CSMB集成反应分离装备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着资源、能源、环境和安全等问题的日益突出,在石化、医药、轻工和食品加工等生产过程中,由产出、能耗、排放和安全等构成的体系及优化越来越值得深入研究。如何在高效、高品质产出同时,实现“节能、减排、安全和绿色生产”是国内外正在积极开展的重要研究课题,并且成为我国中长期科技发展规划中的重点攻关内容。而在上述化工过程中,反应与分离是最常见也是至为关键的环节,将二者集成与控制是实现高效生产和节能减排的最有效手段。因此,本论文提出了一种基于可控反应器与可连续色谱分离集成的新装备技术,其通过将多个平行反应单元与分离单元进行耦合控制,可以在最高的反应转化率和最佳的分离效果之间找到最优点。将其成功应用于壳寡糖和甘露醇等资源产品的制备中,可以在处理能力、生产效率、节能指标、溶剂消耗和产品质量等多方面进行综合优化,带来颇为理想的产能效果和广阔的应用前景。本文的主要研究内容及创新在于:
     (1)在深入进行连续色谱分离和可控电化学反应机理研究之上,自主提出了基于耦合型模拟移动床技术(Coupled/Cascade Simulated Moving Bed,简称CSMB)的集成反应分离系统设计与耦合控制方法。主要是,对于多个不同功能的并行单元组成,通过电磁阀组合设计与程控切换,使多个反应器与层析柱间实现串、并联,进而构成具有因果关联的功能区块;针对不同的产品要求,采用自主提出的流程与控制算法,实现了区域式模拟移动床和多元分流式二种新型分离体系;通过系统的连续一体化、周而复始运行,可以在最好的反应转化率与最佳的分离点之间寻求平衡,实现反应分离耦合和系统集成优化;将其工作状态调整到最优点后,就可以在高效率、高精度和高品质制备同时,有效地降低能耗,减少有机溶剂排放,实现多组分连续反应提取和机电一体化生产。
     (2)基于层析柱理论模型和化学反应的过程传质原理,建立了可控反应器与可连续色谱分离集成的过程数学模型和模拟方法。主要是,在确定色谱分离与反应传质过程的模型参数之上,建立了反应分离集成中的单柱分离、双柱串联、多柱串并联和多组分分离操作等基本过程模型,并各自进行了FEMLAB建模求解;结合工艺试验,在验证求解结果同时,获得了切换控制的时间点;建立了反应分离耦合的一体化模型,获得了找出最优反应分离耦合点的方法;另外,针对反应与分离耦合中的关键因素,分别探讨了柱长、流速和进样量等的实际影响,给出了其作用规律和优化措施。
     (3)基于以上设计思路、建模分析和关键工艺试验等,自主开发出一套具有通用性和可拓性的集成反应分离装备。主要包括,自主设计并加工出一套反应可控的新颖电化学反应器,其通过实时电导、电流和pH等检测,可以感知与控制反应进程;针对多组份分离的流动控制要求,自主搭建出一套可连续色谱分离的多层析柱串、并联系统,其通过不同的电磁阀组合切换,可以分别实现区域式模拟移动床和多元分流式连续分离操作;最后,采用程控恒流泵输送,由IPC-PLC组成上下位机控制系统,采用MCGS进行软件组态,由折射仪、生物传感分析仪和HPLC等进行产品检测,将上述单元组装成为一套CSMB耦合模拟移动床集成反应分离装备。
     (4)在此CSMB集成反应分离装备平台上,采用自主提出的工艺控制方法,分别进行了甘露醇和壳寡糖制备的试验研究。主要是,采用电化学法还原葡萄糖来制备甘露醇,将其与自主提出的区域式模拟移动床分离进行集成;采用自主提出的电化学法氧化降解壳聚糖来制备壳寡糖,分别与以单柱和双柱串联为基本分离单元的两种多元分流式连续分离进行集成;以上均获得了最佳的工艺路线和高品质目标产物,并且对过程节能和排放进行了量化分析。上述试验结果证实,对于多组分混合产物,集成反应分离方法是高效率获取高纯度产品的有效途径,其连续高效的一体化生产能大大节省能源,极大地减少有机溶剂对环境的污染,其研发紧扣当前“高效生产”、“绿色化工”和“节能减排”等重要发展方向,颇具推广应用价值。
With the resources, energy, environment and security issues becoming more prominent, the system consisting of production, energy consumption, emissions and safety and its optimization is becoming increasingly important in the petrochemical, pharmaceutical, light industry and food processing, production process. How to ensure efficient high quality output, and to achieve "energy saving, emission reduction, safety and green production" have become an important research topic, and focus research content in long-term technology development plan in china. In the above chemical process, reaction and separation are the most common and key parts. The integration and control of the reaction and separation is the most effective mean to achieve both efficient production and energy savings. In this paper, the CSMB, coupled/cascade simulated moving bed reaction-separation integrated technology was proposed. Through the integrated control of the multiple separation units and reaction units, the optimal point between the highest conversion rate and the best separation performance was found. This technology was successfully applied to the research products of oligosaccharide, mannitol and other resources. The multi-component separation and continuous integration production was achieved. The resulting products have been optimized in processing power, energy efficiency indicators, productivity, solvent consumption, product performance and other aspects. The targets of a fine resource extraction, waste regeneration, green processing and optimization of energy efficiency and emission reduction were achieved. The main research content and innovations are:
     (1) Based on study of continuous chromatographic separation and principle of controlled electrochemical reaction, the novel CSMB coupled/cascade simulated moving bed reaction-separation integrated technology was proposed, which was constituted by different functional units. The separation unit was composed with different blocks formed by series-parallel columns. Through the reasonable control algorithms and the combination design of the valve, the series/parallel of the separation units and reactor units were formed, and then the division of the various functional blocks were achieved. For different product requirements, using the proposed algorithm and control process, the regional-type simulated moving bed separation coupling system and multi-cell reaction-separation integrated system were established. Through the continuous integration cycle run, the balance of the highest conversion rate and the best separation performance was achieved, and the optimized integration of reaction and separation was realized. When the system working in the optimum condition, the high efficiency, high precision and high-quality preparation can be met, at the same time, the energy consumption and organic solvents emissions can be effectively reduced. Then the mechanical and electrical integration production of multi-component can be realized.
