香豆素和嘌呤核苷类化合物的合成及其生物活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然产物的结构修饰与改造是发现新药的重要手段和途径。香豆素和嘌呤核苷是两类非常重要的天然活性化合物。香豆素类化合物广泛存在于自然界中,具有多种生理活性。近年来对香豆素类化合物的修饰和改造已经成为国内外许多药学工作者的研究重点。嘌呤核苷及其衍生物也是一类具有显著生物活性的化合物,在众多领域尤其是在医药方面占有非常重要的地位。开发具有抗肿瘤、抗病毒活性的核苷及其衍生物己成为当今研究热点。以香豆素类和嘌呤核苷类化合物为基础,对其进行结构修饰和改造具有重要意义。因此,本文首先以香豆素类化合物为基础,通过引入不同的官能团,包括甲基、金刚烷胺、吡唑、烯丙基等对其进行修饰与改造,并对所合成的香豆素衍生物进行抗氧化、抗肿瘤活性测试。然后以嘌呤核苷类化合物为基础,合成系列6-位芳基(杂芳基)取代的7-脱氮杂嘌呤核苷,并评价其生物活性。取得的创新性研究结果如下:
     (1)以多种生理活性的呋喃香豆素花椒毒酚(xanthotoxol, Xan)为先导,从简单原料4-甲基-7-羟基香豆素出发,分别经多步反应得到Xan的4-位和4,9-位甲基取代物MXan和DMXan,并对合成路线做了探讨。通过采用不同的体外抗氧化模型,包括化学体系法中的二苯代苦味肼基自由基(DPPH)法、2,2-联氮-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS+)法、galvinoxyl法、β-carotene-bleaching法和化学模拟的生物体系法中的Cu2+/GHS(谷胱甘肽)引发的DNA氧化损伤法和2,2-偶氮-二(2-脒基丙烷)盐酸盐(AAPH)引发的DNA氧化损伤法,来研究化合物Xan、MXan和DMXan的抗氧化活性。结果表明:将甲基引入的花椒毒酚的4-位和9-位没有影响在亚油酸的自然氧化和Gu2+/GSH引发的DNA氧化损伤中的抗氧化作用,但是却降低了清除ABTS+和DPPH自由基和抑制AAPH引发的DNA氧化损伤的能力。MXan和DMXan的4-位和9-位甲基在一定程度上起到了促氧化作用。
     (2)将金刚烷胺药效团引入到花椒毒酚中,经过三步反应简便、高效地合成了三种金刚烷胺修饰的补骨脂素衍生物AXan、AMXan和ADMXan。MTT法体外抗肿瘤检测表明:Xan、MXan、DMXan对人肺癌细胞A549和NCI-H460有一定的抑制能力;而金刚烷胺修饰物AXan、AMXan和ADMXan对这两种癌细胞的抑制能力有了较大提高,对A549有中度抑制作用,IC_(50)值在40μM左右。
     (3)将具有多种活性的吡唑环引入到香豆素骨架上,合成了一系列含有4,5-二氢吡唑结构的7-羟基香豆素衍生物,并对合成路线进行了探讨。通过将动力学方程引入到抗氧化活性的评价体系中,来比较合成的4,5-二氢吡唑香豆素的抗氧化活性。测试结果表明:当4,5-二氢吡唑香豆素中两个羟基处于相邻位置时清除DPPH自由基的能力和抑制AAPH引发的DNA氧化损伤的能力要强于两个羟基处于相间位置时的能力;4,5-二氢吡唑环1-位N-H的存在提高了4,5-二氢吡唑香豆素清除自由基和保护DNA的能力。所合成的7个4,5-二氢吡唑香豆素均能通过减缓硫代巴比妥酸活性物质(TBARS)的生成速率来抑制DNA的氧化反应并产生抑制期,并且保护DNA能力都强于阳性对照Xan。化合物3b和4a具有良好的抗氧化活性,有进一步研究的价值。
     (4)从简单原料2,4-二羟基苯甲醛和取代的苯乙酸出发,经过多步简单高效的反应合成了一系列7,8-位取代3-芳基香豆素。MTT法体外抗肿瘤检测表明:合成的3-芳基香豆素对HeLa细胞的抑制作用比较明显,其中化合物9a、9b、10a、10b对HeLa细胞有较强的抑制能力(IC_(50)=13.50~17.66μM);将烯丙基引入到3-芳基香豆素的8-位提高了其抗肿瘤活性,而7-位甲氧基的存在不利于提高对SK-HEP-1、HepG2、SGC7901这三种癌细胞的抑制能力。
     (5)以嘌呤核苷类化合物xylocydine为先导,对其碱基进行修饰,开发了一条从简单原料四氰基乙烯和L-木糖出发经过多步反应合成一系列6-位芳基(杂芳基)-7-脱氮杂嘌呤核苷的路线,并对合成中关键的Suzuki反应的条件做了优化。目标化合物对CDK1/Cyclin B1和CDK2/Cyclin A2的体外激酶分析结果表明:三种嘌呤核苷衍生物3h、3i、3j对CDK2/CyclinA2表现出显著的抑制活性,其IC50分别为4.6μM、4.8μM和55μM。3h、3i、3j与xylocydine相比活性有了降低,但提高了对CDK2/CyclinA2抑制的选择性。进一步细胞周期分析表明3h、3i、3j在一定程度上能够将HeLa细胞周期阻滞在G1/S期,说明这三种化合物在细胞体内可能对CDK2的活性有抑制作用。为了解CDK2抑制剂的构效特点,我们对3h、3i、3j和xylocydine做了分子对接模拟,结果表明化合物3h-j有较高的对接值。另一方面,使用MTT法对上述目标化合物进行了抗肿瘤活性筛选,发现化合物3g对四种人源癌细胞(A549、HeLa、SK-HEP-1、MCF-7)有一定的抑制能力。并在3g的基础上对其进一步修饰得到目标化合物DMBPN和DPBPN,对其合成方法做了优化,开发了“一锅法”路线。MTT法体外抗肿瘤检测表明:DMBPN和DPBPN对上述四种癌细胞的抑制能力有较大的提高。DMBPN对这四种细胞均有显著的抑制能力,IC_(50)值都在10μM以下,对SK-HEP-1的抑制活性最好,IC_(50)为4.13μM。
Structural modification and transformation of natural products is an important approachfor the discovery of new drugs. Coumarins and purine nucleosides are two very importanttypes of natural bioactive compounds. Coumarins, distributed in nature, possess a varietyof biological activities. Recently, widespread attention has been draw to modification andrenovation of the coumarins. Purine nucleosides and their analogues, an important class ofbiologically active compounds, play so important role in many fields, especially inmedicine, that current research has been increasingly focused on the discovery andsynthesis of novel compounds with antiviral and antitumor properties. Structuremodification and transformation based on coumarins and purine nucleosides has importantsignificance for the discovery of new drugs. Therefore, firstly, series of coumarins weresynthesized with the introduction of different functional groups, including methyl,amantadine, pyrazole, allyl etc., and then their antioxidant and antitumor activities weretested in vitro in this essay. Then series of6-(het) aryl-7-deazapurine nucleosides weresynthesized based on modification and their biological activity were also evaluated invitro. The innovative research results achieved are as follows:
     (1) A furanocoumarin xanthotoxol (Xan), with variety of physiological activity, waschosen as lead compound. Its4-methyl and4,9-dimethyl analogues, MXan and DMXan,were synthesized by the multi-step reaction starting from simple starting materials4-methyl-7-hydroxycoumarin, and the synthetic route was also discussed. Different invitro antioxidant models, such as2,2′-diphenyl-1-picrylhydrazyl radical (DPPH),2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+), galvinoxylradical, β-carotene-bleaching in chemistry systems and Cu2+/glutathione (GSH)-mediatedand2,2′-azobis(2-amidinopropane hydrochloride)(AAPH)-induced oxidation of DNA inthe chemical simulation biological systems were employed to investigate the antioxidant capacity of Xan, MXan and DMXan. The results showed that methyl attaching toxanthotoxol did not affect its ability to protect linoleic acid against autoxidation and toinhibit Cu2+/GSH-induced oxidation DNA, but decreased its ability to scavenge ABTS+and DPPH, and to protect DNA against AAPH-induced oxidation. The hydroxyl group at8-position played a major role in the antioxidant of xanthotoxol, and the methyl at4-position and9-position exhibited prooxidant properties to a certain extent.
     (2) Amantadine pharmacophore was introduced into xanthotoxol. Three psoralenderivatives AXan, AMXan and ADMXan modified by amantadine were synthesizedthrough three simple and efficient reactions. The MTT test revealed that Xan, MXan andDMXan exhibited certain inhibition against human lung cancer cell line A549andNCI-H460. AXan, AMXan and ADMXan enhanced the inhibition capacity against the twocancer cell lines, having a moderate inhibitory activity on A549, with IC50value around40μM.
