肉桂酸和香豆素类衍生物的合成及其抗氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对天然产物进行结构修饰与改造是发现新药的重要手段和途径。肉桂酸和香豆素是两类非常重要的天然活性化合物。肉桂酸是一种在苯环上联有丙烯酸基团的化合物,广泛存在于自然界之中,具有多种生理活性,例如:治疗动脉粥样化,抗过敏,消炎,杀菌,抗氧化,抗癌,抗血栓形成和保护心脏等功能。肉桂酸类衍生物因其广泛的生理活性在临床上被广泛的应用。香豆素(Coumarin),学名α-苯并吡喃酮,是顺式邻羟基肉桂酸的内酯,是一大类广泛存在于植物界中的香豆素类衍生物的母核,如蛇床子、独活、白芷、秦皮、等多种中草药中都含有香豆素类衍生物。香豆素类衍生物具有多种生理活性,比如:抗氧化性,抗HIV,抗细菌,抗癌等作用。因此,本文首先以N-苯乙基肉桂酰(CNPA)为母核合成一系列含羟基衍生物,讨论羟基及共轭体系对化合物抗氧化性能的影响;然后引入香豆素、三氮唑、1,4-二氢吡啶和吡啶合成一系列肉桂酸与香豆素衍生物,讨论其抗氧化活性与结构的构效关系。所取得的研究成果如下:
     (1)以N-苯乙基肉桂酰胺(CNPA)为分子母核,对苯环进行结构修饰合成了6个CNPA衍生物。并通过不同的体外抗氧化模型的测试,包括化学体系法的二苯代苦味肼基自由基(DPPH)法、2,2-联氮-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS+)法、galvinoxyl法、β-carotene-bleaching法和化学模拟的生物体系法中的Cu2+/GSH(谷胱甘肽)引发的DNA氧化损伤法和2,2-偶氮-二(2-脒基丙烷)盐酸盐(AAPH)引发的DNA氧化损伤法,讨论苯环取代基对化合物母核结构抗氧化性能的影响。结果发现:羟基的引入能够提高CNPA母核结构捕获ABTS+、DPPH和Galvinoxyl自由基、保护Gu2+/GSH和AAPH诱导的DNA氧化损伤、保护亚油酸自氧化的能力,说明羟基对化合物抗氧化性能有着重要的影响,尤其是邻苯二酚结构和邻羟基甲氧基结构能够显著提高化合物的抗氧化性能;而酰胺键、苯乙基及对羟基苯乙基对化合物抗氧化性能只有微弱影响,说明肉桂酸中的苯乙烯共轭体系在化合物抗氧化性能中起着重要的作用。
     (2)将香豆素环引入到CNPA母核结构中,加大化合物的共轭体系,合成了一系列具有CNAP母核结构的香豆素衍生物。通过和上述相同的抗氧化活性测试方法表征化合物的抗氧性能,讨论其构效关系,结果发现:香豆素环的引入显著的提高了化合物捕获ABTS+自由基、保护OH和AAPH诱导的DNA氧化损伤的能力,尤其在计量因子n的计算当中,在没有邻苯二酚结构的情况下,化合物3f的n更高达24.96,说明香豆素环结构的引入,化合物共轭体系的增大对化合物的抗氧化性能有着重要的影响。
     (3)为了验证共轭体系及取代基对化合物抗氧化性能的影响,在保持香豆素母环结构不变的情况下,将3-酰胺基用具有生物活性的三唑结构取代,合成一系列3-三唑香豆素类衍生物。通过对其抗氧化性能的研究,讨论其构效关系,结果发现:在捕获ABTS+自由基的测试实验中,化合物6f-i表现出了更强的抗氧化能力;在OH引发DNA氧化损伤测试实验中,三唑环上吸电子取代基和推电子取代基都能提高化合物的抗氧化性能,但吸电子取代基效果更好;在AAPH诱导的DNA氧化损伤测试实验中,含羟基取代基的3-三唑香豆素衍生物6d-i都具有抑制DNA氧化损伤的能力,而且所测n值均大于3,说明大共轭体系的引入以及羟基取代基都能提高了衍生物分子骨架的抗氧化性能。
     (4)通过Hantzsch反应合成含有吡啶环大共轭体系的肉桂酸衍生物,通过对其抗氧化性能的研究,讨论与肉桂酸共轭的吡啶环对抗氧化性能的影响,结果发现:在OH引发DNA氧化损伤测试实验中,化合物2a-d和3a-d都表现出了良好的抗氧化性能,但是与苯环取代基没有必然联系,说明含有1,4二氢吡啶及吡啶肉桂酸衍生物分子骨干本身具有不错的抗氧化性能;通过AAPH诱导DNA氧化损伤测试实验,发现化合物中N-H均表现出良好的抗氧化性能;将化合物3a与FRTA相比较,发现3a的计量因子n大于FRTA的n值,验证了大的共轭体系能够提高化合物的抗氧化性能。
Structural modification and transformation of natural products is an importantapproach to discover new drugs. Cinnamic acid and coumarin are two important types ofbioactive natural compounds. Cinnamic acid possessing a benzene ring linked withacrylic group, is widely distributed in nature. Cinnamic acid derivatives exhibite a varietyof physiological activities, such as anti-atherogenic, anti-allergic, anti-inflammatory,antiseptic, antioxidant, anti-cancer, anti-thrombosis and heart-protecting functions.Because of its broad range of physiological activity, cinnamic acid derivatives