     (2) Based on the basic theory of the chromatographic separation and chemical reaction mass transfer, the chromatographic separation parameters involved in the model were determined. The single column, two series columns, multi-columns in series and multi-fractionation chromatography separation models were established and solved through FEMLAB soft. The modeling solution in good agreement with the experimental results, then the separation control time point were accurately given. Based on the separation model, the reaction-separation coupling model was established, and the optimal coupling point was determined. Column length, flow rate, injection volume and other factors in coupling reaction and separation technology were considered and optimized, and then optimization measures were given.
     (3) According to the above design ideas, model analysis and key process tests, a versatility and opening reaction separation integrated equipment was exploited. A novel controlled electrochemical reactor was designed and fabricated. Through the real-time conductance, current and pH test, the reaction process can be sensed and controlled. According to the multi-component separation requirements, a separation system of series/parallel multi chromatograic columns was developed, through a different combination of the valve switch, the regional-type simulated moving bed separation coupling system and multi-cell reaction-separation integrated system were realized. Finally, through the transportation of the programmable constant pumping, the control system composed by the 1PC-PLC, the software configured with MCGS, testing by refractometer, bio-sensing analyzer and HPLC, the CSMB integrated equipment coupling reaction and simulated moving bed separation was established.
     (4) Using the proposed CSMB integrated technology, in the designed reaction-separation integrated platform, the preparation of mannitol and chitosan were researched. In the preparation of mannitol, the mannitol was prepared by electrochemical reduction and integrated with the regional-type simulated moving bed separation coupling method. In the preparation of chitosan, the electrochemical degradation of chitosan were carried out, and two multi-cell reaction-separation integrated methods were used, base on single column and two columns in series as the basic separation unit. The best process route and high-quality objectives were obtained in the above preparation, and process energy and emissions were quantitative analyzed. The results show that, for multi-component mixture, the reaction-separation integrated technology is highly efficient separation method to obtain high purity products. And its continuous and efficient integration of production can greatly save energy and reduce environmental pollution caused by organic solvents, and its R & D closely linked to the current "high production", "green chemistry" and "energy saving" and other important development directions, with a high application value.
引文
[1]曾建文,孙焱婧,工业化进程与资源、环境、节能[M].北京:机械工业出版社,2010.
    [2]姚平经,杨友麒,过程系统工程[M].上海:华东理工出版社,2009.
    [3]张锁江,张香平,绿色过程系统集成[M].北京:中国石化出版社,2006.
    [4]顾正桂,化工分离单元集成技术及应用[M].北京:化学工业出版社,2010.
    [5]唐萍,杨健,郑津洋,张淑文,郭进兴,大型LNG冷箱流体均配技术研究,中国动力工程学会工业气体专业委员会,第四届专业委员会,浙江,杭州.
    [6]Tang P., Yang J., Zheng J. Y., Lam C. K., Wong I., He S. Z., Predicting Erosion-Corrosion Induced by the Interactions Between Multiphase Flow and Structure in Piping System. ASME Journal of Pressure Vessel Technology,2009,131(6):(061301)1-8.
    [7]Tang P., Yang J., Zheng J. Y, Wong, I., He S. Z., Ye J. J., Ou G. F., Failure analysis and prediction of pipes due to the interaction between multiphase flow and structure. Engineering Failure Analysis,2009,16(5):1749-1756.
    [8]Tang P., Yang J., Ye J.J., Zheng J.Y, Lam C. K., Wong I., Ma Y.B. Using the improved DSMC method to predict the reliability of micro-flow channels. IEEE-NEMS 2009, January5-8,Shenzhen,China.
    [9]靳海波,徐新,何广湘,杨索和,化工分离过程[M].北京:中国石化出版社,2008.
    [10]廖传华,分离过程与设备[M].北京:中国石化出版社,2008.
    [11]David A., Ka M.N., Synthesis of crystallization-distillation hybrid separation process[J], AICHE Journal,1997,43(7):1751-1762.
    [12]顾正桂,王春梅,杨胜凯,C9芳烃的精馏与萃取交错结合分离流程,ZL03132131.3.
    [13]叶青,裘兆蓉,钟秦,孙玉南,用精馏-降膜结晶耦合技术提纯对二氯苯[J].精细化工,2005,22(5):362-364.
    [14]K.霍斯泰特曼,制备色谱技术-在天然产物分离中的应用[M].北京:科学出版社,2000.
    [15]Saari P., Hakka K., Heikkila H., Jumppanen J., Hurme M.,. A novel chromatographic production scale separation process for L-Fucose[J]. Journal of Liquid Chromatography & Related Technologies,2009,32(14):2050-2064.