     (3) A series of7-hydroxycoumarin derivatives containing4,5-dihydropyrazole moietywere synthesized by introducing active pyrazole ring into coumarin skeleton, and thesynthesis was also discussed. Dynamics equations were introduced into the antioxidantsevaluation systems to quantitatively study the antioxidant activity of these4,5-dihydropyrazole coumarins. Test results showed that the two hydroxyl groups ortho toeach other in the benzene ring of4,5-dihydropyrazole coumarins possessed strongercapacity to trap DPPH and protect DNA against AAPH-induced oxidation than that of twohydroxyl groups meta to each other. The N-H in position1-N-unsubstituted4,5-dihydropyrazole ring could also enhance ability to scavenge radicals and to protectDNA. These seven4,5-dihydropyrazole coumarins all could inhibit the oxidation of DNAvia slowing down the rate of product of TBARS and give inhibition time in the process,which were all higher than positive control Xan.3b and4a were two novel and promisingantioxidants suitable for further development.
     (4)3-ArylCoumarins was chosen for study and series of7and8-substituted3-arylcoumarins were synthesized from simple raw materials2,4-dihydroxybenzaldehyde and substituted phenyl acetic acid through several efficient reactions. The MTT test revealed that the novel3-arylcoumarins could inhibits HeLa cells moreobviously, in which compounds9a,9b,10a and10b, exhibited good inhibitory activity onHeLa cells (IC_(50)=13.50~17.66μM). Introducing allyl to8-position of3-arylcoumarinswas favorable to improve the activity for inhibiting human cancer cell and the methoxy at7-position may be adverse unfavorable for maintaining the antitumor activity againstSK-HEP-1, HepG2and SGC7901cell lines.
     (5) Xylocydine, a purine nucleosides CDKs inhibitor, was chosen as leading compoundand6-(het) aryl-7-deazapurine nucleosides were synthesized via base modification. Aroute of syntheses of6-(het) aryl-7-deazapurine nucleosides with tetracyanoethylene and L(-)-xylose as starting molecules though multistep reaction was developed and theconditions of key Suzuki reaction in the synthetic route was also optimized. Forty six newcompounds were obtained, including thirty target compounds and sixteen intermediateproducts. The results of CDK1/Cyclin B1and CDK2/Cyclin A2inhibitory assay of theobtained compounds indicated that three purine nucleoside derivatives,3h,3i and3jshowed significant activity on CDK2/Cyclin A2, with IC_(50)value of4.6μM,4.8μM and55μM respectively. Although the inhibition activity of3h,3i and3j decreased to comparewith the xylocydine, the selectivity to CDK2/Cyclin A2has been increased. Those threecompounds all induced G1/S phase arrest in Human epithelial carcinoma cell line (HeLa),and the results suggested they may inhibit CDK2activity in vitro. Furthermore, molecularmodeling study was conduct to understand the structural features of CDK2inhibitors, thethree novel CDK2inhibitors3h-j showed high docking scores. On the other hand,compound3g was found exhibiting certain inhibitory activity against four kinds of humancancer cells (A549, HeLa, SK-HEP-1, and MCF-7) in the MTT method filtering on abovetarget compounds. The target compounds DMBPN and DPBPN were obtained by furthermodification based on3g and the synthetic route was optimized with a "one pot" method.The result of antitumor in vitro by MTT method showed that DMBPN and DPBPNimproved the inhibitory activity on the above four kinds of cancer cell dramatically.DMBPN had a significant inhibiton on these four types of cells with IC_(50)value under10 μM, among which the inhibitory activity was best for SK-HEP-1, with IC_(50)value of4.13μM.
引文
[1]胡立宏,徐吉庆.基于经典天然产物的药物发现研究[J].药学学报.2009,44:11-18.
    [2] Musa, M. A.; Cooperwood, J. S.; Khan, M. O. A review of coumarin derivatives inpharmacotherapy of breast cancer [J]. Curr. Med. Chem.2008,15:2664-2679.
    [3] Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues inmedicinal chemistry: occurrence, synthesis and biological activity [J]. Curr. Med. Chem.2005,12:887-916.
    [4] Farrell, G. C. Clinical potential of emerging new agents in hepatitis B [J]. Drugs.2000,60:701-710.
    [5] Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N. Natural andsynthetic coumarin derivatives with antiinflammatory/antioxidant activities [J]. Curr. Pharm. Des.2004,10:3813-3833.
    [6] Roussaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D. J.; Hamilakis, S. A novel synthesis of3-arylcoumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity [J]. Bioorg.Med. Chem. Lett.2010,20:3889-3892.
    [7] Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yanez, M.; Fraiz, N.; Alcaide, C.; Cano, E.; Orallo,F. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities ofcoumarin-resveratrol hybrids [J]. Bioorg. Med. Chem. Lett.2006,16:257-261.
    [8] Ostrov, D. A.; Hern-andez Prada, J. A.; Corsino, P. E.; Finton, K. A.; Le, N.; Rowe, T. C.Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening [J]. Antimicrob.Agents Chemother.2007,51:3688-3698.
    [9] Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.;Rivanera, D.; Zicari, A.; Scaltrito, M. M.; Sisto, F. Synthesis, selective anti-Helicobacter pyloriactivity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides [J].Bioorg. Med. Chem. Lett.2010,20:4922-4926.
    [10] Neyts, J.; De Clercq, E.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.; Hong, S. C.;Tsay, S.-C.; Hsu, M.-H.; Hwu, J. R. Structure-activity relationship of new anti-hepatitis C virusagents: heterobicycle-coumarin conjugates [J]. J. Med. Chem.2009,52:1486-1490.
    [11] Kostova, I. Coumarins as inhibitors of HIV reverse transcriptase [J]. Curr. HIV Res.2006,4:347-363.
    [12] Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.; Mazzorana, M.;Zagotto, G.; Uriarte, E.; Guiotto, A.; Meggio, F.; Moro, S. Coumarin as attractive casein kinase2(CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explainstructure-activity relationships [J]. J. Med. Chem.2008,51:752-759.
    [13] Zhou, X.; Wang, X. B.; Wang, T.; Kong, L. Yi. Design, synthesis, and acetylcholinesteraseinhibitory activity of novel coumarin analogues [J]. Bioorg. Med. Chem.2008,16:8011-8021.
    [14] Garino, C.; Tomita, T.; Pietrancosta, N.; Laras, Y.; Rosas, R. Naphthyl and coumarinylbiarylpiperazine derivatives as highly potent human β-secretase inhibitors. Design, synthesis, andenzymatic BACE-1and cell assays [J]. J. Med. Chem.2006,49:4275-4285.
    [15]邱晓敏.取代嘌呤类似物的设计、合成及抗病毒活性研究[D].第二军医大学硕士学位论文.2008.
    [16] Ghanem, H.; Jabbour, E.; Faderl, S.; Ghandhi, V.; Plunkett, W.; Kantarjian, H. Clofarabine inleukemia [J]. Expert Rev. Hematol.2010,3:15-22.
    [17] Kumar, V.; Sharma, A. Adenosine: An endogenous modulator of innate immune system withtherapeutic potential [J]. Eur. J. Pharm.2009,616:7-15.
    [18] Dip, R. G. Adenosine receptor modulation: Potential implications in veterinary medicine [J]. TheVeterinary Journal.2009,179:38-49.
    [19] Kostova, I. Synthetic and natural coumarins as cytotoxic Agents [J]. Curr. Med. Chem.-Anti-Cancer Agents.2005,5:29-46.
    [20] Lopez-Gonzalez, J. S.; Prado-Garcia, H.; Aguilar-Cazares, D.; Molina-Guarneros, J. A.; Morales-Fuentes, J.; Mandoki, J. J. Apoptosis and cell cycle disturbances induced by coumarin and7-hydroxycoumarin on human lung carcinoma cell lines [J]. Lung Cancer.2004,43:275-283.
    [21] Devji, T.; Reddy, C.; Woo, C.; Awale, S.; Kadota, S.; Carrico-Moniz, D. Pancreatic anticanceractivity of a novel geranylgeranylated coumarin derivative [J]. Bioorg. Med. Chem. Lett.2011,21:5770-5773.
    [22] Via, L. D.; Gia, O.; Magno, S. M.; Santana, L.; Teijeira, M.; Uriarte, E. New TetracyclicAnalogues of Photochemotherapeutic Drugs5-MOP and8-MOP: Synthesis, DNA interaction, andantiproliferative activity [J]. J. Med. Chem.1999,42:4405-4413.
    [23] Bickoff, E. M.; Booth, A. N.; Lyman, R. L. Coumestrol, a new estrogen isolated from forage crops[J]. Science.1957,126:969-970.
    [24]毛魏魏.新型香豆素类衍生物的合成及抗乳腺癌、抗HIV的活性研究[D].华南理工大学博士论文.2010.