isextensively used in clinical practice. Coumarin(α-benzo-pyranone), a lactone ofcis-hydroxyl-cinnamic acid, exists as nucleus of a large class of plant polyketides foundin osthol, heracleum hemsleyanum, angelica, cortex fraxini, peucedanum and many otherChinese medicinal herbs. Coumarin derivatives possess a variety of physiological activity,such as antioxidation, anti-HIV, antibacterial, anti-cancer effects. Therefore, in this study,a series cinnamoylphenethylamine (CNPA) derivatives were synthesized in order toinvestigate the influence of the number and the position of hydroxyl group andconjugation system on antioxidation. Then several series of derivatives containingcoumarin, triazole,1,4-dihydropyridine and pyridine were synthesized, and theirantioxidative activity were screaned for QSAR studies. The innovative research resultsachieved are as follows:
     (1) Cinnamoylphenethylamine (CNPA) derivatives including feruloylphenethyl-amine (FRPA), caffeoylphenethylamine (CFPA), cinnamoyltyramine (CNTA), feruloyl-tyramine (FRTA) and caffeoyltyramine (CFTA) were synthesized in order to investigatethe influence of the number and position of hydroxyl group and the conjugation systemon Cu2+/glutathione(GSH) and2,2’-azobis(2-amidinopropane hydrochloride)(AAPH)indu-ced oxidation of DNA. The radical scavenging properties of these CNPA derivatives were also evaluated by trapping2,2’-azinobis(3-ethylbenzothiazoline-6-sulphonate) cationic radical(ABTS+),2,2’-diphenyl-1-picrylhydrazyl radical(DPPH) andgalvinoxyl radical. In addition, these CNPA derivatives were tested by linoleic acid(LH)-β-carotene-bleaching experiment. The chemical kinetics was employed to treat theresults from AAPH-induced oxidation of DNA and gave the order of antioxidant abilityas CFTA> CFPA> FRTA> FRPA. CFTA and CFPA also possessed high abilities toinhibit Cu2+/GSH-mediated degradation of DNA, whereas FRPA and FRTA can protectLH against the autooxidation efficiently. Finally, CFPA and FRPA exhibited high activityin trapping ABTS+, DPPH and galvinoxyl radicals. Therefore, the cinnamoyl groupbearing ortho-dihydroxyl or hydroxyl with ortho-methoxyl benefit DNA by CNPAderivatives. While hydroxyl in tyramine cannot enhance the radical-scavenging abilitiesof CNPA derivatives. This indicates radicals deriving from ortho-dihydroxyl group inCFTA can be stabilized by the conjugation system via resonance structure.
