth muscle cell proliferation and regrowth after mechanical injury in vitro are Egr-1/NGFI-A-dependent. Am J Pathol.1999; 155:897-905.
    24 De Clerck YA,Darville MI,Eeckbout Y,et al.Characterization of the promoter of the gene encoding human tissue inhibitor of metalloproteinases-2(TIMP-2).Gene.1994;139:185-191.
    25 Baker AH,Zaltsman AB,George SJ,et al.Divergent effects of tissue inhibitor of metalloprotei-1,-2,-3 overexprassion on rat vascular smooth muscle cell invasion,proliferation,and death in vitro.TIMP-3 promotes apoptosis.J Clin Invest.1998;101:1478-1487.
    26 De Smet BJ,de K1eijn D,Hanemaaijer R,et al.Metalloproteinase inhibition reduces constrictive arterial remodeling after balloon angioplasty:a study in the atherosclerotic Yucatan micropig.Circulation.2000;101:2962-2967.
    27 Ohtani K,Egashira K,Usui M,et al.Inhibition of neointimal hyperplasia after balloon injury by cis-element'de-coy' of early growth response gene-1in hypercholesterolemic rabbits.Gene Therapy.2004;11:126-132.
    28 Khachigian LM.Catalytic DNAs as potential therapeutic agents and sequence specific molecular tools to dissect biological function.J Clin Invest.2000;106:1189-1195.
    29 卢忠心,曹亚.脱氧核酶及其应用进展.国外医学分子生物学分册.2003:25:282-285.
    1 Breaker RR,Joyce GF.A DNA enzyme that cleaves RNA.Chem Biol.1994:1:223-229.
    2 Breaker RR.DNA enzymes.Nat Biotechnol.1997;15:427-431.
    3 Santoro SW,Joyce GF.A general purpose RNA-cleaving DNA enzyme.Proc Nat Acad Sci USA.1997;94:4262-4266.
    4 Carmi N,Balkhi SR,Breaker RR.Cleaving DNA with DNA.Proc Nat Acad Sci USA.1998;95:2233-2237.
    5 Cuenoud B,Szostak JW.A DNA metalloenzyme with DNA ligase activity.Nature.1995;375:611-614.
    5 Sheppard TL,Ordoukhanian P,Joyce GF.A DNA enzyme with N-glyconylase activity.Proc Nat Acad Sci USA.2000;97:7802-7807.
    7 Fahmy RG,KhachigianLM.Locked nucleic acid modified DNA enzymes targeting early growth response-1 inhibit human vascular smooth muscle cell growth.Nucleic Acids Research.2004;32:281-2285.
    8 Joyce GF.Directed evolution of nucleic acid enzymes.Annu Rev Biochem.2004;73:791-836.
    9 Silverman SK.Deoxyribozymes:DNA catalysts for bioorganic chemistry.Org Biomol Chem.2004;2:2701-2706.
    10 Achenbach JC,Chiuman W,Cruz RP,et al.DNAzymes:from creation in vitro to application in vivo.Curt Pharm Biotechnol.2004;5:321-336.
    11 Lu Y.New transition-metal-dependent DNAzymes as efficient endonucleases and as selective metal biosensors.Chemistry.2002;8:4588-4596.
    12 于乐成,王升启,顾长海,等.DNA生物催化功能研究进展.中国生物化学与分子生物学报.2002;18:391-397.
    13 俞海国,赵晓东,杨锡强.脱氧核酶的研究进展.国外医学分子生物学分册.2002;24.155-157.