    [16]Rajendran A., Equilibrium theory-based design of simulated moving bed processes under reduced purity requirements Linear isotherms[J]. Journal of Chromatography A,2008, 1185:216-222.
    [17]Loh K.C., Geng A., Hydrodynamic dispersion in perfusion chromatography-a network model analysis[J]. Chemical Engineering Science,2003,58:3439-3451.
    [18]Tang J., Gao M.G., Deng C.H., Zhang X.G., Recent development of multi-dimensional chromatography strategies in proteome research[J]. Journal of Chromatography B,2008. 866:123-132.
    [19]袁黎明,制备色谱技术及应用[M].北京:化学工业出版社,2005.
    [20]Barker P.E., Ganetsos G., Chemical and biochemical separation using preparative and large scale batch and continuous chromatography[J]. Separation and purification methods, 1988,17(1):1-65
    [21]Ganetsos G, Barker P.E., Preparative and Production Scale Chromatography[M]. New York:Marcel Dekker,1993.
    [22]林炳昌,模拟移动床色谱技术[M].北京:化学工业出版社,2008.
    [23]Seko M., Takeuchi H., Inada T., Scale-up for chromatographic separation of p-xylene and ethylbenzene[J]. Industrial & Engineering Chemistry Progress Research Development, 1982,21(4):656-661.
    [24]Scherpian P., Schembecker G., Scaling-up recycling chromatography[J]. Chemical Engineering Science,2009,64:4068-4080.
    [25]Tarafder A., Strohlein G., Aumann L., Morbidelli M., Role of recycling in improving the performance of chromatographic solvent gradient purifications[J]. Journal of Chromatography A,2008,1183 (1-2):87-99.
    [26]Dingenen, J., Kinkel, J.N., Preparative chromatographic resolution of racemates on chiral stationary phases on laboratory and production scales by closed-loop recycling chromatography[J]. Journal of Chromatography A,1994,666 (1-2),627-650.
    [27]Tarafder A., Strohlein G., Aumann L., Morbidelli M., Role of recycling in improving the performance of chromatographic solvent gradient purifications[J]. Journal of Chromatography A,2008,1183 (1-2):87-99.
    [28]Scherpian P., Schembecker G., Scaling-up recycling chromatography [J]. Chemical Engineering Science,2009,64:4068-4080.
    [29]Dingenen J., Kinkel J.N., Preparative chromatographic resolution of racemates on chiral stationary phases on laboratory and production scales by closed-loop recycling chromatography[J]. Journal of Chromatography A,1994,666 (1-2):627-650.
    [30]张会平,连续环状色谱分离技术研究[M].广州:华南理工大学,1991.
    [31]Ricardo J.S. Rui C.R., Hector O.S., Michel B., Eric V., Jose P.B., A new multicolumn, open-loop process for center-cut separation by solvent-gradient chromatography[J]. Journal of Chromatography A,2010,1217:8257-8269.
    [32]Joao M.M., Rui C.R., Mario F.J., Jose P.B., Chiral separation by two-column, semi-continuous, open-loop simulated moving-bed chromatography [J]. Journal of Chromatography A,2010,1217:5407-5419.
    [33]张曾子,姚平经,邹汉法,陈小明,倪坚毅,双柱切换色谱制备系统设计和实现[J].分析化学,2001,29(11):1353-1356.
    [34]张曾子,双柱切换色谱制备系统及其在手性药物分离中的应用研究[D].大连理工大学博士学位论文,化工系统工程,2001.
    [35]宋华,陈福明,新型多组分连续制备色谱系统——阵列式柱色谱[J].化学工业与工程,2005,22(2):148-153.
    [36]王辉国,王德华,马剑锋,郁灼,王建伟,国产RAX-2000A型对二甲苯吸附剂小型模拟移动床试验[J].石油化工,2005,34(9):850-854.
    [37]Makart S., Bechtold M., Panke S., Separation of amino acids by simulated moving bed under solvent constrained conditions for the integration of continuous chromatography and biotransformation[J]. Chemical Engineering Science,2008,63:5347-5355.
    [38]Rajendran A., Paredes G., Mazzotti M., Simulated moving bed chromatography for the separation of enantiomers[J]. Journal of Chromatography A,2009,1216:709-738.
    [39]施大鹏,俞金寿,谭永忠,Eluxyl模拟移动床动态模型[J].炼油技术与工程,2003,33(8):47-49.
    [40]Henke S., Kubat M., Bubnik Z., The new simulated moving bed pilot plant-modelling[J]. simulation and application, Journal of Food Engineering,2008,87:26-33.
    [41]Young I.L., Sten B.J., A fast and accurate numerical method for solving simulated moving bed (SMB) chromatographic separation problems[J]. Chemical Engineering Science,2004, 59:1931-1947.
    [42]Zabka M., Gomes P.S., Rodrigues A. E., Performance of simulated moving bed with conventional and monolith columns[J]. Separation and Purification Technology,2008, 63:324-333.
    [43]Grosfils V., Levrie C, Kinnaert M., Vande W. A., A systematic approach to SMB processes model identification from batch experiments[J]. Chemical Engineering Science, 2007,62:3894-3908.
    [44]Hong M. Y., Moses O.T., Yu C.T., Accelerated computation of cyclic steady state for simulated-moving-bed processes[J]. Chemical Engineering Science,2010,65:1694-17.