     (2) A series of coumarin-3-acylamino derivatives containing phenethylamine moietyor tyramine moiety were synthesized and evaluated for their antioxidant activities by thesame experimental systems decribed as aboved. Among them, compounds3d-f weresynthesized for the first time, and the antioxidant activities of compounds2a,2b and3b-f were evaluated for the first time. We found that both hydroxyl and ortho-methoxygroups at A ring, hydroxyl group at B ring increase the protective abilities ofcoumarin-3-acylamino derivatives to protect DNA against OH-and AAPH-inducedoxidation, while decrease the protective abilities in Cu2+/GSH-induced oxidation system.The ortho-methoxyl group at A ring and the hydroxyl group at B ring possess high abilityto inhibit OH-induced oxidation of DNA. Furthermore, they play the major role intrapping ABTS+. It is worthy to note that the n value of compound3f is almost25, itmeans that big conjugation system of coumarin can significantly enhance the antioxidantactivites of compound3f.
     (3) In order to verify the effects of conjugation system to antioxidative activities ofthe antioxidants, amide group was substituted by triazole, increased conjugation systemof compounds, series3-triazole coumarin derivatives were synthesized and their antioxidant properties were evaluated. Compound6f-i have a stronger ability to captureABTS+. By analyzing the results of3-triazole-coumarin derivatives6a-i on OH-induced DNA oxidation test, we found that electron-withdrawing group and electron-donating group can improve the antioxidant properties of these compounds, but theelectron-withdrawing group is superior. We found that the coumarin group bearinghydroxyl benefited for3-triazole coumarin derivatives to protect DNA againstAAPH-induced oxidation. Then we found that all the n value of6d-i were higher than3,I suggests that the big conjugation system of derivatives can significantly enhance theantioxidant activites of compounds.
     (4) We synthesize cinnamic acid derivatives containing a large pyridine ring in orderto increase conjugation system through Hantzsch reaction. In the evluation theirantioxidant properties, we found that: both compound2a-d and3a-d have similarlyantioxidant activity to protect DNA against OH-induced oxidation, demonstrated that1,4-dihydropyridine and pyridine nucleus exhibit good resistance to oxidation and thesubstituents have little effects. In the AAPH-induced oxidative DNA damage, peptidebond can significantly enhance the antioxidant efficiency. Comparing the n value of ofFRTA, we found that n value of compound3a is greater than that of FRTA, indicates thata large conjugation system has a very important role to antioxidant properties ofcompounds.
引文
[1] Gomberg, M. An instance of trivalent carbon: triphenylmethyl [J]. J. Am. Chem. Soc.1900,22:757-771.
    [2] Gerschman, R.; Gilbert, D. L.; Nye, S. W.; Dwyer, P.; Fenn, W. O. Oxygen poisoningand x-irradiation-A mechanism in common [J]. Science.1954,119:623-626.
    [3] Commoner, B.; Townsend, J.; Pake, G. E. Free radicals in biological materials [J].Nature.1954,174:689–691.
    [4] Harman, D. Aging-A theory based on free-radical and radiation-chemistry [J]. J.Gerontol.1956,11:298-300.
    [5] McCord, J. M.; Fridovich, I. Superoxide dismutase an enzymic function forerythrocuprein Hemocuprein [J]. J. Biol. Chem.1969,244:604-6055.
    [6] Mittal, C. K.; Murad, F. Activation of guanylate cyclase by superoxide-dismutase andhydroxyl radical—Physiological regulator of guanosine3,5-monophosphateformation [J]. Proc. Natl. Acad. Sci. U.S.A.1977,74:4360-4364.
    [7] Pourova, J.; Kottova, M.; Voprsalova, M. and Pour. M. Reactive oxygen and nitrogenspecies in normal physiological processes [J]. Acta Physiol.2010,198:15-35.
    [8] Kovacic, P.; Pozos, R. S.; Somanathan, R.; Shangari, N.; O’Brien, P. J. Mechanism ofmitochondrial uncouplers, inhibitors, and toxins: Focus on electron transfer, freeradicals, and structure–activity relationships [J]. Curr. Med. Chem.2005,12:2601-2623.