    14 Santoro SW,Joyce GF.Mechanism and utility of an RNA-cleaving DNA enzyme.Biochemistry.1998;37:13330-13342.
    15 Cairns MJ,Hopkins TM,Witherington C,et al.Target site selection for an RNA-cleaving catalytic DNA.Nat Biotechnol.1999;I7:480-486.
    16 Cairns MJ,Hopkins TM,Witherington C,et al.The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme.Antisence Nucleic Acid Drug Dev.2000;10:323-332.
    17 Sioud M,Leirdal M.Design of nuclease resistant protein kinase c-alpha DNA enzyme with potential therapeutic application.J Mol Biol.2000;296:937-947.
    18 Asahina Y,Ito Y,Wu CH,et al.DNA ribonucleases that are active against intracellular hepatitis B viral RNA targets.Hepatology.1998;28:547-554.
    19 于乐成,顾长海,王升启,等.基因治疗新策略—酶性DNA的设计和应用.中国药物化学杂志.2002;12:236-241.
    20 Breaker RR.Molecular biology making catalytic DNAs.Science.2000;290:2095-2096.
    21 Yen L,Strittmatter SM,Kalb RG.Sequence-specific cleavage of HuntingtinmRNA by catalytic DNA.Ann Neurol.1999;46:366-373.
    22 沃健儿,吴晓玲,朱海红,等.脱氧核酶抑制乙型肝炎病毒基因表达的实验研究.浙江大学学报(医学版).2003;32(2):112-115.
    23 于乐成,顾长海,王升启,等.脱氧核酶对丙型肝炎病毒RNA的剪切活性.中华肝脏病杂志.2003:11:156-158.
    24 Khachigian LM.Catalytic DNAs as potential therapeutic agents and sequence specific molecular tools to dissect biological function.J Clin Invest.2000;106:1189-1195.
    25 Unwalla H,Banerjea AC.Inhibition of HIV-1 gene expression by novel macrophage-tropic DNA enzymes targeted to cleave HIV-1 TAT/Rev RNA.Biochem J.2001;357:147-155.
    26 Chakraborti S,Banerjea AC.Identification of cleavage sites in the HIV-1TAR RNA by 10-23 and 8-17 catalytic containing DNA enzymes.Biomacromolecules.2003;4:568-571.
    27 Wengel J,Vester B,Lundberg LB,et al.LNA and Alpha-L-LNA:towards therapeutic applications.Nucleosides NucleotidesNucleic Acid.2003;22:601-604.
    28 Toyoda T,Imamura Y,Takaku H,et al.Inhibition of influenza virus replication in cultured cells by RNA-cleaving DNA enzyme.FEBS Lett.2000;481:113-116.
    29 Zhao CA,Zhao XD,Yu HG,et al.Inhibition of respiration syncytial virus replication in cultured cells by RNA-cleaving DNAzyme.Zhonghua Er Ke Za Zhi.2003;41:594-597.
    30 Zhang L,Gsaper WJ,Stass SA,et al.Angiogenic Inhibition Mediated by a DNA enzyme that targets vascular endothelial growth factor receptor2.Cancer Res.2002;62:5463-5469.
    31 Liu C,Cheng R,Sun LQ,et al.Supression of platelet-type 12-lipoxygenase activity in human erythroleukemia cells by an RNA-cleaving DNAzyme.Biochem Biophys Res Commun.2001;284:1077-1082.
    32 Wu Y,Yu L,McMahon R,et al.Inhibition of bcr-abl oncogen expression by novel deoxyribozymes(DNAzymes).Hum Gene Ther.1999;10:2847-2857.