    [45]王敏,蔡宇杰,须文波,SMB色谱模型数值计算的时空守恒元解元方法[J].计算机工程与设计,2010,31(2):288-292.
    [46]王敏,模拟移动床(SMB)色谱模型的求解方法研究[D].江南大学硕士学位论文,计算机应用技术,2009.
    [47]薛焘,模拟移动床分离过程的动态模型研究[D].北京化工大学硕士学位论文,化学工程与技术,2010.
    [48]Anjushri S. K., Hariprasad J. S.. Michael T.H., A Monte Carlo-based error propagation analysis of Simulated Moving Bed systems [J]. Separation and Purification Technology, 2008,62:582-589.
    [49]Cristian G, Christian L., Marco M., Massimo M., Manfred M., Multi-rate optimizing control of simulated moving beds[J]. Journal of Process Control,2010,20:490-505.
    [50]Christian L., Cristian G., Massimo M., Manfred M., Marco M., Implementation of an automated on-line high-performance liquid chromatography monitoring system for'cycle to cycle'control of simulated moving beds[J]. Journal of Chromatography A,2009, 1216:8806-8815.
    [51]Shigeharu K., Christian L., Patrick S. Marco M., Extra-column dead volume in simulated moving bed separations:Theory and experiments[J]. Journal of Chromatography A,2009, 1216:1084-1093.
    [52]Cristian G., Christian L., Marco M., Manfred M. Massimo M., Experimental implementation of automatic "cycle to cycle" control to a nonlinear chiral simulated moving bed separation[J]. Journal of Chromatography A,2010,1217:2013-2021.
    [53]Kerstin B., Markus L., Alois J., Construction and development of a new single-column simulated moving bed system on the laboratory scale[J]. Journal of Chromatography A, 2009,1216:8778-8786.
    [54]Gomes P.S., Zabkova M., Zabka M., Minceva M, Rodrigues and A.E., Separation of Chiral Mixtures in Real SMB Units:The FlexSMB-LSRE, AIChE Journal[J].2010. 56(1):125-142.
    [55]Mun S.Y., Partial port-closing strategy for obtaining high throughput or high purities in a four-zone simulated moving bed chromatography for binary separation[J]. Journal of Chromatography A,2010,1217:6522-6530.
    [56]Wei F., Shen B., Chen M., Zhao Y.X., Shao L.P., Modeling on a Modified Feeding Mode of Simulated Moving Bed for Improving Productivity[J]. Chinese Journal of Chemical Engineering,2010,18(2):239-243.
    [57]郭小晓,模拟移动床色谱过程分析与系统优化[D].浙江大学硕士学位论文,控制理论与控制工程,2010.
    [58]孙磊,模拟移动床分离过程的建模及预测控制策略研究[D].浙江大学硕士学位论文,模式识别与智能系统,2007.
    [59]Achim K., Leonard W., Moritz D., Johannes P. S., Hans G. B., Sebastian E., Online identification of adsorption isotherms in SMB processes via efficient moving horizon state and parameter estimation[J]. Computers and Chemical Engineering 2010,34:1969-1983.
    [60]Chen J.H., Hsieh K.T., Chan L.T., PLS data-driven based approach to design of a simulated moving bed process[J]. Separation and Purification Technology,2009,65:173-183.
    [61]Chen J.H., Chen M.H., Chan L.T., Iterative learning parameter estimation and design of SMB processes[J]. Chemical Engineering Journal,2010,161:223-233.
    [62]Grosfils V, Hanusa R., Wouwer A.V., Kinnaerta M.,Parametric uncertainties and influence of the dead volume representation in modelling simulated moving bed separation processes[J]. Journal of Chromatography A,2010,1217:7359-7371.
    [63]Kawajiri Y., Biegler L.T., Nonlinear programming superstructure for optimal dynamic operations of simulated moving bed processes[J]. Industrial & Engineering Chemistry Research,2006,45(25):8503-8513.
    [64]Kloppenburg E., Gilles E D., Automatic control of the simulated moving bed process for C8 aromatics separation using asymptotically input/output linearization[J], Journal of Process Control,1999,9:41-50.
    [65]Alamir M., Ibrahim F., Corriou J P., A flexible nonlinear model predictive control scheme for quality/performance handling in nonlinear SMB chromatography [J]. Journal of process control,2006,16:333-334.
    [66]Kim I.S., Lee K.S. and Koo Y.M., Nonlinear model-based repetitive control of simulated moving bed process[J]. Korean Journal of Chemical Engineering,2005,22 (6):830-838.
    [67]Garcia M.S.G., Balsa-Canto E., Banga J.R., Dynamic optimization of a simulated moving bed (SMB) chromatographic separation process[J]. Industrial & Engineering Chemistry Research,2006,45 (26):9033-9041.
    [68]吴献东,金晓明,徐志成,王树青,微粒群算法在模拟移动床色谱分离过程优化中的应[J].化工自动化及仪表,2006,33(4):5-8.
    [69]Szepesy L., Sebesty'en Z., Feh'er I., Nagy Z., continuous liquid Chromatography[J]. Journal of Chromatography A,1975,108:285-297.
    [70]Hashimoto K., Shirari Y., Adachi S., A simu-lated moving-bed adsorber for the separation of tricom-ponents[J]. Journal of Chemical Engineering of Japan,1993,26:52.