    [9] Ridnour, L. A.; Isenberg, J. S.; Espey, M. G.; Thomas, D. D.; Roberts, D. D.; Wink, D.A. Nitric oxide regulates angiogenesis through a functional switch involvingthrombospondin-1[J]. Proc. Natl. Acad. Sci. U.S.A.2005,102:13147-13152.
    [10] Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J. Role of oxygen radicalsin DNA damage and cancer incidence [J]. Mol. Cell. Biochem.2004,266:37-56.
    [11] Droge, W. Free radicals in the physiological control of cell function [J]. Physiol. Rev.2002,82:47-95.
    [12] Ghafourifar, P.; Cadenas, E. Mitochondrial nitric oxide synthase [J]. TrendsPharmacol. Sci.2005,26:190-195.
    [13] Siraki, A. G.; Pourahmad, J.; Chan, T. S.; Khan, S.; O’brien, P.J. Endogenous andendobiotic induced reactive oxygen species formation by isolated hepatocytes [J].Free Radical Biol. Med.2002,32:2-10.
    [14] Balaban, R. S.; Nimoto, S.; Finkel, T. Mitochondria, oxidants and aging [J]. Cell.2005,120:483-495.
    [15] Forman, H. J.; Torres, M. Reactive oxygen species and cell signaling respiratoryburst in macrophage signaling [J]. Am. J. Respir. Crit. Care Med.2002,166: S4-S8.
    [16] Fonseca-Silva, F.; Inacio, J. D. F.; Canto-Cavalheiro, M. M.; Almeida-Amaral, E.E.Reactive oxygen species production and mitochondrial dysfunction contribute toquercetin induced death in Leishmania amazonensis [J]. PLoS ONE,2011,6:e14666.
    [17] Marshall, K. M.; Andjelic, C. D.; Tasdemir, D.; Concepción, G. P.; Ireland, C. M.;Barrows, L. R. Deoxyamphimedine, a pyridoacridine alkaloid, damages DNA viathe production of reactive oxygen species [J]. Mar. Drugs.2009,7:197-209.
    [18] Sies, H. Oxidative stress: oxidants and antioxidants [J]. Exp. Physiol.1997,82:29-295.
    [19] Churg, A. Interactions of exogenous or evoked agents and particles: the role ofreactive oxygen species [J]. Free Radical Biol. Med.2003,34:1230-1235.
    [20] Bonner, J. C. Lung fibrotic responses to particle exposure [J]. Toxicol. Pathol.2007,35:148–153.
    [21] Kosmider, B.; Loader, J. E.; Murphy, R. C.; Mason, R. J. Apoptosis induced byozone and oxysterols in human alveolar epithelial cells [J]. Free Radical Biol. Med.2010,48:1513-1524.
    [22] Kothari, S.; Thompson, A.; Agarwal, A.; Plessis, S. S. Free radicals: their beneficialand detrimental effects on sperm function [J]. Indian J. Exp. Biol.2010,48:425-435.
    [23] Bandyopadhyay, U.; Dipak Das, D.; Banerjee, R. K. Reactive oxygen species:oxidative damage and pathogenesis [J]. Curr. Sci.1999,77:658-666.
    [24] Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers ofoxidative damage in human disease [J]. Clin. Chem.2006,52:601-623.
    [25] Dhalla, N. S.; Temsah, R. M.; Netticadan,T. Role of oxidative stress incardiovascular diseases [J]. J. Hypertens.2000,18:655-673.
    [26] Sayre, L. M.; Smith, M. A.; Perry, G. Chemistry and biochemistry of oxidative stressin neurodegenerative disease [J]. Curr. Med. Chem.2001,8:721-738.
    [27] Cadenas, E. Basic mechanisms of antioxidant activity [J]. Biofactors.1997,6:391-397.
    [28] Zahir, A.; Jossang, A.; Bodo, B.; Provost, J.; Cosson, J. P.; Se′venet, T. Five NewFlavone5-O-Glycosides from Lethedon tannaensis: Lethedosides and Lethediosides[J]. J. Nat. Prod.1999,62:241-243.
