CRTSⅡ型板式无砟轨道台后新型过渡段动力学特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无砟轨道结构具有高平顺性、高稳定性、高耐久性和高可靠性的特点,为世界各国高速铁路所接受。我国高速铁路通过引进、消化、吸收、再创新,形成了具有我国特色的无砟轨道系统技术,其中有代表性的如CRTS II型板式无砟轨道,对于这种无砟轨道,由于全桥纵连而产生的连续底座上的温度力和列车的制动力等对路基有很大的影响,需要在桥台后设置锚固体系,改变了传统的路桥过渡段。其中CRTS II型路桥过渡段主要有倒T型端刺和双柱型端刺两种锚固结构,本文对其进行对比分析,研究新型过渡段的力学特性,并重点关心路基垂向方面的各种指标。
     本文主要做了如下几方面的工作:
     1)查阅大量资料,对CRTS II型板式无砟轨道台后锚固体系进行了详细的研究,并收集倒T型以及双柱型端刺的理论研究、试验等资料。为充分考虑列车动力作用下的新型过渡段力学特性,采用ABAQUS软件,建立车-线-桥-路基耦合模型。模型中,考虑各部件的作用关系,对其进行模拟。
     2)利用动力模型研究轨道结构、路基结构在过渡段的合理刚度匹配关系;研究行车速度以及行车方向对锚固体系受力的影响;锚固体系范围内路基填料的性质对整体结构竖向刚度的影响;过渡段不均匀沉降对舒适性的影响以及对车辆与线路相互作用的影响。研究表明:主端刺处结构刚度大,垂向加速度大,垂向位移小,垂向位移最大值发生在主端次后,需要重点关注;行车速度、路基填料以及沉降对各项动力指标的影响明显;行车方向对轮重减载率的影响较大。并将计算结果与现场试验结果进行了对比,验证了模型的合理性。
     3)为了充分了解新型过渡段结构的力学特性,就双柱型、倒T型端刺锚固结构的力学特性与传统过渡段结构进行对比分析,并对新型过渡段倒T形端刺以及双柱型端刺锚固结构进行对比分析。研究表明:在高速列车作用下,与传统过渡段结构相比,采用新型过渡段结构降低了结构垂向位移,在横垂向轮轨力及车体横垂向加速度方面未引起较大变化,并减小了轮重减载率。相同速度下,倒T型端刺与双柱型端刺锚固结构的垂向轮轨力差距较小,倒T型端刺的横垂向加速度明显大于双柱型端刺;倒T型端刺整体刚度较大,双柱型端刺整体刚度较小;倒T端刺性较双柱型端刺在动荷载作用下的振动稍小。并根据各自特点,进行优化。结果表明优化后较优化前各项指标有较大提高。
With the high ride comfort, stability, durability and reliability, the ballastless track has been accepted by the high-speed railway all over the world. In our country, the track is also been used widely and through the introduction, digestion, absorption and re-innovation, a complete set technology of the CRTS II track has been formed. And the longitudinal-continuous-slab-type ballstless track on bridge is a new design idea which has great significance. The structure will bring about huge longitudinal temperature force and brake force and can transfer to the subgrade for that the ballstless track is continuous in the whole bridge. Consequently to resist it, the structure should set the terminal displacement configuration system (TDCS) which is different from the taditional transition section.In this paper, the study is mainly about two anchoring bolting systems which are been used widely: the inverted T-shaped TDCS and the double-column shaped TDCS. Through the comparison between them, the research can get the differences in which vertical index have been with the main concern and can select more reasonable anchoring bolting system.
     This paper has mainly done the following work:
     1) reading a large number of paper, have a detailed study to the anchoring bolting system of CRTS II longitudinal-continuous-slab-type ballstless track and collect the parameters of the inverted T-shaped TDCS and the double-column shaped TDCS. Based on the ABAQUS software the vehicle-bridge-subgrade model has been made in which the interaction relationship is considered
     2) The dynamic model can be used to study the matching relationship of rational rigidity between the track structure and subgrade, the influence to the anchoring bolting system with the different train speed and direction, the influence of vertical stiffness with different roadbed filling in the scope of anchoring bolting system, the influence of uneven settlement in the transition section to comfort and to the interaction between the vehicle and line. Research shows that:the main TDCS has a big stiffness, vertical acceleration and a small vertical displacement. The largest vertical displacement occurred behind the TDCS where it is a wesk point. Driving speed has a great influence to the rate of wheel load reduction.To verify the rationality of the model, the results have been compared with the test results.
     3) Based on the research results in front, the research compared the new-style tansition section with the taditional transition section, and compared the inverted T-shaped TDCS with the double-column shaped TDCS at the same time. Research shows that:compared with the taditional transition section, the new-style transition section reduced the vertical displacement and the rate of wheel load reduction and changed little to the the lateral and vertical wheel-rail force and acceleration of vehicle. Compared between the new-style transition section, the vertical wheel-rail force has little difference between them in the same velocity, but the lateral and vertical acceleration in the inverted T-shaped TDCS is lager than the double-column shaped TDCS; The integral rigidity of the T-shaped TDCS is lager than the double-column shaped TDCS; Compared with the double-column shaped TDCS, the inverted T-shaped TDCS has a smaller vibration in the action of dynamic loading.And Make a optimization according to their characteristics.The results show that the indexs has greatly improved after optimization.