    [71]Alexandre N., Laurence M., Patrice G. Roger-Marc N., Michel B., Application of the equilibrium theory to ternary moving bed configurations (414,514,8 and 9 zones) II. Langmuir case[J]. Journal of Chromatography A,2001,908:87-109.
    [72]Silva E.A.B., Rodrigues A.E., Design of chromatographic multi component separation by a pseudo-simulated moving bed[J].AICHE Journal,2006,52(11):3794-3812.
    [73]Mun S., Enhanced separation performance of the simulated moving bed process with two raffinate and two extract products[J]. Journal of Chemical Engineering of Japan,2006, 39(10):1054-1056.
    [74]Chin N-H. L., Chin C.Y., versatile simulated moving bed system, US20060273013A1.
    [75]Chin N-H. L., Chin C.Y., versatile simulated moving bed system, US007141172B2.
    [76]Xie Y, Chin C.Y., Phelps D. S., Lee C.H., Lee K.B., Mun S.Y., Wang N-H. L., A Five-Zone Simulated Moving Bed for the Isolation of Six Sugars from Biomass Hydrolyzate[J]. Industrial & Engineering Chemistry Research,2005,44,9904-9920.
    [77]Lee K.B., Kasat R.B., Cox G. B., Wang N-H. L., Simulated Moving Bed Multiobjective Optimization Using Standing Wave Design and Genetic Algorithm, AIChE Journal[J]. 2008,54(11):2852-2871.
    [78]Kim J.I., Koo Y.M., Process modification of SMB (Simulated Moving Bed) for multicomponent separation[J]. Journal of Bioscience and Bioengineering,2009,108, S57-S74.
    [79]Wei F., Zhao Y.X., Separation of capsaicin from capsaicinoids by simulated moving bed chromatography[J]. Journal of Chromatography A,2008,1187:281-284.
    [80]Javier G.P., Bernhard K., Achim K., Malte K., Experimental validation of a new integrated simulated moving bed process for the production of single enantiomers[J]. Journal of Chromatography A,2011,1218:2232-2239.
    [81]Patrick K., Gianluca O., Giacomo C, Roland W., Preparative-scale separation by simulated moving bed chromatography of biocatalytically produced regioisomeric[J]. New Biotechnology,2009,25(4):220-225.
    [82]Kim J.I., Wankat P.C., Mun S.Y., Koo Y.M., Analysis of "focusing'" effect in four-zone SMB (Simulated Moving Bed) unit for separation of xylose and glucose from biomass hydrolysate[J]. Journal of Bioscience and Bioengineering,2009,108:S57-S74.
    [83]Daniela A., Christian L., Elisabetta B., Claudio F, Marco M., Intermittent simulated moving bed chromatographic separation of (RS,RS)-2-(2,4-difluorophenyl) butane-1,2,3-triol[J]. Journal of Chromatography A,2010,1217:2840-2846.
    [84]Nam H.G., Han M.G., Yi S.C., Chang Y.K., Mun S.y., Kim J.H., Optimization of productivity in a four-zone simulated moving bed process for separation of succinic acid and lactic acid[J]. Chemical Engineering Journal,2011,171:92-103.
    [85]Arvind R., Galatea P., Marco M., Simulated moving bed chromatography for the separation of enantiomers, Journal of Chromatography A,2009,1216:709-738.
    [86]Minceva M., Rodrigues A.E., Understanding and revamping of industrial scale SMB units for p-xylene separation[J]. AICHE Journal,2007,53(1):138-149.
    [87]Bechtold M., Makart S., Heinemann M., et al., Integrated operation of continuous chromatography and biotransformations for the generic high yield production of fine chemicals[J]. Journal of Biotechnology,2006,124(1):146-162.
    [88]Karlsson, S. Optimization of a Sequential-Simulated Moving-Bed Separation Process with Mathematical Programming MethodsfD]. Abo Akademi University Ph.D. Thesis,2001.
    [89]Ruland Y., Colin H., David L., Batch and multi column chromatography for the large scale production of biologicals, APT'S and food ingredients[J]. Biopharmaceutical journal. 2011,3(1):4-11.
    [90]Lo Y.B., Wei F., Shen B., Modeling, Simulation of a Simulated Moving Bed for Separation of Phosphatidylcholine from Soybean Phospholipids[J]. Chinese Journal Chemical Engineering,2006,14(2):171-177.
    [91]厉苏州,徐玲,SMB色谱分离过程简化模型辨识[J].南京航空航天大学学报,2006,38(B07):162-166.
    [92]Alexey V., Kruglov, Robert w Carr, et al., Optimation of the simulated countercurrent moving-bed chromatography reactor for the oxidative coupling of methane[J]. Chemical Engineering Science,1996,51(11):2945-2950.
    [93]Mazzotti M., Kruglov A., Neri B., Davino G., Massimo M., A continuous chromatographic reactor:SMBR[J]. Chemical Engineering Science,1996,51 (10):1827-1836.
    [94]Kawase M., Suzuki T.B., Inoue K., Increased esterification conversion by application of the simulated moving-bed reactor[J]. Chemical Engineering Science,1996,51:2971-2976.
    [95]Edaurdo A., Borges S., Antonio A., Ulson S., Selence G.U.S., Selene G.U.S., Al'irio E., Rodrigues, Analysis of the high-fructose syrup production using reactive SMB technology [J]. Chemical Engineering Journal,2006,118:167-181.