    33 Thiel G,Cibelli G.Regulation of life and death by the zinc finger transcription factor Egr-1.J Cell Phyiol.2002;193:287-292.
    34 Khachigian LM.Early growth response-1 in cardiovascular pathobiology.Circ Res.2006;98:186-191.
    35 Santiago FS,Lowe HC,Kavurma MM,et al.New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury.Nat Med.1999;5:1264-1269.
    36 Lowe HC,Chesterman CN,Khachigian LM.Catalytic antisense DNA molecules targeting Egr-1 inhibit neointima formation following permanent ligation of rat common carotid arteries.Thromb Haemost.2002;87:134-140.
    37 Lowe HC,Fahmy RG,Kavurma MM,et al.Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis.Circ Res.2001;89:670-677.
    38 Liu GN,Teng YX,Yan W.Transfected synthetic DNA Enzyme Gene specifically inhibits Egr-1 gene expression and reduces Neointimal Hyperplasia following balloon injury in rats.Int J Cardiol.2008;Jan 31 Epub ahead of print.
    39 Khachigian LM,Fahmy RG,Zhang GS,et al.C-Jun regulation vascular smooth muscle cells growth and neointima formation after arterial injury.J Biol Chem.2002;277:22985-22991.
    40 周明,王崇全,王玮,等.脂质体介导10-23脱氧核酶对人血管平滑肌细胞增殖的影响.郧阳医学院学报.2004;23:266-269.
    41 潘秀颉,林丽,任安经,等.内皮素-1 10-23脱氧核酶对离体灌流大鼠心脏急性缺血性心律失常的影响.心脏杂志.2004;15:526-529.
    42 Bhindi R,Khachigian LM,Lowe HC.DNAzymes targeting the transcription factor Egr-1 reduce myocardial infarct size following ischemia-reperfusion in rats.J Thromb Haemost.2006;4:1479-1483.
    43 Hjiantoniou E,Iseki S,Uney JB,et al.DNAzyme-mediated cleavage of Twist transcripts and increase in cellular opoptosis.Biochem Biophys Res Commun.2003;300:178-181.
    44 Todd AV,Fuery CJ,Impey HL,et al.DzyNA-PCR:Use of DNAzyme to detect and quantify nucleic acid sequences in a Real-Time fluorescent format.Clin Chem.2000;46:625-630.
    45 Pan WH,Devlin HF,Kelley C,et al.A selection system for identifying accessible sites in target RNAs.R NA.2001;7:610-621.
    46 Cairns MJ,King A,Sun LQ.Nucleic acid mutation analysis using catalytic DNA.Nucleic Acids Res.2000;28:E9.
    47 Stojanovic MN,de Prada P,Landry DW.Homogeneous assays based on deoxyribozyme catalysis.Nucleic Acids Res.2000;28:2915-2918.
    48 Li Y,Breaker RR.Deoxyribozymes:new players in the ancient game of biocatalysis.Curr Opin Struct Biol.1999;9:315-323.
    49 Finkle E.DNA cuts its teeth-as an enzyme.Science,1999,286(5448):2441-2442.
    50 Sioud M,Leirdal M.Therapeutic RNA and DNA enzymes.Biochem Pharmacol.2000;60:1023-1026.
    1 Sukhatme VP, Cao XM, Chang LC, et al. A zinc-finger encoding gene corregulated with c-Fos during growth and differentiation and after depolarization. Cell. 1988; 53:37-43.
    