引文
[1]高亮,轨道工程[M].北京.中国铁道出版社.2010:19-66.
    [2]吴克俭,无砟轨道技术再创新研究与实践[J].铁道工程学报,2010,(6).
    [3]何华武.创新的中国高速铁路技术[J].中国铁道科学,2007.9(9):4-18.
    [4]钱立新.世界高速铁路技术[M].北京:中国铁道出版社,2003.
    [5]王庆波,姜子清,司道林,.桥上纵连板式无砟轨道相关技术问题分析[J].铁道工程学报,2010,(5).
    [6]刘同江.特长单线铁路隧道无砟轨道道床施工技术[J].铁道建筑技术,2009,(12).
    [7]徐振龙,钱振地,王金学.隧道内长枕埋入式无碴轨道综合施工技术研究[J],铁道工程学报,2004,12:73-76.
    [8]李春霞,殷明旻,车晓娟.路基上无砟轨道基床反力系数取值的探讨[J].铁道建筑,2009,(11).
    [9]石现峰,宣言,王澜.土质路基上板式无砟轨道结构的动力学性能仿真研究[J].中国铁道科学,2008,(4).
    [10]王智猛,蒋关鲁,李华明,魏永幸.遂渝线无砟轨道道岔区基床动力测试研究[J].铁道建筑,2008,(10).
    [11]Coenraad Esveld. Modern Railway Track [M]. MRT-Productions, Delft University of Technology, 2001.
    [12]M.J.M.M. Steenbergen, A.V. Metrikine, C. EsveldAssessment of design parame--ters of a slab track railway system from a dynamic viewpoint, Journal of Sound and Vibration, Volume 306, Issues 1-2, 25 September 2007, Pages 361-371.
    [13]王晓刚.国外高速铁路建设及发展趋势[J].建筑机械,2007.3:30-36.
    [14]辛学忠,德国铁路无砟轨道技术分析及建议.铁道标准设计.2005(2).
    [15]王其昌.皖赣线溶口隧道轨道板轨道结构受力分析[J].铁道标准设计通讯,1984,(12).
    [16]秦沈客运专线技术总结委员会,秦沈客运专线技术总结[R],2002.
    [17]卢祖文.客运专线铁路轨道[M].北京:中国铁道出版社,2005.
    [18]郭福安,客运专线无碴轨道结构[J],铁道标准设计,2006(4):7-10.
    [19]何华武.我国客运专线应大力发展无砟轨道[J].中国铁路,2005.1:13-16.
    [20]客运专线无砟轨道技术再创新攻关组,国内外无砟轨道系统研究分析总报告[R],2007.
    [21]吴克俭,无砟轨道技术再创新研究与实践[J].铁道工程学报,2010,(6).
    [22]石现峰,高速铁路无砟轨道结构的设计理论研究[D].北京:铁道部科学研究院博士学位论文.
    [23]董冲锋.350km/h客运专线CRTSⅠ型板式无砟轨道施工关键技术[J].铁道工程学报,2009,(5).
    [24]何江.桥上CRTSⅠ型板式无砟轨道施工技术研究[J].铁道建筑技术,2011,(3).
    [25]赵根田.CRTSⅡ型板式无砟轨道制造技术[J].铁道建筑技术,2010,(6).
    [26]客运专线无砟轨道技术再创新理论组.“客运专线无砟轨道技术再创新”子项目阶段报告——设计理论与方法阶段总报告.2008,(4).
    [27]田其义,王军文,石岩,张向东,.CRTSⅡ型板式无砟轨道轨道板力学性能试验研究[J].石家庄铁道大学学报(自然科学版),2010,(4).
    [28]卿三惠,陈叔,胡建,高速铁路CRTSⅡ型板式无砟轨道施工关键设备及施工技术研究[J].铁道工程学报,2008,(7).
    [29]田仲初,李攀,.京沪高速铁路板式无砟轨道竖向振动分析[J].长沙理工大学学报(自然科学版),2011,(2).
    [30]王成晓,CTRSⅢ型板式无砟轨道力学特性研究[D].北京:北京交通大学硕士学位论文,2011.
    [31]李中华,.CRTSⅠ型与CRTSⅡ型板式无砟轨道结构特点分析[J].华东交通大学学报,2010,(1).
    [32]铁道部工程管理中心.京津城际轨道交通工程CRTSⅡ型板式无砟轨道技术总结报告[R].北京,2008.
    [33]高速铁路设计规范(试行TB10020-2009)[S].铁道出版社,2009,(12).
    [34]徐庆元,张旭久,.高速铁路博格纵连板桥上无砟轨道纵向力学特性[J].中南大学学报(自然科学版),-009,(2).
    [35]轨道板计算设计报告.博格板式无砟轨道设计培训.2005,(12).
    [36]彭倩倩,赵运刚,席恒文浅,谈桥梁上CRTSⅡ型板式无砟轨道[J].黑龙江科技信息,2011(04):219.