    [96]Zhang Y, Hidajat K., Ray A.K., Optimal design and operation of SMB bioreactor: production of high fructose syrup by isomerization of glucose[J]. Biochemical Engineering Journal,2004,21:111-121.
    [97]Toumi A., Engell S., Optimization-based control of a reactive simulated moving bed process for glucose isomerization[J]. Chemical Engineering Science,2004, 59(18):3777-3792.
    [98]Anjushri S.K., Hariprasad J.S., Ajay K.R., Optimal design and operation of SMB bioreactor for sucrose inversion[J]. Chemical Engineering Journal,2005,108:19-33.
    [99]Baur R., Krishna R., A Moving Bed Reactor Concept for Alkane Isomerization[J]. Chemical Engineering Journal,2005,109:107-113.
    [100]Carla S.M.P., Michal Z., Viviana M.T.M., Alirio E.R., A novel process for the ethyl lactate synthesis in a simulated moving bed reactor (SMBR)[J]. Chemical Engineering Science, 2009,64:3301-3310.
    [101]Mirjana M, Pedro S.G., Vera M., Alirio E.R., Simulated moving bed reactor for isomerization and separation of p-xylene[J]. Chemical Engineering Journal,2008, 140:305-323.
    [102]Yan Z., Kus H., Ajay K.R., Modified reactive SMB for production of high concentrated fructose syrup by isomerization of glucose to fructose[J]. Biochemical Engineering Journal, 2007,35:341-351.
    [103]Carla S.M.P., Michal Z.,Viviana M. S., Alirio E.R., A novel process for theethyl lactate synthesis in a simulated moving bed reactor (SMBR) [J]. Chemical Engineering Science, 2009,64:3301-3310.
    [104]Guido S., Marco M., Massimo M., Optimal operation of simulated-moving-bed reactors for nonlinear adsorption isotherms and equilibrium reactions[J]. Chemical Engineering Science,2005,60:1525-1533.
    [105]Prodip K.K., Yan Z., Ajay K.R., Multi-objective optimization of simulated counter current moving bed chromatographic reactor for oxidative coupling of methane[J]. Chemical Engineering Science,2009,64:4137-4149.
    [106]Sainio T., Zhang L.Y., Morgenstern A.S., Adiabatic operation of chromatographic fixed-bed reactors[J]. Chemical Engineering Journal,2011,168:861-871.
    [107]Volker M.Z., Michael M., Morgenstern A.S., Autothermal operation of an adiabatic simulated counter current reactor[J]. Chemical Engineering Science,2010,65:458-465.
    [108]Jonathan P.M., Giorgio C, Continuous region selective enzymatic esterification in a simulated moving bed reactor[J]. Industrial & Engineering Chemistry Research,2002, 41:4722-4732.
    [109]Fissore D., Tejedor D.G., Barresi A.A., Experimental investigation of the SCR of NOx in a simulated moving bed reactor[J]. AICHE Journal,2006,52(9):3146-3154.
    [110]李绍芬,反应工程[M].北京:化学工业出版社,1999.
    [111]Jing S.D., Insist oxidation degradation of form aldehyde with electrogenerated hydrogen peroxide[J]. Journal of Electrochemical society,1993,140(6):1632-1637.
    [112]Gallone P., Achievements and tasks of electrochemical engineering[J]. Electrochemial Acta,1977,22:913-920.
    [113]赵峰鸣,沈海平,朱秀山,马淳安,管式电化学反应器在制备丁二酸中的应用研究[J].高校化学工程学报,2010,24(3):441-445.
    [114]景长勇,新型高效电化学反应器的研究[D].华北电力大学(保定)硕士学位论文,2004.
    [115]吴丹,新型电化学反应器处理棉浆黑液废水研究[J].大连理工大学,硕士学位论文,2006.
    [116]高立新,电化学技术在废水处理中的应用[J].化工时刊,2009,23(7):64-67.
    [117]李天成,环境工程中的化学反应技术及应用[M].北京:化学工业出版社,2005.
    [118]Linnhoff B, Use Pinch Analysis to Knock Down Capital Costs and Emissions[J]., Chemical Engineering Progress,1994,90(8):32-57.
    [119]Narendra Singha, S.C. Kaushikb, R.D. Misrac, Exergetic analysis of a solar thermal power system[J]. Renewable Energy,2000,19:135-143.
    [120]华贲,仵浩,刘二恒,基于火用经济评价的换热器最优传热温差,2008年中国过程系统工程年会会议论文集,2008,131-135.
    [121]Prakash, R., Shenoy, U.V. Targeting and Design of Water Networks for Fixed Flowrate and Fixed Contaminant Load Operations[J]. Chemical Engineering Science.2005,60(1), 255-268.
    [122]Agrawal, V. and U. V. Shenoy,, "Unified Conceptual Approach to Targeting and Design of Water and Hydrogen Networks"[J]. AIChE Journal,2006,52(3),1071-1082.
    [123]Klemes J., Stehlik P., Recent adavances on heat, chemical and process intgratioon[J]. Applied Thermal Engineering,2006,26:1339-1344.
    [124]杨友麒,节能减排的全局过程集成技术的研究与应用进展[J].化工进展,2009,28(4):541-548.
    [125]Mondal K., Gupta M.N., The affinity concept in bioseparation:Evolving paradigms and expanding range of applications[J]. Biomolecular Engineering,2006,23(2-3):59-76.
    [126]周传光,赵文,韩方煜,高健,反应精馏过程图解法设计策略研究[J].高校化学工程学报,2001,15(4):333-340.