    [25] Mao, W. W.; Zhu, Z. B.; Zeng, H. P.; Li, S. W. Simple synthesis, anti-breast cancer activity ofnovel coumarin-based sulfonamides: a coumestrol derivative and related molecul [C].240th ACSNational Meeting,22-26,2010.
    [26] Yao, T. L.; Yue, D.; Larock, R. C. An efficient synthesis of coumestrol and coumestans byiodocyclization and pd-catalyzed intramolecular lactonization [J]. J. Org. Chem.2005,70:9985-9989.
    [27] Kanojia, R. M.; Jain, F. N.; Ng, R. New tetracyclic heterocyclic derivatives, used for treating e.g.vaginal dryness, osteoporosis, loss of cognitive function and degenerative brain diseases, areestrogen modulators [P]. WO2003053977,2003.
    [28] Kanojia, R. M.; Jain, N.; Xu, J. A facile synthesis of an unsymmetric benzopyranobenzopyran ringsystem [J]. Tetrahedron Lett.2004,45:5837-5839.
    [29] Horvath, A.; De Smet, K.; Ormerod, D. Development of the one-carbon homologation of a4-methylcoumarin assisted by in-line FTIR [J]. Org. Process Res. Dev.2005,9:356-359.
    [30] Mayur, Y. C.; Peters, G. J.; Prasad, V. V.; Lemo, C.; Sathish, N. K. Design of new drug moleculesto be used in reversing multidrug resistance in cancer cells [J]. Curr. Cancer Drug Targets.2009,9:298-306.
    [31] Solomon, V. R.; Hu, C.; Lee, H. Hybrid pharmacophore design and synthesis of isatin-benzothiazole analogs for their anti-breast cancer activity [J]. Bioorg. Med. Chem.2009,17:7585-7592.
    [32] Bombardelli, E.; Valenti, P. Preparation of8-(arylpropenoyl)coumarins as antiproliferative agents
    [P]. WO01/17984A1,2001.
    [33] Sashidhara, K. V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation ofnovel coumarin–chalcone hybrids as potential anticancer agents [J]. Bioorg. Med. Chem. Lett.2010,20:7205-7211.
    [34] Gilgun-Sherki, Y.; Rosenbanm, Z.; Melamed, E.; Offen, D. Antioxidant therapy in acute centralnervous system injury: current state [J]. Pharmaeol Rev.2002,54:271-284.
    [35] Bandyopadhyay, U.; Dipak Das, D.; Banerjee, R. K. Reactive oxygen species: oxidative damageand pathogenesis [J]. Curr. Sci.1999,77:658-666.
    [36] Cerutti, P. A. Prooxidant states and tumor Promotion [J]. Science.1985,227:375-381.
    [37]张润峰,李霞,心血管疾病发病机制的新认识:氧自由基损伤[J].山西医科大学学报.2003,34:474-476.
    [38]刘萍,何兰杰.氧化应激与糖尿病[J].医学综述.2005,11:453-455.
    [39] Elstner, E. F.; Beuscher, N. Coumarin and coumarin derivatives, their use as antioxidants and fortreatment of microcirculation disorders and angiopathic ulcers, and pharmaceuticals containingthem [P]. Ger. Offen. DE3715990, A119881208,1988.
    [40] Rajarajeswari, N.; Pari, L. Antioxidant role of coumarin on streptozotocin-nicotinamide-inducedtype2diabetic rats [J]. J. Biochem. Mole. Toxicol.2011,25:355-361.
    [41]吴建忠,杨小生,郁建平,赫小江.抗氧化类活性香豆素的研究进展[J].中华现代中西医杂志.2006,4:591-595.
    [42] Patel, R. M.; Patel, N. J. In vitro antioxidant activity of coumarin compounds by DPPH, superoxide and nitric oxide free radical scavenging methods [J]. Journal of Advanced PharmacyEducation Research.2011,1:52-58.
    [43] Dangles, O.; Fargeix, G.; Dufour, C. Antioxidant properties of anthocyanins and tannins: amechanistic investigation with catechin and the3′,4′,7′-trihydroxyflavylium ion [J]. J. Chem. Soc.Perkin Trans.2.2000,1653-1663.
    [44] Steffan, B.; W tjen, W.; Michels, G.; Niering, P.; Wray, V.; Ebel, R.; Edrada, R.; Kahl, R.;Proksch, P. Polyphenols from plants used in traditional Indonesian medicine (Jamu): uptake andantioxidative effects in rat H4IIE hepatoma cells [J]. Journal of Pharmacy and Pharmacelegy.2005,57:233-240.
    [45] Dobiá, P.; Pavlíková, P.; Adam, M.; Eisner, A.; Beňová, B.; Ventura, K. Comparison ofpressurised fluid and ultrasonic extraction methods for analysis of plant antioxidants and theirantioxidant capacity [J]. Central European Journal of Chemistry.2010,8:87-95.
    [46] Symeonidis, T.; Chamilos, M.; Hadjipavlou-Litina, D. J.; Kallitsakis, M.; Litinas, K. E. Synthesisof hydroxycoumarins and hydroxybenzo[f]-or [h]coumarins as lipid peroxidation inhibitors [J].Bioorg. Med. Chem. Lett.2009,19:1139-1142.
    [47]倪奕昌,徐月琴,王鸣杰,刘云光.瑞香素的抗溶血和抗膜脂质过氧化作用[J].中国寄生虫学与寄生虫病杂志.1999,2:87-89.
    [48] Raj, H. G.; Parmar, V. S.; Jain, S. C. Mechanism of biochemical action of substituted4-methylbenzopyran-2-ones. Part I: dioxygenated4-methyl coumarins as superb antioxidant andradical scavenging agents [J]. Bioorg. Med. Chem.1998,6:833-839.
    [49] Tyagi, Y. K.; Kumar, A.; Raj, H. G.; Vohra, P.; Gupta, G.; Kumari, R.; Kumar, P.; Gupta, R. K.Synthesis of novel amino and acetyl amino-4-methylcoumarins and evaluation of their antioxidantactivity [J]. Eur. J. Med. Chem.2005,40:413-420.
    [50] Nicolaides, D. N.; Gautam, D. R.; Litinas, K. E.; Hadjipavlou-Litina, D. J.; Fylaktakidou, K. C.Synthesis and evaluation of the antioxidant and anti-inflammatory activities of somebenzo[l]khellactone derivatives and analogues [J]. Eur. J. Med. Chem.2004,39:323-332.
    [51] Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.;Hadjipavlou-Litina, D. J. Synthesis and evaluation of the antioxidant and anti-inflammatoryactivity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts [J]. Eur. J. Med.Chem.2009,44:3020-3026.
    [52] Balabani, A.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Mainou, M.; Tsironi, C. C.; Vronteli, A.Synthesis and biological evaluation of (2,5-dihydro-1H-pyrrol-1-yl)-2H-chromen-2-ones as freeradical scavengers [J]. Eur. J. Med. Chem.2011,46:5894-5901.
    [53] Bourinbaiar, A. S.; Tan, X.; Nagoruy, R. Effect of the oral anticoagulant, warfarin, on HIV-1replication and spread [J]. AIDS.1993,7:129-130.
    [54] Romines, K. R.; Chrusciel, R. A.4-Hydroxypyrones and related templates as nonpeptidic HIVprotease inhibitors [J]. Curr. Med. Chem.1995,2:825-838.
    [55] Kashman, Y.; Gustafson, K. R.; Fuller, R. W. The calanolides, a novel HIV-inhibitory class ofcoumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum [J]. J. Med. Chem.1992,35:2735-2743.
    [56] Ptail, A. D.; Freyer, A. J.; Drake, S. E. The Inophyllums, novel inhibitors of HIV-1reversetranscriptase isolated from the Malaysian tree, calophyllum inophyllum Linn [J]. J. Med. Chem.1993,38:4131-4138.
    [57]王春梅,石志琦.蛇床子素对黄瓜白粉病防治试验[J].江苏农业科学.2005,4:57-58.
    [58]石志琦,王春梅,范永坚,李优琴,陈浩.仿生新系列化合物7-烷氧基-8-(3,3′-二取代丙基)苯并吡喃-2-酮类合成及其作为农药的应用[P]. CN101456853A,2009.
    [59] Wei, E. H.; Rao, M. R.; Chen, X. Y. Inhibitory effects of praeruptorin C on cattle aortic smoothmuscle cell proliferation [J]. Aeta Pharmacol Sin.2002,23:129-132.
    [60] Murray, R. D. H.; Ballantyne, M. M.; Mathai, K. P. Claisen rearrangements—III: Convenientsyntheses of the coumarins, osthenol, demethylsuberosin and coumurrayin [J]. Tetrahedron.1971,27:1247-1251.
    [61] Baltembe, S.; Bhed, I. D. N.; Souza, N. J. Synthesis of (±)-praeruptorin A and related khellactonederivatives [J]. Heterocycles.1987,26:1239-1249.