    [29] Nanjo, F.; Mori, M.; Goto, K.; Hara, Y. Radical scavenging activity of tea catechinsand their related compounds [J]. Biosci. Biotechnol. Biochem.1999,63:1621-1623.
    [30] Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants andagri-industrial byproducts: Antioxidant activity, occurrence, and potential uses [J].Food Chem.2006,99:191-203.
    [31] Cheng, J. C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z. L. Antioxidant activity ofhydroxycinnamic acid derivatives in human low density lipoprotein: mechanism andstructure–activity relationship [J]. Food Chem.2007,104:132-139.
    [32] Barone, E.; Calabrese, V. and Mancuso, C. Ferulic acid and its therapeutic poten-tialas a hormetin for age-related diseases. Biogerontology.2009,10:97-108.
    [33] Srinivasan, M.; Sudheer, A. R.; Menon, V. P. Ferulic acid: therapeutic potentialthrough its antioxidant property [J]. J. Clin. Biochem. Nutr.2007,40:92-100.
    [34] Chen, J. H.; Ho, C. T. Antioxidant activities of caffeic acid and its related hydro-xycinnamic acid compounds [J]. J. Agric. Food Chem.1997,45:2374-2378.
    [35] Son, S.; Lewis, B. A. Free radical scavenging and antioxidative activity of caffeicacid amide and ester analogues: structure-activity relationship [J]. J. Agric. FoodChem.2002,50:468-472.
    [36] Bratt, K.; Sunnerheim, K.; Bryngelsson, S.; Fagerlund, A.; Lars, E.; Rolf, E. A.;Lena, D. H. Avenanthramides in oats (Avena sativa L.) and structure-antioxidantactivity relationships [J]. J. Agric. Food Chem.2003,51:594-600.
    [37] Kylli, P.; Nousiainen, P.; Biely, P.; Sipil, J.; Tenkanen, M.; Heinonen, M.Antioxidant potential of hydroxycinnamic acid glycoside esters [J]. J. Agric. FoodChem.2008,56:479-4805.
    [38] Rajan, P.; Vedernikova, I.; Cos, P.; Berghe, D. V.; Augustynsa, K.; Haemersa, A.Synthesis and evaluation of caffeic acid amides as antioxidants [J]. Bioorg. Med.Chem. Lett.2001,11:215-217.
    [39]蔡小华,吴英华.含肉桂酰胺类化合物的合成及α-糖苷酶抑制活性[J].有机化学.2007,27:77-81.
    [40]高建华,樊倩,韦庆益.肉桂酸衍生物对酪氨酸酶催化反应的影响[J].2010年中国农业工程学会农产品加工及贮藏工程分会学术年会暨华南地区农产品加工产学研研讨会论文摘要集.2010.
    [41] Xing, X.; Ho, P.; Bourquin, G.; Yeh, L. A.; Cuny, G. D. Synthesis, stereo-chemistryconfirmation and biological activity evaluation of a constituent from Isodon excises[J]. Tetrahedron.2003,59:9961-9969.
    [42] King, R. R.; Calhoun, L. A. Characterization of cross-linked hydroxycinnamic acidamides isolated from potato common scab lesions [J]. Phytochemistry.2005,66:2468-2473.
    [43] Fan, P.; Terrier, L.; Hay, A. E.; Marston, A.; Hostettmann, K. Antioxidant andenzyme inhibition activities and chemical profiles of Polygonum sachalinensis F.Schmidt ex Maxim (Polygonaceae)[J]. Fitoterapia.2010,81:124-131.
    [44] Yoo, Y. J.; Nam, D. H.; Jung, S. Y.; Jangl, J. W.; Kim, H. J.; Jin, C.; Pae, A. N.; Lee,Y. S. Synthesis of cinnamoyl ketoamides as hybrid structures of antioxidants andcalpain inhibitors [J]. Bioorg. Med. Chem. Lett.2011,21:2850-2854.