    [127]Paiva A.L., Malcata F.X., Comparison of the performance of intergrated and sequential reaction and separation units in terms of recovery of a desired product[J]. Chemical Engineering Science,2000,55:589-599.
    [128]Paiva A.L., Rossum D.V., Malcata F.X., Integrated vs. sequential reaction and separation: contributions for a global analysis[J]. Chemical Engineering Science,1999,54:1825-1836.
    [129]Taylor R., Krishna M.F., Modelling of reactive distillation[J], Chemical Engineering Science,2000,55:5183-5229.
    [130]张颖颖,赵文,周传光,反应/分离过程集成系统综合的研究进展[J].计算机与应用化学,2003,20(1):35-39.
    [131]Bock H., Wozny G, Gulsche B., Design and control of a reaction distillation column including the recovery system[J]. Chemical Engineering and Processing,1997, 36:101-109.
    [132]ChiL. L., Shu H.H., Interfacial polymerized thin-film composite membranes for pervaporation separation of aqueous isopropanol solution[J]. Separation and purification technology,2008,62:694-701.
    [133]王金厢,蔡邦肖,渗透汽化在酯水体系分离中的应用[J].化工进展,2006,25(6):608-612.
    [134]袁乃驹,朱德权,丁富新,反应与分离过程的结合[J].化学进展,1995,7(3):165-180.
    [135]胡松,陈清林,张冰剑,反应蒸馏生产乙酸酯工艺研究进展[J].化工进展,2008,27(3):364-371.
    [136]Balakrish S., Beigler L.T., A Unified Approach for The Simulhaneous Synthesis of Reaction Energy and Separation System[J]. Industrial & Engineering Chemistry Research, 1993,32:1372-1382.
    [137]Hern'andez-Fern'andez F.J., losR'ios A.P., Tom'as-Alonso F., G'omez D., Rubio M., V'llora G, Integrated reaction/separation processes for the kinetic resolution of rac-1-phenylethanol using supported liquid membranes based on ionic liquids[J]. Chemical Engineering and Processing,2007,46:818-824.
    [138]Holtkampa M., Erhardtb F.A., Jordeningb H.J., Scholla S., Reaction-integrated separation of isomaltose by ad-and desorption on zeolite[J]. Chemical Engineering and Processing, 2009,48:852-858.
    [139]Markus P., Klaus-Dieter W., Anja D., Matthias K., Goetz B., Reaction integrated separation of homogenous catalysts in the hydrofonnylation of higher olefins by means of organophilic nanofiltration[J]. Journal of Membrane Science,2010,360:77-83.
    [140]Mitkowski P.T., Buchaly C, Kreis P., Jonsson G., Gorak A., Gani R., Computer aided design, analysis and experimental investigation of membrane assisted batch reaction-separation systems[J]. Computers and Chemical Engineering,2009,33:551-574.
    [141]Sven K.W., Sabrina B., Oliver T., Integration of reaction and separation in a micro-capillary column reactor-Palladium nanoparticle catalyzed C-C bond forming reactions[J]. Chemical Engineering Science,2010,65:2410-2416.
    [142]王丰收,赵丽青,孙志浩,酶转化异丁香酚制备香草醛的反应分离耦合方法[J].过程工程学报,2005,5(3):273-276.
    [143]齐崴,何志敏,何明霞,酶解反应与膜分离耦合连续制备酪蛋白磷酸肽[J].化学工程,2006,34(4):43-46.
    [144]仲兆祥,陈日志,邢卫红,徐南平,催化反应与膜分离耦合系统中镍催化剂的使用[J].高校化学工程学报,2008,22(1):49-54.
    [145]王顺发,李雁群,张小华,生物反应与膜分离耦合[J].江西科学,2005,23(2):185-190.
    [146]Kokossis A.C., Floudas C.A., Synthesis of isothermal reactor-separator-recycle systems[J]. Chemical Engineering Science,1991,146:1361-1383.
    [147]Zhang Z.S., Zhao W., Yuan X.G., Shortcut calculation within partition method of reactor network synthesis[J]. Journal of Chemical Industry and Engineering,2004,55(1):69-73.
    [148]Alberto N. Michael F, Malone and Michael F.D., Attainable Regions for Reaction with Separation[J]. AICHE Journal,43:374-387.
    [149]Balakrishna S., Biegler L.T., A unified approach for the simulation synthesis of Reaction, energy and separation systems[J]. Industrial & Engineering Chemistry Research,1993, 32:1372-1382.
    [150]Omtveit T., Wah P.E., Lien K.M., Decomposed algorithmic systesie of reactor-separator-recycle systems[J]. Computers & Chemical Engineering,1994, 8:1115-1124.
    [151]伍联营,胡仰栋,反应-分离集成的研究[J].计算机与应用化学,2005,22(9):723-726.
    [152]任雯,诸林,杨贵权,陈才林,反应与分离技术的现状与进展[J].石油化工应用,2008,27(6):22-24.
    [153]伍联营,胡昂栋,复杂反应的反应-分离集成的研究[J].化学反应工程与工艺,2001, 17(4):358-363.
    [154]Fissore D., Tejedor D.G., Barresi A.A., Experimental investigation of the SCR of NOx in a simulated moving bed reactor[J]. AICHE Journal,2006,52 (9):3146-3154.
    [155]丁明玉,现代分离方法与技术[M].北京:化学工业,出版社,2006.