    [62]张文婷,倪孟祥,张绍谭.核苷类抗病毒药物进展[J].抗感染学.2005,2:55-59.
    [63] Shaw, T.; Locarmini, S. Entecavir for the treatment of chronic hepatitis B [J]. Expert Rev. AntiInfect Ther.2004,2:853-871.
    [64] Galmarini, C. M.; Mackey, J. R.; Dumontet, C. Nucleoside analogues and nucleobases in cancertreatment [J]. Lancet Oncol.2002,3:415-422.
    [65] Galmarini, C. M.; Popowycz, F.; Joseph, B. Cytotoxic nucleoside analogues: diffreent strategies toimprove their clinical afficacy [J]. Curr. Med. Chem.2008,15:1072-1082.
    [66] Umrethia, M.; Ghosh, P; K.; Majithya, R.6-mercaptopurine (6-MP) entrapped stealth liposomesfor improvement of leukemictreatment without hepatotoxicity and nephrotoxicity [J]. CancerInvest,2007,25:117-123.
    [67] Lin, Z. Y.; Zhu, L. Y.; Liang, X. T. A novel method for synthesizing6-alkoxy and6-aminoguanosine [J]. Chinese J. Org. Chem.2000,20:510-513.
    [68] Smith, K. L.; Lai, V. C. H.; Prigaro, B. J.; Ding, Y.; Gunic, E.; Girardet, J. L.; Zhong, W. D.;Hong, Z.; Lang. S.; An, H. Y. Synthesis of new20-b-C-methyl related triciribine analogues asanti-HCV agents [J]. Bioorg. Med. Chem. Lett.2004,14:3517-3520.
    [69] Ding, Y. L.; An, H. Y.; Hong, Z.; Girardet, J. L. Synthesis of2′-β-C-methyl toyocamycin andsangivamycin analogues as potential HCV inhibitors [J]. Bioorg. Med. Chem. Lett.2005,15:725-727.
    [70] Seela, F.; Peng. X. H.; Regioselective Syntheses of7-halogenated7-deazapurine nucleosidesrelated to2-amino-7-deaza-2′-deoxyadenosine and7-deaza-2′-deoxyisoguanosine [J]. Synthesis.2004,8:1203-1210.
    [71]蔡显鹏,储炬,庄英萍,张嗣良.芽胞杆菌生产嘌呤核苷研究进展[J].中国生物工程杂志.2002,5:9-15.
    [72] Chen, X. C.; Kern, E. R.; Drach, J. C. Strueture activity relationships of (S, Z)-2-amono purinemethylene cyclo propane analogues of nueleosides. Variation of purine6-substituents and activityagainst herpes viruses and hepatitis B virus [J]. J. Med. Chem.2003,46:1531-1537
    [73] Nau, P.; Pohl, R.; Votruba, I.; D ubák, P.; Hajdúch, M.; Ameral, R.; Birkus, G.; Wang, T.; Ray, A.S.; Mackman, R.; Cihlar, T.; Hocek, M.6-(Het)aryl-7-deazapurine ribonucleosides as novel potentcytostatic agents [J]. J. Med. Chem.2010,53:460-470.
    [74] Bloch, A.; Mihich, E.; Leonard, R. J. Studies on the biologic activity and mode of action of7-deazainosine [J]. Cancer Research.1969,29:110-115.
    [75] Persson, T.; Gronowitz, S.; H rnfeldt, A.-B.; Johansson, N. G. Synthesis and antiviral effects of2-heteroaryl substituted adenosine and8-heteroaryl substituted guanosine derivatives [J]. Bioorg.Med. Chem.1995,3:1377-1382.
    [76] Anthony, R.; Porcari, L, B. Townsend. An improved total synthesis of Triciribine: A tricyclicnucleoside with antineoplastic and antiviral properties. Nucleosides, Nucleotides and NucleicAcids [J].2004,23:31-39.
    [77] Porcari, A. R.; Ptak, R. G.; Borysko, K. Z.; Breitenbach, J. M.; Drach, J. C.; Townsend, L. B.Synthesis and antiviral activity of2-substituted analogs of Triciribine [J]. Nucleosides,Nucleotides and Nucleic Acids.2003,22:2171-2193.
    [78] Hoffman, K.; Holmes, F. A.; Fraschini, G.; Esparza, L.; Frye, D.; Raber, M. N.; Newman, R. A.;Hortobagyi, G. N. Phase I–II study: triciribine (tricyclic nucleoside phosphate) for metastaticbreast cancer [J]. Cancer Chemother. Pharmacol.1996,37:254-258.
    [79] Kucera, L. S.; Iyer, N. P.; Puckett, S. H.; Buckheit, R. W., Jr.; Westbrook, L.; Toyer, B. R.; White,E. L.; Germany-Decker, J. M.; Shannon, W. M.; Chen, R. C.; Nassiri, M. R.; Shipman, C., Jr.;Townsend, L. B.; Drach, J. C. Activity of triciribine and triciribine-5′-monophosphate againsthuman immunodeficiency virus types1and2[J]. AIDS Res. Hum. Retrovir.1993,9:307-314.
    [80] Barrio, J. R.; Seerist, J. A.; III&Leonard, N. J. Fluorescent adenosine and cytidine derivatives [J].Bioehemieal and Biophysieal Research Communieations.1972,46:597-604.
    [81] Sattasangi, P. D.; Leonard, N. J.; Friharte, R. l, N2-ethenoguanine and N2,3-ethenoguanine.Synthesis and comparison of the electronic spectral properties of these linear and angulartriheterocycles related to the Y base [J]. J. Org. Chem.1977,42:3292-3296.
    [82] Kusmierek, J. T.; Jensen, D. E.; Spengler, S. J.; Stolarski, R.; Singer, B. Synthesis and propertiesof N2,3-ethenoguanosine and N2,3-ethenoguanosine5′-aiphosphate [J]. J. Org. Chem.1987,52:2374-2378.
    [83]周杰,高吉刚.新型核苷衍生物N2,3-亚乙烯基腺嘌呤核苷的合成[J].有机化学.2004,24:498-501.
    [84] Seshadri, P.; Hadges, S.; Cropper, T. Acute necrotising vasculitis in hairy cell leukemia-rapidresponse to cladribine: case report and a brief review of the literature [J]. Leukemia Research.2000,24:791-793.
    [85] Drew, W. L.; Lalezari, J.; Jordan, C. Cross, A.; Dunkle, L. In vivo anti-cytomegalovirus (CMV)activity and safety of oral lobucavir in HIV infected patients [J]. Antiviral Research.1997,34:A46.
    [86] Thi, T. N.; Deback, C.; Malet, I. Rapid determination of antiviral drug susceptibility of herpessimplex virus types1and2by real-time PCR [J]. Antiviral Research.2006,69:152-157.
    [87] Bai, S. C.; Du, L. P.; Liu, W. Q. Tentative novel nechanism of the bystander effect in glioma genetherapy with HSV-TK/GCV system [J]. Biochemical and Biophysical Research Communications.1999,259:455-459.
    [88] Snoeck, R. Antiviral therapy of herpes simplex [J]. International Journal of Antimicrobial Agents.2000,16:157-159.
    [89] Vittori, S.; Dal Ben, D.; Lambertucci, C.; Marucci, G.; Volpini, R.; Cristalli, G. Antiviralproperties of deazaadenine nucleoside derivatives [J]. Curr. Med. Chem.2006,13:3529-3552.
    [90] Anzai, K.; Nakamura, G.; Suzuki, S. A new antibiotic, tubercidin [J]. J. Antibiot.1957,10:201-204.
    [91] Acs, G.; Mori, M.; Reich, E. Biological biochemical properties of analogue antibiotic tubercidin[J]. Proc. Nat. Acad. Sci. U.S.A.1964,52:493-501.
    [92] Ugarkar, B. G.; DaRe, J. M.; Kopcho, J. J. Browne, C. E.; Schanzer, J. M.; Wiesner, J. B.; Erion,M. D. Adenosine kinase inhibitors.1. synthesis, enzyme inhibition, and antiseizure activity of5-Iodotubercidin analogues [J]. J. Med. Chem.2000,43:2883-2893.
    [93] Ugarkar, B. G.; Castellino, A. J.; DaRe, J. M.; Kopcho, J. J.; Wiesner, J. B.; Schanzer, J. M.; Erion,M. D. Adenosine kinase inhibitors.2. Synthesis, enzyme inhibition, and antiseizure activity ofdiaryltubercidin analogues [J]. J. Med. Chem.2000,43:2894-2905.
    [94] Kim, Y. A.; Sharon, A.; Chu, C. K.; Rais, R. H.; Al Safarjalani, O. N.; Naguib, F. N. M.; el Kouni,M. H. Structure-activity relationships of7-Deaza-6-benzylthioinosine analogues as ligands oftoxoplasma gondii adenosine kinase [J]. J. Med. Chem.2008,51:3934-3945.