    [45] Sakurawi, K.; Yasuda, F.; Tozyo, T.; Nakamura, M.; Sato, T.; Kikuchi, T.; Terui, Y.;Ikenishi, Y.; Iwata, T.; Takahashi, K.; Konoike, T.; Mihara, S.; Fujimoto, M.Endothelin receptor antagonist triterpenoid, myriceric acid A, isolated from Myricacerifera, and structure activity relationships of its derivatives [J]. Chem. Pharm.Bull.1996,44,343-351.
    [46] Lee, E. S.; Park, S. H.; Kim, M. S.; Han, S. Y.; Kim, H. S.; Kang, Y. H. Caffeic aciddisturbs monocyte adhesion onto cultured endothelial cells stimulated by adipokineresistin [J]. J. Agric. Food Chem.2012,60:2730-2739.
    [47] Sledz, P.; Silvestre, H. L.; Hung, A. W.; Ciulli, A.; Blundell, T. L.; Abell, C.Optimization of the interligand Overhauser effect for fragment linking: applicationto inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase[J]. J. Am. Chem. Soc.2010,132:4544-4545.
    [48]王涛,金戈.肉桂酸对人肺腺癌细胞诱导分化的实验研究[J].癌症:英文版.2000,19:782-785.
    [49] Song, H. Y.; Liu, Y. K.; Feng, J. T.; Cui, J. F.; Dai, Z.; Zhang, L. J.; Feng, J. X.; Shen,H. L.; Tang, Z. Y. Proteomic analysis on metastasis-associated proteins of humanhepatocellular carcinoma tissues [J]. J. Cancer. Res. Clin.2006,132:92-98.
    [50] Wu, P. L.; Wu, T. S.; He, C. X.; Su, C. H.; Lee, K. H. Constituents from the stems ofHibiscus taiwanensis [J]. Chem. Pharm. Bull.2005,53:56-59.
    [51] Ninomiya, M.; Itoh, T.; Ishikawa, S.; Saiki, M.; Narumiya, K.; Yasuda, M.;Kaneyuki, K.; Nozawa, Y.; Koketsu, M. Phenolic constituents isolated from Fragariaananassa Duch. inhibit antigen-stimulated degranulation through direct inhibition ofspleen tyrosine kinase activation [J]. Bioorg. Med. Chem.2010.18:5932-5937.
    [52] Planty, B.; Pujol, C.; Lamothe, M.;, Maraval, C.; Horn, C.; Grand, B. L.; Perez, M.Exploration of a new series of PAR1antagonists [J]. Bioorg. Med. Chem. Let.2010,20:1735-1739.
    [53] Putt, K. S.; Nesterenko, V.; Dothager, R. S.; Hergenrother, P. J. The compound13-Dselectively induces apoptosis in white blood cancers versus other cancer cell types[J]. ChemBioChem.2006,7:1916-1922.
    [54] Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N.Natural and synthetic coumarin derivatives with antiinflammatory/antioxidantactivities [J]. Curr. Pharm. Des.2004,10:3813-3833.
    [55] Roussaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D. J.; Hamilakis, S. A novelsynthesis of3-aryl coumarins and evaluation of their antioxidant and lipoxygenaseinhibitory activity [J]. Bioorg. Med. Chem. Lett.2010,20:3889-3892.
    [56] Vilar, S.; Quezada, E.; Santana, L.; Uriarte, E.; Yanez, M.; Fraiz, N.; Alcaide, C.;Cano, E.; Orallo, F. Design, synthesis, and vasorelaxant and platelet antiaggregatoryactivities of coumarin-resveratrol hybrids [J]. Bioorg. Med. Chem. Lett.2006,16:257-261.
    [57] Ostrov, D. A.; Hern-andez Prada, J. A.; Corsino, P. E.; Finton, K. A.; Le, N.; Rowe,T. C. Discovery of novel DNA gyrase inhibitors by high-throughput virtualscreening [J]. Antimicrob. Agents Chemother.2007,51:3688-3698.
    [58] Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.;Carradori, S.; Rivanera, D.; Zicari, A.; Scaltrito, M. M.; Sisto, F. Synthesis, selectiveanti-Helicobacter pylori activity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides [J]. Bioorg. Med. Chem. Lett.2010,20:4922-4926.