    2 Gashler A, Sukhatme VP. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol.1995; 50:191-224.
    
    3 Khachigian LM, Lindner V, Williams AJ, et al. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science. 1996; 271:1427-1431.
    
    4 Day FL, Rafty LA, Chesterman CN, et al. Angiotensin II (ATII)-inducible platelet-derived growth factor A-chain gene expression is p42/44 extracellular signal-regulated kinase-1/2 and Egr-1-dependent and modulated via the ATII type 1 but not type 2 receptor. Induction by ATII antagonized by nitric oxide. J Biol Chem. 1999; 274:23726-23733.
    
    5 MorimotoM, Kume N, Miyamoto S, et al. Lysophosphatidylcholine induces early growth response factor-1 expression and activates the core promoter of PDGF-A chain in vascular endothelial cells. Arterioscler Thromb Vasc Biol.2001; 21: 771-776.
    
    6 Silverman ES, Khachigian LM, Lindner V, et al. Inducible PDGF A-chain transcription in vascular smooth muscle cells is mediated by Egr-1 displacement of Sp1 and Sp3. Am J Physiol. 1997;273:1415-1426.
    
    7 Delbridge GJ, Khachigian LM. FGF-1-induced PDGF A-chain gene expression in vascular endothelial cells involves transcriptional activation by Egr-1.Circ Res. 1997; 81:282-288.
    
    8 Santiago FS, Lowe HC, Day FL, et al. Early growth response factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am J Pathol. 1999; 154:937-944.
    
    9 Khachigian LM, Anderson KA, Halnon NJ, et al. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscl Thromb Vasc Biol. 1997; 17:2280-2286.
    10 Pyles JM, March KL, Franklin M, et al. Activation of MAP kinase in vivo follows balloon overstretch injury of porcine coronary and carotid arteries.Circ Res. 1997; 81:904-910.
    
    11 Hu Y, Cheng L, Hochleitner BW, et al. Activation of raitogen-activated protein kinases (ERK/JNK) and AP-1 transcription factor in rat carotid arteries after balloon injury. Arterioscler Thromb Vasc Biol. 1997; 17:2808-2816.
    
    12 Sakamoto KM, Bardeleben C, Yates KE, et al. 5' upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS-8. Oncogene. 1991; 6:867-871.
    
    13 Wu SQ, Minami T, Donovan DJ, et al. The proximal serum response element in the Egr-1 promoter mediates response to thrombin in primary human endothelial cells. Blood. 2002; 100:4454-4461.
    
    14 Guha M, O' Connell MA, Pawlinski R, et al. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood. 2001; 98:1429-1439.
    
    15 Yan SF, Lu J, Zou YS, et al. Hypoxia-associated induction of early growth response-1 gene expression. J Biol Chem. 1999, 274(21):15030-15040.
    
    16 Buchwalter G, Gross C, Wasylyk B. Ets ternary complex transcription factors.Gene. 2004; 324:1-14.
    
    17 Fu M, Zhu X, Zhang J, et al. Egr-1 target genes in human endothelial cells identified by microarray analysis. Gene.2003; 315:33-41.
    
    18 McCaffrey TA, Fu C, Du B, et al. High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. J Clin Invest. 2000;105:653-662.
    
    19 Du B, Fu C, Kent KC, et al. Elevated Egr-1 in human atherosclerotic cells transcriptionally represses the transforming growth factor-beta type II receptor. J Biol Chem. 2000; 275:39039-39047.
    
    20 Harja E, Bucciarelli LG, Lu Y, et al. Early growth response-1 promotes atherogenesis: mice deficient in early growth response-1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ Res. 2004; 94:333-339.
    21 Goetze S, Kintscher U, Kaneshiro K, et al. TNF alpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2. Atherosclerosis.2001; 159:93-101.
    
    22 Bea F, Blessing E, Shelley MI, et al. Simvastatin inhibits expression of tissue factor in advanced atherosclerotic lesions of apolipoprotein E deficient mice independently of lipid lowering: potential role of simvastatin-mediated inhibition of Egr-1 expression and activation.Atherosclerosis. 2003; 167: 187-194.
    
    23 Ghazvini-Boroujerdi M, Clark J, Narula N, et al. Transcription factor Egr-1 in calcific aortic valve disease. J Heart Valve Dis. 2004; 13:894-903.
    
    24 Rupp J, Hellwig-Burgel T, Wobbe V, et al. Chlamydia pneumoniae infection promotes a proliferative phenotype in the vasculature through Egr-1 activation in vitro and in vivo. Proc Natl Acad Sci U S A. 2005; 102:3447-3452.
    
    25 Bea F, Puolakkainen MH, McMillen T, et al. Chlamydia pneumoniae induces tissue factor expression in mouse macrophages via activation of Egr-1 and the MEK-ERK1/2 pathway. Circ Res.2003; 92:394-401.
    