    [156]北川浩,铃木谦一郎,吸附的基础与设计[M].北京:化学工业出版社,1983.
    [157]Guichon G, Bingchang L., Modeling for preprative chromatography[M]. New York: Academic Press,2003.
    [158]Giddings J.C., Dynamics of Chromatography[M]. New York:Marcel Dekker,1965.
    [159]Suzuki M., Adsorption Engineering[M]. Tokyo:Kodansha,1990.
    [160]Van-Deemter J.J., Zuiderweg F.J., Klinkenberg A., A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chemical Engineering Science,1956,5:271-289.
    [161]黄开辉,万徽霖,催化原理[M].北京:科学出版社,1983.
    [162]高雁,李春,娄恺,阳离子交换树脂对甜菜碱的吸附特性研究[J].生物技术,2007,17(5):42-45.
    [163]彭奇均,徐玲,蔡宇杰,何凡,吴菁岚,木糖醇母液色谱分离性能优化[J].高校化学工程学报,2002,16(3):270-274.
    [164]陈繁忠,叶振华,固定床色谱分离木糖、山梨糖的实验研究[J].广东化工,1994,3:31-35.
    [165]李湘,李忠,奚红霞,双柱交替循环色谱分离甘露醇山梨醇过程[J].离子变换与吸附,2001,17(2):97-10.
    [166]Lin B., Guiochon G, Modeling for Preparative Chromatography[M]. New York:Academic Press,2003.
    [167]王际达,林炳昌,非线性色谱的数值计算[M].江苏:中国矿业大学出版社,2002.
    [168]金兵华,连续反应分离提取壳低聚糖的集成装备研究[M].浙江大学硕士学位论文,化工过程机械,2008.
    [169]陆金甫,关治,偏微分方程数值解法[M].北京:科学出版社,2004.
    [170]吴浩青,李永舫,电化学动力学[M].北京:高等教育出版社,施普林格出版社,1998.
    [171]赵长伟,马沛生,朱春英,陈明鸣,葡萄糖水溶液扩散系数的测定与关联[J].化工学报,2005,5(1):1-5.
    [172]沈报恩,唐妟轩,丁云杰,肖珊,葡萄糖电化学还原研究[J].化学世界,1994,4:184-187.
    [173]顾登平,贾振斌,有机电合成进展[M].北京:中国石化出版社,2001.
    [174]张卫,复方甘露醇注射液中甘露醇和无水葡萄糖含量的快速测定[J].安徽医药,2007,11(7):612-613.
    [175]钱永,低碳糖及其相应多元糖醇的折光分析法研究[J].苏州城建环保学院学报,2001,14(2):8-11.
    [176]胡明进,朱年磊,甘露醇合成及分离研究进展[J].山东化工,2008,37(2):16-18.
    [177]魏倩倩,甘露醇的生产与应用研究进展[J].食品工业科技,2010,31(12):401-404.
    [178]李艳华,甘露醇用于急性脑梗死的临床效果观察[J].中国现代药物应用,2010,4(3):161-162.
    [179]吴国荃,聂美丽,罗书凯,我国甘露醇的生产状况与发展趋势[J].化工技术经济,2004,22(4):4-6.
    [180]谷才恩,叶志云,葡萄糖循环异构制甘露醇的研究[J].淀粉与淀粉糖,2000,3:15-17.
    [181]赵光辉,王关斌,贺东海,李俊平,双异构法制备晶体甘露醇的研究[J].化学工程师,2005,3:53-55.
    [182]顾登平,贾振斌.有机电合成进展[M].北京:中国石化出版社,2001.
    [183]Dou J.L., Xu Q.S., Tan C.Y., Wang W.X., Du Y.G., Bai X.F., Ma X.J., Effects of chitosan oligosaccharides on neutrophils from glycogen-induced peritonitis mice model[J]. Carbohydrate Polymers,2009,75(1):19-124.
    [184]左萍萍,冯华峰,牟尧,高小迪,张文清,壳聚糖希夫碱的合成及其抗菌活性探究[J].广东化工,2010,5(37):128-130.
    [185]蔡文娣,初金鑫,付辰炜,韩宝芹,刘万顺,壳寡糖对正常小鼠免疫功能的影响[J].中国海洋药物杂志,2010,29(4):42-45.
    [186]Minagawa T., Okamura Y., Shigemasa Y., Minami S., Okamoto Y, Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing[J]. Carbohydrate Polymers,2007,67(4):640-644.
    [187]李群良,李启虔,产壳聚糖酶微生物的筛选及产酶条件的优化[J].中国生物制品学杂志,2011,24(1):108-111.
    [188]郑建仙,功能性低聚糖[M].北京:化学工业出版社,2004.
    [189]杨健,王奕,壳寡糖制备的集成反应分离方法,中国专利,ZL200510049734.X.
    [190]蒋挺大,壳聚糖[M].北京:化学工业出版社,2002.
    [191]陈延禧,电解工程[M].天津:天津科学技术出版社,1993.
    [192]陈勉,朱希强,李志明,郭学平,聚合度为6-8的壳寡糖的制备[J].食品与药品,2008,10(3):14-16.
    [193]纪莹,赵轶,周翔,翁登坡,赵鲁杭,壳寡糖的制备及组分分析[J].中国现代应用药学,2003,20(3):195-196.
    [194]李曙光,白雪芳,杜昱光,壳寡糖的分离分析及其诱抗活性研究[J].中国海洋药物,2002,21(6):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700