    [95] Middleton, W. J.; Engelhart, V. A.; Fisher, B. S. Cyanocarbon chemistry. VIII.1heterocycliccompounds from tetracyanoethylene [J]. J. Chem. Soc.1958,80:2822-2829.
    [96] Middleton, W. J.; Heckert, R. E.; Littie, E. L. Cyanocarbon chemistry.III.1addition reactions oftetracyano ethylene [J]. J. Am. Chem. Soc.1958,80:2783-2788.
    [97] Porcari, A. R.; Townsend, L. B. An improved synthesis of the versatile heterocycle,4-amino-6-bromo-5-cyanopyrrolo[2,3-d]pyrimidine [J]. Synthetic Communications.1998,28:3835-3843.
    [98] Balow, G.; Mohan, V.; Lesnik, E. A.; Johnston, J. F.; Monia, B. P.; Acevedo, O. L. Biophysical andantisense properties of oligodeoxy-nucleotides containing7-propynyl-,7-iodo-and7-cyano-7-deaza-2-amino-2′-deox-yadenosines [J]. Nucleic Acids Research.1998,26:3350-3357.
    [99] Jung, M. H.; Kim, H.; Choi, W. K.; El-Gamal, M. I.; Park, J. H.; Yoo, K. H.; Sim, T. B.; Lee, S.H.; Baek, D.; Hah, J. M.; Cho, J. H.; Oh, C. H. Synthesis of pyrrolo[2,3-d]pyrimidine derivativesand their antiproliferative activity against melanoma cell line [J]. Bioorg. Med. Chem. Lett.2009,19:6538-6543.
    [100] Borrmann, T.; Abdelrahman, A.; Volpini, R.; Lambertucci, C.; Alksnis, E.; Gorzalka, S.; Knospe,M.; Schiedel, A. C.; Cristalli, G.; Müller, C. E. Structure-activity relationships of adenine anddeazaadenine derivatives as ligands for adenine receptors, a new purinergic receptor family [J]. J.Med. Chem.2009,52:5974-5989.
    [101]陈林,张艳.一种4-氯吡咯并嘧啶的合成方法[P]. CN101830904A,2010.
    [102] Ramasamy, K.; Robins, R. K.; Revankar, G. R. A convenient synthesis of5-substituted-7-β-D-arabinofuranosylpyrrolo[2,3-d]pyrimidines structurally related to the antibiotics toyocamycinand sangivamycin [J]. J. Heterocycl. Chem.1988,25:1043-1046.
    [103] Recondo, E. E.; Rinderknecht, H. Eine neue, einfache synthese des1-O-Acetyl-2,3,5-Tri-O-β-D-ribofuranosides [J]. Helv. Chim. Acta.1959,42:1171-1173.
    [104] Conconi, M.T.; Montesi, F.; Parnigotto, P. P. Antiproliferative activity and phototoxicity ofsome methyl derivatives of5-methoxypsoralen and5-methoxyangelicin [J]. Pharmacol Toxicol.1998,82:193-198.
    [105] Carneiro, L. V.; Ferreira, S. R.; Chen, C. L. Psoralen derivatives and longwave ultravioletirradiation are active in vitro against human melanoma cell line [J]. J Photochem. Photobiol. B.2004,76:49-53.
    [106]刘建新,黄彬红,连其深.花椒毒酚的药理学研究进展[J].赣南医学院学报.2004,24:104-107.
    [107]上官珠,连其深,曾靖.花椒毒酚对家兔离体回肠的作用[J].中国中药杂志.2001,26:56-58.
    [108] Myung, K.; Manthey, J. A.; Narciso, J. A. Aspergillus niger metabolism of citrus furanocoumarininhibitors of human cytochrome P4503A4[J]. Appl. Microbiol. Biotechnol.2008,78:343-349.
    [109]连其深,张志祖,上官珠.花椒毒酚抗实验性心律失常作用的研究[J].中草药.1996,27:347-349.
    [110]胡晓,连其深,周俐.花椒毒酚对大鼠离体子宫平滑肌的作用[J].赣南医学院学报,2000,20:98-101.
    [111] Zawia, N. H.; Lahiri, D. K.; Cardozo-Pelaez, F. Epigenetics, oxidative stress, and Alzheimerdisease [J]. Free Radic. Biol. Med.2009,46:1241-1249.
    [112] Guo, J.; Weng, X.; Wu, H.; Li, Q.; Bi, K. Antioxidants from a Chinese medicinal herb-Psoraleacorylifolia L [J]. Food Chem.2005,91:287-292.
    [113] Yua, Jun.; Ghivirigab, I.; Buslig, B. S.;iga, Cancalona, P. A strong antioxidant isolated fromgrapefruit juice retentate [J]. Food Sci. Technol.2008,41:420-424.
    [114] Cai, J.N.; Basnet, P.; Wang, Z. T.; Komatsu, K.; Xu, L. S.; Tani, T. Coumarins from the fruits ofCnidium monnieri [J]. J. Nat. Prod.2000,63:485-488.
    [115] Girennavar, B.; Jayaprakasha, G. K.; Jadegoud, Y.; Gowda, G. A. N.; Patil, B. S. Radicalscavenging and cytochrome P4503A4inhibitory activity of bergaptol and geranylcoumarin fromgrapefruit. Bioorg. Med. Chem.2007,15:3684-3691.
    [116] Hafez, O. M. A.; Amin, K. M.; Abdel-Latif, N. A.; Mohamed, T. K.; Ahmed, E. Y.; Maher, T.Synthesis and antitumor activity of some new xanthotoxin derivatives [J]. Eur. J. Med. Chem.2009,44:2967-2974.
    [117] Liu, Z.; Lu, Y.; Lebwohl, M.; Wei, H. PUVA (8-methoxy-psoralen plus ultraviolet A) inducesthe formation of8-hydroxy-2′-deoxyguanosine and DNA fragmentation in calf thymus DNA andhuman epidermoid carcinoma cells [J]. Free Radic. Biol. Med.1999,27:127-133.
    [118] Liu, Z. Q.; Yu, W.; Liu, Z. L. Antioxidative and prooxidative effects of coumarin derivatives onfree radical initiated and photosensitized peroxidation of human low-density lipoprotein [J].Chem. Phys. Lipids.1999,103:125-135.
    [119] Hayden, F. G. Amantadine and rimantadine-clinical aspects in richman DD [J]. Antiviral DrugResistance Chichester.1996,17:59-77.
    [120]刘丹,范子宸,张瑛,姜家妹.金刚烷胺及其结构类似物的研究进展[J].中国药师.2009,12:1640-1643.
    [121]谭载友,梁可,张浩,张志华,黄彦,王晓明.一种抗肿瘤活性斑蛰素衍生物及其制备方法[P].CN101172979A,2008
    [122]柳旺艳,李娟,李岩,刘东艳,李静.化合物OCAM的体外抗肿瘤活性[J].西安交通大学学报(医学版).2010,31:255-257.
    [123] Lankalapalli, R. S.; Eckelkamp, J. T.; Sircar, D.; Ford, D. A.; Subbaiah, P. V.; Bittman, R.Synthesis and antioxidant properties of an unnatural plasmalogen analogue bearing a transO-vinyl ether linkage [J]. Org. Lett.2009,11:2784-2787.
    [124] Shi, H.; Niki, E. Stoichiometric and kinetic studies on Ginkgo biloba extract and relatedantioxidants [J]. Lipids.1998,33:365-370.
    [125] Yu, J.; Wang, L.; Walzem, R. L.; Miller, E. G.; Pike, L. M.; Patil, B. S. Antioxidant activity ofcitrus limonoids, flavonoids, and coumarins [J]. J. Agric. Food Chem.2005,53:2009-2014.
    [126] Reed, C. J.; Douglas, K. T. Chemical cleavage of plasmid DNA by glutathione in the presence ofCu(II) ions [J]. Biochem. J.1991,275:601-608.
    [127] Zhang, P.; Omaye, S. T. DNA strand breakage and oxygen tension: effects of carotene, tocopheroland ascorbic acid [J]. Food Chem. Toxicol.2001,39:239-246.
    [128] Tang, Y. Z.; Liu, Z. Q. Physicochemical and rheological properties of crystallized blendscontaining trans-free and partially hydrogenated soybean Oil [J]. J. Am. Oil Chem. Soc.2007,84:1095-1100.
    [129] Oikawa, S.; Murakami, K.; Kawanishi, S. Oxidative damage to cellular and isolated DNA byhomocysteine: implications for carcinogenesis [J]. Oncogene.2003,22:3530-3538.
    [130] Prütz, W. A. Interaction between glutathione and Cu(II) in the vicinity of nucleic acids [J].Biochem. J.1994,302:373-382.