    26 Lowe HC, Chesterman CN, Hopkins AP, et al. Acute local release of f ibroblast growth factor-2 but not transforming growth factor-beta1 following coronary stenting. Thromb Haemost. 2001; 85:574-576.
    
    27 Jackson CL, Reidy MA. Basic f ibroblast growth factor: its role in the control of smooth muscle cell migration. Am J Pathol. 1993; 143:1024-1031.
    
    28 Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Phyiol.2002; 193:287-292.
    
    29 Santiago FS, Lowe HC, Kavurma MM, et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth factor injury.Nat Med. 1999; 5:1264-1269.
    
    30 Santiago FS, Atkins DA, Khachigian LM. Vascular smooth muscle cell proliferation and regrowth after injury in vitro are Egr-1/NGFI-A-dependent.Am J Pathol. 1999; 155:897- 905.
    31 Lowe HC, Chesterman CN, Khachigian LM. Catalytic antisense DNA molecules targeting Egr-1 inhibit neointima formation following permanent ligation of rat common carotid arteries. Thromb Haemost. 2002; 87:134-140.
    
    32 Fahmy RG, Khachigian LM. Locked nucleic acid-modified DNA enzymes targeting early growth response-1 inhibit vascular smooth muscle cell growth. Nucleic Acids Res.2004; 32:2281-2285.
    
    33 Lowe HC, Fahmy RG, Kavurma MM, et al. Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis. Circ Res. 2001; 89:670-677.
    
    34 Ohtani K, Egashira K, Usui M, et al. Inhibition of neointimal hyperplasia after balloon injury by cis-element 'decoy' of early growth response gene-1 in hypercholesterolemic rabbits. Gene Ther. 2004; 11:126-132.
    
    35 Brand T, Sharma HS, Schaper W. Expression of nuclear proto-oncogenes in isoproterenol-induced cardiac hypertrophy. J Mol Cell Cardiol. 1993; 25:1325-1337.
    
    36 Buitrago M, Lorenz K, Maass AH, et al. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Nat Med. 2005;11: 837-844.
    
    37 Autieri MV, Kelemen SE, Gaughan JP, et al. Early growth responsive gene (Egr)-1 expression correlates with cardiac allograft rejection. Transplantation. 2004; 78:107-111.
    
    38 Wada Y, Suzuki J, Kawauchi M, et al. Early growth-response factor 1 and basic transcript(?) al element-binding protein 2 expression in cardiac allograf ts.J Heart Lung Transplant. 2001; 20:590-594.
    
    39 Okada M, Wang CY, Hwang DW, et al. Transcript ional control of cardiac allograft vasculopathy by early growth response gene-1 (Egr-1). Circ Res. 2002; 91: 135-142.
    
    40 Okada M, Fujita T, Sakaguchi T, et al. Extinguishing Egr-1-dependent inflammatory and thrombotic cascades after lung transplantation. FASEB J. 2001; 15: 2757-2759.
    41 Fahmy RG, Dass CR, Sun LQ, et al. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med.2003; 9:1026-1032.
    
    42 Lucerna M, Mechtcheriakova D, Kadl A, et al NAB2, a corepressor of EGR-1,inhibits vascular endothelial growth factor-mediated gene induction and angiogenic responses of endothelial cells. J Biol Chem. 2003;278:11433-11440.
    
    43 Grote K, Bavendiek U, Grothusen C, et al. Stretch-inducible expression of the angiogenic factor CCN1 in vascular smooth muscle cells is mediated by Egr-1. J Biol Chem. 2004; 279:55675-55681.
    
    44 Pugh CW, Ratcliffe PJ.Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003; 9:677-684.
    
    45 Yan SF, Fujita T, Lu J, et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med.2000; 6: 1355-1361.
    
    46 Miyatake Y, Ikeda H, Michimata R, et al. Differential modulation of gene expression among rat tissues with warm ischemia. Exp Mol Pathol. 2004; 77:222-230.
    