    [59] Neyts, J.; De Clercq, E.; Singha, R.; Chang, Y. H.; Das, A. R.; Chakraborty, S. K.;Hong, S. C.; Tsay, S.-C.; Hsu, M.-H.; Hwu, J. R. Structure-activity relationship ofnew anti-hepatitis C virus agents: heterobicycle-coumarin conjugates [J]. J. Med.Chem.2009,52:1486-1490.
    [60] Kostova, I. Coumarins as inhibitors of HIV reverse transcriptase [J]. Curr. HIV Res.2006,4:347-363.
    [61] Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.;Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Meggio, F.; Moro, S.Coumarin as attractive casein kinase2(CK2) inhibitor scaffold: an integrateapproach to elucidate the putative binding motif and explain structure-activityrelationships [J]. J. Med. Chem.2008,51:752-759.
    [62] Zhou, X.; Wang, X. B.; Wang, T.; Kong, L. Yi. Design, synthesis, andacetylcholinesterase inhibitory activity of novel coumarin analogues [J]. Bioorg.Med. Chem.2008,16:8011-8021.
    [63] Garino, C.; Tomita, T.; Pietrancosta, N.; Laras, Y.; Rosas, R. Naphthyl andcoumarinyl biarylpiperazine derivatives as highly potent human β-secretaseinhibitors. Design, synthesis, and enzymatic BACE-1and cell assays [J]. J. Med.Chem.2006,49:4275-4285.
    [64] Elstner, E. F.; Beuscher, N. Coumarin and coumarin derivatives, their use asantioxidants and for treatment of microcirculation disorders and angiopathic ulcers,and pharmaceuticals containing them [P]. Ger. Offen. DE3715990, A119881208,1988.
    [65] Rajarajeswari, N.; Pari, L. Antioxidant role of coumarin on streptozotocin-nicotinamide-induced type2diabetic rats [J]. J. Biochem. Mole. Toxicol.2011,25:355-361.
    [66]吴建忠,杨小生,郁建平,赫小江.抗氧化类活性香豆素的研究进展[J].中华现代中西医杂志.2006,4:591-595.
    [67] Patel, R. M.; Patel, N. J. In vitro antioxidant activity of coumarin compounds byDPPH, super oxide and nitric oxide free radical scavenging methods [J]. J. Adv.Pharm. Edu. Res.2011,1:52-58.
    [68] Dangles, O.; Fargeix, G.; Dufour, C. Antioxidant properties of anthocyanins andtannins: a mechanistic investigation with catechin and the3′,4′,7′-trihydroxy-flavylium ion [J]. J. Chem. Soc. Perkin Trans.2.2000,1653-1663.
    [69] Steffan, B.; W tjen, W.; Michels, G.; Niering, P.; Wray, V.; Ebel, R.; Edrada, R.;Kahl, R.; Proksch, P. Polyphenols from plants used in traditional Indonesianmedicine (Jamu): uptake and antioxidative effects in rat H4IIE hepatoma cells [J].Journal of Pharmacy and Pharmacelegy.2005,57:233-240.
    [70] Dobiá, P.; Pavlíková, P.; Adam, M.; Eisner, A.; Beňová, B.; Ventura, K.Comparison of pressurised fluid and ultrasonic extraction methods for analysis ofplant antioxidants and their antioxidant capacity [J]. Cent. Eur. J. Chem.2010,8:87-95.
    [71] Symeonidis, T.; Chamilos, M.; Hadjipavlou-Litina, D. J.; Kallitsakis, M.; Litinas, K.E. Synthesis of hydroxycoumarins and hydroxybenzo[f]-or [h]coumarins as lipidperoxidation inhibitors [J]. Bioorg. Med. Chem. Lett.2009,19:1139-1142.
    [72]倪奕昌,徐月琴,王鸣杰,刘云光.瑞香素的抗溶血和抗膜脂质过氧化作用[J].中国寄生虫学与寄生虫病杂志.1999,2:87-89.