    [131]赵丰.含羟基、巯基及氨基化合物抗氧化性能的研究[D].吉林大学博士论文.2011.
    [132] Bowry, V. W.; Stocker, R. Tocopherol-mediated peroxidation. The prooxidant effect of vitaminE on the radical-initiated oxidation of human low-density lipoprotein [J]. J. Am. Chem. Soc.1993,115:6029-6044.
    [133] Mosmann T. Rapid colorimetric assay cellular growth and survival: application to proliferationand cytotoxicity assays [J]. J. Immunol Methods.1983,65:55-63.
    [134] Fallon, A. M.; Hellestad, V. J. Standardization of a colorimetric method to quantify growth andmetabolic activity of Wolbachiainfected mosquito cells [J]. In Vitro Cell Dev Biol Anim.2008,44:351-356.
    [135] Bovicelli, P. Radical-scavenging polyphenols: new strategies for their synthesis [J]. J. Pharm.Pharmacol.2007,59:1703-1710.
    [136] Kofinas, C.; Chinou. I.; Loukis, A.; Harvala, C.; Roussakis, C.; Maillard, M.; Hostettmann, K.Cytotoxic coumarins from the aerial parts of Tordylium apulum and their effects on anon-small-cell bronchial carcinoma line [J]. Palnta Med.1998,64:174-176.
    [137]李锦周,黄初升,刘红星,陈希慧.简单香豆素天然产物药理作用与化学结构关系研究进展[J].广西师范学院学报(自然科学版).2007,24:93-98.
    [138] Morabito, G.; Trombetta, D.; Brajendra, K. S.; Ashok, K. P.; Virinder, S. P.; Naccari, C.;Mancari, F.; Saija, A.; Cristani, M.; Firuzi, O.; Saso, L. Antioxidant properties of4-methylcoumarins in in vitro cell-free systems [J]. Biochimie.2010,92:1101-1107.
    [139] Iovu, M.; Zalaru, C.; Dumitrascu, F.; Draghici, C.; Moraru, M.; Criste, E. New substituted2-(pyrazol-1-yl)-dialkylacetanilides with potential local anesthetic and antiarrhythmic action.Part II [J]. Farmaco.2003,58:301-307.
    [140] Jin, Z. M.; Li, L.; Li, M. C.; Hu, M. L.; Shen, L. Diethyl3,8-dimethyl-4,7-diazadeca-2,8-dienedioate [J]. Acta Cryst.2004,60:642-643.
    [141] Baraldi, P. G.; Manfredini, S.; Romagnoli, R.; Stevanato, L.; Zaid, A. N.; Manservigi, R.Synthesis and anti-HSV-1activity of6substituted pyrazolo[3,4-d]pyridazin-7-one nucleosides'[J]. Nucleosides, Nucleotides and Nucleic Acids.1998,17:2165-2173.
    [142] Smith, S. R.; Denhardt, G.; Terminelli, C. The anti-inflammatory activities of cannabinoidreceptor ligands in mouse peritonitis models [J]. Eur. J. Pharmacol.2001,432:107-119.
    [143] Congiu, C.; Onnis, V.; Vesci, L.; Castorina, M.; Pisano, C. Synthesis and in vitro antitumoractivity of new4,5-dihydropyrazole derivatives [J]. Bioorg. Med. Chem.2010,18,6238-6248.
    [144] Cottineau, B.; Toto, P.; Marot, C.; Pipaud, A.; Chenault, J. Synthesis and hypoglycemicevaluation of substituted pyrazole-4-carboxylic Acids [J]. Bioorg. Med. Chem. Lett.2002,12:2105-2108.
    [145] Bruno, O.; Bondavalli, F.; Ranise, A.; Schenone, P.; Losasso, C.; Cilenti, L.; Matera, C.; Marmo,E.3,5-Diphenyl-1H-pyrazole derivatives. V--1-Acetyl-4-hydroxy-3,5-diphenyl-2-pyrazolineesters,4-hydroxy-3,5-diphenyl-1H-pyrazole esters and N-substituted4-(3-amino-2-hydroxy-1-propoxy)-1-methyl-3,5-diphenyl-1H-pyrazoles with anti-arrhythmic, sedative and plateletantiaggregating activities [J]. Farmaco.1990,45:147-166.
    [146] Ahmad, M.; Siddiqui, H. L.; Zia-ur-Rehman, M.; Parvez, M. Anti-oxidant and anti-bacterialactivities of novel N′-arylmethylidene-2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin-2(4H)-yl) Acetohydrazides [J]. Eur. J. Med. Chem.2010,45:698-704.
    [147] Padmaja, A.; Rajasekhar, C.; Muralikrishna, A.; Padmavathi, V. Synthesis and antioxidantactivity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles [J]. Eur. J. Med. Chem.2011,46:5034-5038.
    [148] Bandgar, B. P.; Gawande, S. S.; Bodade, R. G.; Gawande, N. M.; Khobragade, C. N. Synthesisand biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory,antioxidant and antimicrobial agents [J]. Bioorg. Med. Chem.2009,17:8168-8173.
    [149] Parmar, V. S.; Kumar, A.; Prasad, A. K.; Singh, S. K.; Kumar, N.; Mukherjee, S.; Raj, H. G.;Goel, S.; Errington, W.; Puar, M. S. Synthesis of E-and Z-Pyrazolylacrylonitriles and theirevaluation as novel antioxidants [J]. Bioorg. Med. Chem.1999,7:1425-1436.
    [150] Kogen, H.; Toda, N.; Tago, K.; Marumoto, S.; Takami, K.; Ori, M.; Yamada, N.; Koyama, K.;Naruto, S.; Abe, K.; Yamazaki, R.; Hara, T.; Aoyagi, A.; Abe, Y.; Kaneko, T. Design andsynthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potentialagents for Alzheimer’s disease [J]. Org. Lett.2002,4:3359-3362.
    [151] Antonello, A.; Hrelia, P.; Leonardi, A.; Marucci, G.; Rosini, M.; Tarozzi, A.; Tumiatti, V.;Melchiorre, C. Design, synthesis, and biological evaluation of prazosin-related derivatives asmultipotent compounds [J]. J. Med. Chem.2005,48:28-31.
    [152] Antonello, A.; Tarozzi, A.; Morroni, F.; Cavalli, A.; Rosini, M.; Hrelia, P.; Bolognesi, M. L.;Melchiorre, C. Multitarget-directed drug design strategy: a novel molecule designed to blockepidermal growth factor receptor (EGFR) and To exert proapoptotic effects [J]. J. Med. Chem.2006,49:6642-6645.
    [153] Liu, X. H.; Liu, H. F.; Chen, J.; Yang, Y.; Song, B. A.; Bai, L. S.; Liu, J. X.; Zhu, H. L.; Qi, X. B.Synthesis and molecular docking study of novel coumarin derivatives containing4,5-dihydropyrazole moiety as potential antitumor agents [J]. Bioorg. Med. Chem. Lett.2010,20:5705-5708.
    [154] Eissa, A. A. M.; Farag, N. A. H.; Soliman, G. A. H. Synthesis, biological evaluation and dockingstudies of novel benzopyranone congeners for their expected activity as anti-inflammatory,analgesic and antipyretic agents [J]. Bioorg. Med. Chem.2009,17:5059-5070.
    [155] Manojkumar, P.; Ravi, T. K.; Subbuchettiar, G. Synthesis of coumarin heterocyclic derivativeswith antioxidant activity and in vitro cytotoxic activity against tumour cells [J]. Acta Pharm.2009,59:159-170.
    [156] Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Villar, R.; Vicente, E.; Solano, B.; Ancizu, S.;Pérez-Silanes, S.; Aldana, I.; Monge, A. Synthesis and anti-inflammatory/antioxidant activitiesof some new ring substituted3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-onederivatives and of their4,5-dihydro-(1H)-pyrazole analogues [J]. Bioorg. Med. Chem. Lett.2007,17:6439-6443.
    [157] Thakare, N. R.; Jamode, V. S. Synthesis and antimicrobial studies of some3-coumaryl-5-aryl-pyrazolines and pyrazoles [J]. Asian Journal of Chemistry.2007,19:3633-3636.
    [158] Sangwan, N. K.; Verma, B. S.; hindsa, D K. S. Synthesis and biological properties of substituted2H-1-benzopyran-2-ones and2H,10H-benzo[1,2-b:3,4-b']dipyran-2,10-diones [J]. Journal fuerPraktische Chemie (Leipzig).1988,330;137-141.
    [159] Niki, E. Assessment of antioxidant capacity in vitro and in vivo [J]. Free Radic. Biol. Med.2010,49:503-515.
    [160] Munoz-Munoz, J. L.; Garcia-Molina, F.; Varon, R.; Tudela, J.; García-Cánovas, F.;Rodriguez-Lopez, J. N. Quantification of the antioxidant capacity of different molecules andtheir kinetic antioxidant efficiencies [J]. J. Agric. Food Chem.2010,58:2062-2070.