    47 Banks MF, Gerasimovskaya EV, Tucker DA, et al. Egr-1 antisense oligonucleotides inhibit hypoxia-induced proliferation of pulmonary artery adventitial fibroblasts. J Appl Physiol. 2005; 98:732-738.
    
    48 Lo LW, Cheng JJ, Chiu JJ, et al. Endothelial exposure to hypoxia induces Egr-1 expression involving PKCalpha-mediated Ras/Raf-1/ERK1/2 pathway. J Cell Physiol. 2001; 188:304-312.
    
    49 Aebert H, Cornelius T, Ehr T, et al. Expression of immediate early genes after cardioplegic arrest and reperfusion. Ann Thorac Surg. 1997;63:1669-1675.
    
    50 Fahmy RG, Khachigian LM. Antisense Egr-1 RNA driven by the CMV promoter is an inhibitor of vascular smooth muscle cell proliferation and regrowth after injury. J Cell Biochem. 2002; 84:575-582.
    51 Fahmy RG, Khachigian LM. Suppression of growth factor expression and human vascular smooth muscle cell growth by small interfering RNA targeting EGR-1.J Cell Biochem. 2007; 100:1526-1535.
    
    52 Liu GN, Teng YX, Yan W.Transfected synthetic DNA Enzyme Gene specifically inhibits Egr-1 gene expression and reduces Neointimal Hyperplasia following balloon injury in rats. Int J Cardiol. 2008; Jan 31 Epub ahead of print.
    1 Feldman LJ, Mazighi M, Scheuble A, et al. Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation.2001; 103:3117-3122.
    
    2 Cawston TE, Billington C. Metalloproteinases in the rtheumatic diseases.J Pathol.1996; 180:115-117.
    
    3 Bode W, Fernandez-Catalan C, Tschesche H. Structural properties of matrix metalloproteinases. Cell Mol Life Sci.1999; 55:639-652.
    
    4 Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behaviour.Annu Rev Cell Dev Biol.2001; 17:463-516.
    
    5 Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. Circ Res. 2003;92: 827-839.
    
    6 Hulboy D, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod.1997; 3:27-45.
    
    7 Rajavashisth TB, Xu XP, Jovinge S. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation. 1999; 99:3103-3109.
    
    8 Jenkins GM, Crow MT, Bilato C, et al. Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Circulation.1998; 97:82-90.
    
    9 Park HI, Ni J, Gerkema FE, et al. Identification and characterization Of human endometase(Matrixmetalloproteinase-26) from endometrial tumor. J Biol Chem. 2000; 275:20540-20544.
    
    10 Marchenko GN, Strongin AY. MMP28, a new human matrix metalloproteinase with an unusual cysteine-switch sequence is widely expressed in tumors. Gene. 2001;265:87-93.
    
    11 Uzui H, Lee JD, Shimizu H, et al. The role of protein-tyrosine phosphorylation and gelatinase production in the migration and proliferation of smooth muscle cells. Artherosclerosis. 2000; 149:51-59.
    
    12 Lee E, Vaughan DE, Parikh SH, et al. Regulation of matrix metalloproteinases and plasminogen activator inhibitor-1 synthesis by plasminogen in cultured human vascular smooth muscle cells. Circ Res. 1996; 78:44-49.
    
    13 Galis ZS, Kranzhofer R, Fenton JW 2nd, et al. Thrombin promotes activation of matrix metalloproteinase-2 produced by cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1997; 17:483-489.
    
    14 Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases:evolution, structure and function. Biochim Biophys Acta. 2000; 1477:267-283.
    
    15 Baker AH, Zaltsman AB, George SJ, et al. Divergent effects of tissue inhibitor of metalloprotei-1, -2, -3 overexprassion on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest. 1998; 101:1478-1487.
    
    16 Zemlianskaia OA. The role of matrix metalproteinases in the development of restenosis after transcutaneous coronary interventions. Angiol Sosud Khir. 2004; 10:29-35.
    