    [37]王庆波,姜子清,司道林,.桥上纵连板式无砟轨道相关技术问题分析[J].铁道工程学报,2010,(5).
    [38]陈小平,王平.客运专线桥上纵连板式无砟轨道制动附加力影响因素分析[J].铁道建筑,2008(9):87-90.
    [39]何华武,京津城际铁路科技创新[J].中国工程科学,2009(01):23.
    [40]靖仕元,京沪高速铁路CRTSⅡ型板轨道端刺设置方案研究[J].铁道标准设计,2009(09):9-12.
    [41]李朝锋,高速客运专线铁路铺设无砟轨道过渡段结构设计[J].铁道标准设计,2009,(7):1-4.
    [42]Dingqing Li,David Davis.Transition of Railroad Brige Approaches [J], Journal of Geotechnical and Geoenvironmental Engineering,2005.
    [43]Mohammadi,Mohsen;Karabalis,Dimitris L.Dynamic 3-D soil-railway track interaction by BEM-FEM.Earthquake Engineering& Structural Dynamics.1995(5).
    [44]Yanquan Sun,Use of Simulation in Determination of Railway Track Vertical Dynamic Forces in Railway Vehicle Acceptance Procedure, The Third International Conference on Mechanical Engineering and Mechanics,2009(01).
    [45]陈小兵,黄晓明,.连续配筋混凝土路面端部结构新方式探讨[J].中外公路,2011(4):51.
    [46]王于,翟婉明,林良明等.一种确定轨道过渡段的新方法[J].铁道工程学报,1999,12:25-28.
    [47]王建伟,王岩松,白峰,CRTSⅡ型轨道板临时端刺的应用[J].国防交通工程与技术,2008(5):52.
    [48]蔡成标,翟婉明,,赵铁军等.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001,1(1):17-19,28.
    [49]段玉振,张丽平,杨荣山,隧道内摩擦板和端刺结构方案研究[J].铁道建筑,2011(06):61-64.
    [50]闫红亮,京津城际铁路无砟轨道设计综述[J].铁道建筑,2008增刊-0010-06.
    [51]蔡小培,高亮,魏强,曲村,CRTSⅡ型板式轨道台后Ⅱ型主端刺锚固结构受力分析[J].铁道建筑,2010(12):121-124.
    [52]张旭东,桥上纵连板无砟轨道台后锚固体系设置形式研究[D].北京:北京交通大学硕士学位论文,2010.
    [53]铁道车辆动力学性能评定和试验鉴定规范.
    [54]客运专线铁路工程竣工验收动态检测指导意见.
    [55]葛海娟,郑武段客运专线CRTSⅡ型板式无砟轨道摩擦板和端刺方案研究,铁道工程学报[J].2010(02).
    [56]石亦平,周玉蓉,ABAQUA有限元分析实例详解[M].机械工业出版社,2006.
    [57]翟婉明.车辆轨道耦合动力学研究的新进展[J].中国铁道科学,2002(04):1-11.
    [58]翟婉明.车辆一轨道耦合动力学(第三版)[M].科学出版社,北京,2007.
    [59]Jenkins H H, et al. The effect of track and vehicle parameters on wheel-rail vertical dynamic forces[J]. Railway Engineering Journal[J],1974,3(1):2-16.
    [60]石现峰,宣言,王澜,土质路基上板式无砟轨道结构的动力学性能仿真研究[J].中国铁道科学,2008(07):15-19.
    [61]张曙光.高速列车设计方法研究[M].中国铁道出版社,北京,2009.
    [62]Dinh-Van Nguyena, Ki-Du Kimb, Pennung Warnitchaia, Simulation procedure for vehicle-substructure dynamic interactions and wheel movements using linearized wheel-rail interfaces [J], Finite Elements in Analysis and Design, Volume 45, Issue 5, April 2009, Pages 341-356.
    [63]夏禾.车辆与结构动力相互作用[M].北京:科学出版社,2002.3.
    [64]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学博士学位论文,2000.
    [65]罗林.轨道不平顺紧急补修管理值的研究[J],中国铁道科学,1988.
    [66]蔡成标,翟婉明,王其昌.不同轨下基础轨道连接的动力特性分析[J],铁道学报,2002,1:79-82.
    [67]陈鹏,高亮,马鸣楠,高速铁路路基沉降限值及其对无砟轨道受力的影响[J].工程建设与设计,2008(05):63-65.
    [68]高建敏,翟婉明,车辆—轨道耦合动力学理论在轨道下沉变形研究中的应用[J].西南交通大学学报,2007(08):431~435.
    [69]高增增,路基不均匀沉降对双块式无砟轨道结构受力影响分析[J].中国铁路,2010(7):74-76.
    [70]王其昌,蔡成标,,蔡英等.高速铁路路桥过渡段轨道折角限值的分析[J].铁道学报,1998,(6):109-113.
    [71]P. Galv'n, A. Romero, J. Domi'nguez, Vibrations induced by HST passage on ballast and non-ballast tracks[J]. Soil Dynamics and Earthquake Engineering, Volume 30, Issue 9, September 2010, Pages 862-873.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700