    [161] Li, Y.-F.; Liu, Z.-Q. Dendritic antioxidants with pyrazole as the core: Ability to scavengeradicals and to protect DNA [J]. Free Radic. Biol. Med.2012,51:103-108.
    [162] Zennaro, L.; Rossetto, M.; Vanzani, P.; Marco, V. D.; Scarpa, M.; Battistin, L.; Rigo, A. A methodto evaluate capacity and efficiency of water soluble antioxidants as peroxyl radical scavengers [J].Arch. Biochem. Biophys.2007,462:38-46.
    [163] Antolovich, M.; Prenzler, P. D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testingantioxidant activity [J]. Analyst.2002,127:183-198.
    [164] M. C. Foti, E. R. Johnson, M. R.Vinqvist, J. S. Wright, L. R. C. Barclay, K. U. Ingold,Naphthalene Diols: A New class of antioxidants intramolecular hydrogen bonding in catechols,naphthalene diols, and their aryloxyl radicals [J]. J. Org. Chem.2002,67:5190-5196.
    [165] Ng, T.B.; Liu, F.; Wang, Z. T. Anti-oxidative activity of natural products from plants [J]. LifeScience.2000,66:709-723.
    [166] Li, S.; Li, W.; Wang, Y.; Asada, Y.; Koike, K. Prenylflavonoids from Glycyrrhiza uralensis andtheir protein tyrosine phosphatase-1B inhibitory activities [J]. Bioorg. Med. Chem. Lett.2010,20:5398-5401.
    [167] Gafner, S.; Bergeron, C.; Villinski, J. R.; Godejohann, M.; Kessler, P.; Cardellina, J. H.; Ferreira,D.; Feghali, K.; Grenier, D. Isoflavonoids and coumarins from Glycyrrhiza uralensis:antibacterial activity against Oral Pathogens and conversion of isoflavans into isoflavan-quinonesduring purification [J]. J. Nat. Prod.2011,74:2514-2519.
    [168] Rajendran, M.; Inbaraj, J. J.; Gandhidasan, R.; Murugesan, R. Photogeneration of reactiveoxygen species by3-arylcoumarin and flavanocoumarin derivatives [J]. J. Photochem. Photobio.A: Chem.2006,18:67-74.
    [169]杨秀伟,徐波,冉福香,王瑞卿,吴军,崔景荣.11种香豆素类化合物对人膀胱癌细胞系E-J细胞株生长抑制活性的筛选[J].中西医结合学报.2007,5:56-60.
    [170] Ibrahim, N. A.; El-Seedi, H. R.; Mohammed, M. M. Phytochemical investigation andhepatoprotective activity of Cupressus sempervirens L. leaves growing in Egypt [J]. Nat ProdRes.2007,21:857-866.
    [171] Hatano, T.; Shintani, Y.; Aga, Y.; Shiota, S.; Tsuchiya, T.; Yoshida, T. Phenolic constituents ofliquorice. VII. A new calcone with a potent radical scavenging activity and accompanyingphenols [J]. Chem. Pharm. Bull.1997,45:1485-1492.
    [172] Kabeya, L. M.; de Marchi, A. A.; Kanashiro, A.; Lopes, N. P.; da Silva, C. H. T. P.; Pupob, M. T.;Lucisano-Valim, Y. M. Inhibition of horseradish peroxidase catalytic activity by new3-phenylcoumarin derivatives: Synthesis and structure-activity relationships [J]. Bioorg. Med.Chem.2007,15:1516-1524.
    [173] Matos, M. J.; Terán, C.; Pérez-Castillo, Y.; Uriarte, E.; Santana, L.; Vi a, D. Synthesis and studyof a series of3-arylcoumarins as potent and selective Monoamine Oxidase B inhibitors [J]. J.Med. Chem.,2011,54:7127-7137.
    [174] You, L.; An, R.; Wang, X.; Li, Y. Discovery of novel osthole derivatives as potential anti-breastcancer treatment [J]. Bioorg. Med. Chem. Lett.2010,20:7426-7428.
    [175] Xiao, C. F.; Tao, L. Y.; Sun, H. Y.; Wei, W.; Chen, Y.; Fu, L. W.; Zou, Y. Design, synthesis andantitumor activity of a series of novel coumarin-stilbenes hybrids, the3-arylcoumarins [J]. Chin.Chem. Lett.2010,21:1295-1298.
    [176] Belluti, F.; Fontana, G.; Bo, L. D.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesisand anticancer activities of stilbene-coumarin hybrid compounds: identification of novelproapoptotic agents [J]. Bioorg. Med. Chem.2010,18:3543-3550.
    [177] Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Roberti, M.; Pizzirani, D.; Meli, M.; Dusonchet, L.;Gebbia, N.; Abbadessa, V.; Crosta, L. Pterostilbene and3'-hydroxypterostilbene are effectiveapoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells [J]. Int. J. Biochem.Cell Biol.2005,37:1709-1726.
    [178] Roupe, K. A.; Remsberg, C. M.; Yanez, J. A.; Davies, N. M. Pharmacometrics of stilbenes:seguing towards the clinic [J]. Curr. Clin. Pharm.2006,1:81-101.
    [179] Rivière, C.; Richard, T.; Quentin, L.; Krisa, S.; Mérillonb, J.-M.; Montia, J.-P. Inhibitory activityof stilbenes on Alzheimer’s b-amyloid fibrils in vitro [J]. Bioorg. Med. Chem.2007,15:1160-1167.
    [180] Chattopadhyay, S. K.; Neogi, K.; Singha, S. K.; Dey, R. Sequential Claisen Rearrangement andintramolecular Heck Reaction as a route to medium-ring oxacycle-fused heterocycles [J].Syn.Lett.2008,8:1137-1140.
    [181] Magolan, J.; Coster, M. J. Total synthesis of (+)-Angelmarin [J]. J. Org. Chem.2009,74:5083-5086.
    [182] Malumbres, M.; Barbacid, M. Mammaliancyclin-dependentkinases [J]. Trends Biochem. Sci.2005,390:630-641.
    [183] Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm [J]. Nat. Rev.Cancer.2009,9:153-166.
    [184] Bruce, A.; Orr-Weaver, T. L. Endoreplication cell cycles: more for less [J]. Cell.2001,105:297-306.
    [185] Sharma, P. S.; Sharma, R.; Tyagi, R. Inhibitors of cyclin dependent kinases: useful targets forcancer treatment [J]. Current Cancer Drug Targets.2008,8:53-75.
    [186] Hunter, T.; Pines, J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age [J]. Cell,1994,79:547-550.
    [187] Fuster, J. J.; Fernández, P.; González-Navarro, H.; Silvestre, C.; Nabah, Y. N. A.; Andrés, V.Control of cell proliferation in atherosclerosis: insights from animal models and human studies[J]. Cardiovascular Res.2010,86:254-264.
    [188] Mascarenhas, N. M.; Ghoshal, N. Combined ligand and structure based approaches for narrowingon the essential physicochemical characteristics for CDK4inhibition [J]. J. Med. Chem.2008,48:1325-1336.
    [189] Perez de, C. I.; Career, G.; Malumbres, M. A census of mitotic cancer genes:new insights intotumor cell biology and cancer therapy [J]. Carcinogenesis,2007,28:899-912.
    [190] Krystof, V.; Uldrijan, S. Cyclin-dependent kinase inhibitors as anticancer drugs [J]. Curr. Drug.Targets.2010,11:291-302.
    [191] Mendoza, N.; Fong, S.; Marsters, J.; Koeppen, H.; Schwall, R.; Wickramasinghe, D. Selectivecyclin-dependent kinase2/cyclin A antagonists that differ from ATP site inhibitors block tumorgrowth [J]. Cancer Res.2003,63:1020-1024.
    [192] Romano G, Giordano A. Role of the cyelin-dependent kinase9-related pathway in malnmaliangene expression and human diseases [J]. Cell Cycle,2008,7:3664-3668.
    [193] Hinds, P. W. Cdk2dethroned as master of S phase entry [J]. Cancer Cell.2003,3:305-307.
    [194] Prehoda, K. E.; Lim W. A. How signaling proteins integrate multiple inputs: a comparison ofN-WASP and Cdk2[J]. Curr. Opin. Cell. Biol.2002,14:149-154.
    [195] Hakem, A.; Sasaki, T.; Kozieradzki, I.; Penninger, J. M. The cyclin-dependent kinase Cdk2regulates thymocyte apoptosis [J]. J. Exp. Med.1999,189:957-967.
    [196] Levkau, B.; Koyama, H.; Raines, E. W.; Clurman, B. E.; Herren, B.; Orth, K.; Roberts, J. M.;Ross, R. Cleavage of p21Cip1/Waf1and p27Kip1mediates apoptosis in endothelial cells throughactivation of Cdk2: role of a Caspase cascade [J]. Mol. Cell.1998,1:553-563.