    17 Zahradka P, Harding G, Litchie B, et al. Activation of MMP-2 in response to vascular injury is mediated by phosphatidylinositol 3-kinase-dependent expression of MT1-MMP. Am J Physiol Heart Circ Physiol. 2004; 287:H2861-2870.
    
    18 Strauss BH, Robinson R, Batchelor WB, et al. In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ Res. 1996; 79:541-550.
    
    19 Zempo N, Koyama N, Kenagy RD, et al. Regulation of vascuLar smooth muscle cell migration and proliferation invitro and in ininjured rat arterie by a synthetic matrix metalloproteinase inhibitor. Arterioscler Thromb Vasc Biol.1996;16: 28-33.
    
    20 De Smet BJ, de Kleijn D, Hanemaaijer R, et al. Metalloproteinase inhibition reduces constrictive arterial remodeling after balloon angioplasty: a study in the atherosclerotic Yucatan micropig. Circulation. 2000; 101:2962-2967.
    
    21 Southgate KM, Fisher M, Banning AP, et al. Upregulation of basement membrane-degrading metalloproteinase secretion after balloon injury of pig carotid arteries. Circ Res.1996;79:1177-1187
    
    22 Kenagy RD, Hart CE, Stetler-Stevenson WG, et al. Primate smooth muscle cell migration from aortic explants is mediated by endogenous platelet-derived growth factor and basic fibroblast growth factor acting through matrix metalloproteinases 2 and 9. Circulation.1997; 96:3555-3560.
    
    23 Kenagy RD, Clowes AW. A possible role for MMP-2 and MMP-9 in the migration of primate arterial smooth muscle cell through matrix. Am NY Acad Sci. 1994;732:462-465.
    
    24 Webb KE, Henney AM, AnglinS, et al. Expression of matrix metalloproteninases and their inhibitors TIMP-1 in the rat carotid artery after balloon injury.Arterioscler Thromb Vasc Biol. 1997; 17:1837-1844.
    
    25 Dollery CM, McEwan JR, Wang M, et al. TIMP-4 is regulated by vascular injury in rats [J]. Circ Res.1999; 84:498-504.
    
    26 Bendeck MP, Irvin C, Reidy MA. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res. 1996; 78:38-43.
    
    27 Forough R, Koyama N, Hasenstab D, et al. Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell funcitons in vitro and in vivo. Circ Res.1996; 79:812-820.
    
    28 Cheng L, Mantile G, Pauly R, et al. Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteninase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulalion. 1998; 98:2195-2201.
    
    29 Hlawaty H, San Juan A, Jacob MP, et al. Inhibition of MMP-2 gene expression with small interfering RNA in rabbit vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007; 293:H3593-3601.
    
    30 Masuda T, Nakayama Y. Development of a water-soluble matrix metallopreinase inhibitor as an intra-arterial infusion drug for prevention of restenosis after angioplasty. J Med Chem. 2003; 46:3497-3501.
    
    31 Wilson SH, Herrmann J, Lerman LO, et al. Simvastatin preserves the structure of coronary adventitial vasa vasoram in experimental hypercholesterolemia independent of lipid lowering. Circulation. 2002; 105:415-418.
    
    32 Son JW, Koh KK, Ahn JY, et al. Effects of statin on plaque stability and thrombogenicity in hypercholesterolemic patients with coronary artery disease. Int J Cardiol. 2003; 88:77-82.
    33 Orbe J, Rodriguez JA, Arias R, et al. Antioxidant vitamins increase the collagen content and reduce MMP-1 in a porcine model of atherosclerosis:implication for plaque stabilization . Atherosclerosis. 2003; 167:45-53.
    
    34 Pinney SP, Chen HJ, Liang D, et al. Minocycline inhibits smooth muscle cell proliferation, migration and neointima formation after arterial injury. J Cardiovasc Pharmacol. 2003;42:469-476.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700