    [197] Hiromura, K.; Pippin, J. W.; Blonski, M. J.; Roberts, J. M.; Shankland, S. J. The subcellularlocalization of cyclin dependent kinase2determines the fate of mesangial cells: role in apoptosisand proliferation [J]. Oncogene.2002,21:1750-1758.
    [198] Harvey, K. J.; Lukovic, D.; Ucker, D. S. Caspase-dependent Cdk activity is a requisite effector ofapoptotic death events [J]. J Cell Biol.2000,148:59-72
    [199] Van den, H. S.; Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control [J].Science.1993,262:2050-2054.
    [200] Davis, S.T.; Benson, B. G.; Bramson, H. N. Prevention of chemotherapy-induced alopecia in ratsby CDK inhibitors [J]. Science.2001,291:134-137.
    [201] Fousteris, M. A.; Papakyriakou, A.; Koutsourea, A.; Manioudaki, A.; Lampropoulou, E.;Papadimitriou, E.; Spyroulias, G. A.; Nikolaropoulos, S. S. J. Pyrrolo[2,3-a] carbazoles aspotential Cyclin Dependent Kinase1(CDK1) inhibitors. synthesis, biological evaluation, andbinding mode through docking simulations [J]. J. Med. Chem.2008,51:1048-1052.
    [202] Misra, R. N.; Xiao, H.; Kim, K. S. N-(Cycloalkylamino)acyl-2-aminothiazole Inhibitors ofCyclin-Dependent Kinase2. N-[5-[[[5-(1,1-Dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent [J]. J.Med. Chem.2004,47:1719-1728.
    [203] Elgazwy, A. S. S. H.; Ismail, N. S. M.; Elzahabi, H. S. A. A convenient synthesis and molecularmodeling study of novel purine and pyrimidine derivatives as CDK2/cyclin A3inhibitors [J].Bioorg. Med. Chem.2010,18:7639-7650.
    [204] Kry tof, V.; Lenobel, R.; Havl ek, L.; Kuzma, M.; Strnad, M. Synthesis and biological activityof olomoucine II [J]. Bioorg. Med. Chem. Lett.2002,12:3283-3286.
    [205] Krystof, V.; McNae, I. W.; Walkinshaw, M. D.; Fischer, P. M.; Muller, P.; Vojtesek, B.; Orsag, M.;Havlicek, L.; Strnad, M. Human peripheral blood monuclear cells transfected with messengerRNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro [J]. Cell. Mol. Life Sci.2005,62,1763-1771.
    [206] Gray, N. S.; Wodicka, L.; Thunnissen, A.-M. W. H.; Norman, T. C.; Kwon, S.; Espinoza, H.;Morgan, D. O.; Barnes, G.; LeClerc, S.; Meijer, L.; Kim, S. H.; Lockhart, D. J.; Schultz, P. G.Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors [J].Science.1998,281,533-538.
    [207] Rao, K. V. Structure of sangivamycin. J. Med. Chem.1968,11:939-941.
    [208] Hocek, M.; Holy, A.; Votruba, I.; Dvo áková, H. Cytostatic6-arylpurine nucleosides III.Synthesis and structure-activity relationship study in cytostatic activity of6-aryl-,6-hetaryl-and6-benzylpurine ribonucleosides [J]. Collect. Czech. Chem. Commun.2001,66:483-499.
    [209] ilhár, P.; Pohl, R.; Votruba, I.; Hocek, M. Synthesis of2-Substituted6-(Hydroxymethyl)purineBases and Nucleosides [J]. Collect. Czech. Chem. Commun.2005,70:1669-1695.
    [210] Gunic, E.; Girardet, J. L.; Pietrzkowski, Z.; Esler, C.; Wang, G. Synthesis and cytotoxicity of4′-C-and5′-C-substituted toyocamycins [J]. Bioorg. Med. Chem.2001,9:163-170.
    [211] Cho, S. J.; Lee, S. S.; Kim, Y. J.; Park, B. D.; Choi, J. S.; Liu, L. H.; Ham, Y. M.; Kim, B. M.;Lee, S. K. Xylocydine, a novel Cdk inhibitor, is an effective inducer of apoptosis inhepatocellular carcinoma cells in vitro and in vivo [J]. Cancer Letters.2010,287:196-206.
    [212] Ham,Y. M.; Choi, K. J.; Song, S. Y.; Jin, Y. H.; Chun, M. W.; Lee, S. K. Xylocydine, a novelinhibitor of Cyclin-dependent kinases, prevents the tumor necrosis factor-relatedapoptosis-inducing ligand-induced apoptotic cell death of SK-HEP-1cell [J]. Journal of PublicEconomic Theory.2004,308:814-819.
    [213] Hardcastle, I. R.; Arris, C. E.; Bentley, J.; Boyle, F. T.; Chen, Y.; Curtin, N. J.; Endicott, J. A.;Gibson, A. E.; Golding, B. T.; Griffin, R. J.; Jewsbury, P.; Menyerol, J.; Mesguiche, V.; Newell,D. R.; Noble, M. E. M.; Pratt, D. J.; Wang, L. Z.; Whitfield, H. J. N2-SubstitutedO6-Cyclohexylmethylguanine derivatives: potent inhibitors of Cyclin-Dependent Kinases1and2[J]. J. Med. Chem.2004,47:3710-3722.
    [214] Porcari, A. R.; Townsend, L. B. Total synthesis of the naturally occurring antibiotic Toyocamycinusing new and improved synthetic procedures [J]. Nucleosides and Nucleotides.1999,18:153-159.
    [215] Leonard, P.; Ingale, S. A.; Ding, P.; Ming, X.; Seela, F. Studies on the glycosylation ofpyrrolo[2,3-d] pyrimidines with1-O-Acetyl-2,3,5-Tri-O-Benzoyl-β-D-ribofuranose: Theformation of regioisomers during Toyocamycin and7-deazainosine syntheses [J]. Nucleosides,Nucleotides and Nucleic Acids.2009,28:678-694.
    [216] Jr., R. J. E.; Harris, H. A.; Manas, E. S.; Mewshaw, R. E. ERβLigands. Part1: The discovery ofERβselective ligands which embrace the4-hydroxy-biphenyltemplate [J]. Bioorg. Med. Chem.2003,11:3457-3474.
    [217] Miura, Y.; Oka, H.; Momoki, M. A Convenient and efficient synthesis of polyphenylmono-, di-,and-triaminobenzenes [J]. Synthesis.1995,11:1419-1422.
    [218] Carroll, F. I.; Yokota, Y.; Ma, W.; Lee, J. R.; Brieaddy, L. E.; Burgess, J. P.; Navarro, H. A.;Damaj, M. I.; Martin. B. R. Synthesis, nicotinic acetylcholine receptor binding, andpharmacological properties of3′-(substituted phenyl) deschloroepibatidine analogs [J] Bioorg.Med. Chem.2008,16:746-754.
    [219] Purandare, A. V.; Batt, D. G.; Liu, Q.; Johnson, W. L.; Mastalerz, H.; Zhang, G.; Zimmermann, K.Carbazole and Caroline kinase inhibitors [P]. WO2010080474,2010.
    [220] Handy, S. T.; Bregman, H.; Lewis, J.; Zhang, X. L.; Zhang, Y. N. An unusual dehalogenation inthe Suzuki coupling of4-bromopyrrole-2-carboxylates [J]. Tetra. Lett.2003,44:427-430.
    [221] Tolman, R. L.; Robins, R. K.; Townsend, L. B. Pyrrolopyrimidine nucleosides. III. Totalsynthesis of toyocamycin, sangivamycin, tubercidin, and related derivatives [J]. J. Am. Chem.Soc.1969,91:2102-2108.
    [222] Trott, O.; Olson, A. J. Auto Dock Vina: improving the speed and accuracy of docking with a newscoring function, efficient optimization, and multithreading [J]. J. Comput. Chem.2010,1:455-461.
    [223] Jeffrey, P. D.; Russo, A. A.; Polyak, K.; Gibbs, E.; Hurwitz, J.; Massague, J.; Pavletich, N.Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2complex [J]. Nature.2002,376:313-320.
    [224] Tang, J.; Shewchuk, L. M.; Sato, H.; Hasegawa, M.; Washio, Y.; Nishigaki, N. Anilinopyrazoleas selective CDK2inhibitors: design, synthesis, biological evaluation, and x-ray crystallographicanalysis [J]. Bioorg. Med. Chem. Lett.2003,13:2985-2988.
    [225] Nakayama C, Saneyoshi M. Synthetic nucleosides and nucleotides. XX1. Synthesis of various1-β-D-xylofuranosyl-5-alkyluracils and related nucleosides [J]. Nucleosides Nucleotides.1982,1:139-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700