    [73] Raj, H. G.; Parmar, V. S.; Jain, S. C. Mechanism of biochemical action ofsubstituted4-methylbenzopyran-2-ones. Part I: dioxygenated4-methyl-coumarins assuperb antioxidant and radical scavenging agents [J]. Bioorg. Med. Chem.1998,6:833-839.
    [74] Tyagi, Y. K.; Kumar, A.; Raj, H. G.; Vohra, P.; Gupta, G.; Kumari, R.; Kumar, P.;Gupta, R. K. Synthesis of novel amino and acetyl amino-4-methylcoumarins andevaluation of their antioxidant activity [J]. Eur. J. Med. Chem.2005,40:413-420.
    [75] Guinez, R. F.; Matos, M. J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.;Olea-Azar, C.; Maya, J. D. Synthesis and evaluation of antioxidant and trypanocidalproperties of a selected series of coumarin derivatives [J]. Future. Med. Chem.2013,5:1911-1922.
    [76] Prasad, K. N.; Xie, H.; Hao, J.; Yang, B.;, Qiu, S. X.; Wei, X. Y.; Chen, F.; Jiang, Y.M. Antioxidant and anticancer activities of8-hydroxypsoralen isolated fromwampee [Clausena lansium (Lour.) Skeels] peel [J]. Food Chem.2010,118:62-66.
    [77] Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Elucidation of theflavonoid and furocoumarin composition and radical-scavenging activity of greenand ripe chinotto (Citrus myrtifolia Raf.) fruit tissues, leaves and seeds [J]. FoodChem.2011,129:1504-1512.
    [78] Bariamis, S. E.; Marin, M.; Athanassopoulos, C. M.; Kontogiorgis, C.; Tsimali, Z.;Papaioannou, D.; Sindona, G.; Romeo, G.; Avgoustakis, K.; Litina, D. H. Synthesesand evaluation of the antioxidant activity of novel methoxypsoralen derivatives [J].Eur. J. Med. Chem.2013,60:155-169.
    [79] Tantry, M. A.; Radwan, M. M.; Akba, S.; Khan, I. A.5,6-Dihydropyranobenzopyrone: a previously undetermined antioxidant isolated from Polygonumamplexicaule [J]. Chinese journal of natural medicines.2012,10:28-31.
    [80] Kassim, N. K.; Rahmani, M.; Ismail, A.; Sukari, M. A.; Ee, G. C. L.; Nasir, N. M.;Awang, K. Antioxidant activity-guided separation of coumarins and lignan fromMelicope glabra (Rutaceae)[J]. Food Chem.2013,139:87-92.
    [81] Kostova, I. Synthetic and natural coumarins as cytotoxic Agents [J]. Curr. Med.Chem. Anti-Cancer Agents.2005,5:29-46.
    [82] Lopez-Gonzalez, J. S.; Prado-Garcia, H.; Aguilar-Cazares, D.; Molina-Guarneros, J.A.; Morales-Fuentes, J.; Mandoki, J. J. Apoptosis and cell cycle disturbancesinduced by coumarin and7-hydroxycoumarin on human lung carcinoma cell lines[J]. Lung Cancer.2004,43:275-283.
    [83] Wu, C.; Sun, Z.; Ye, Y.; Han, X.; Song, X.; Liu, S. Psoralen inhibits bone metastasisof breast cancer in mice [J]. Fitoterapia.2013,91:205-210.
    [84] Belluti, F.; Fontana, G.; Bo, L. D.; Carenini, N.; Giommarelli, C.; Zunino, F. Design,synthesis and anticancer activities of stilbene-coumarin hybrid compounds:Identification of novel proapoptotic agents [J]. Bioorg. Med. Chem.2010,18:3543-3550.
    [85] Via, L. D.; Gia, O.; Magno, S. M.; Santana, L.; Teijeira, M.; Uriarte, E. NewTetracyclic Analogues of Photochemotherapeutic Drugs5-MOP and8-MOP:Synthesis, DNA interaction, and antiproliferative activity [J]. J. Med. Chem.1999,42:4405-4413.
    [86] Riveiro, M. E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; Celis,E. R.; Shayod, C.; Davioa, C. Structural insights into hydroxy-coumarin-inducedapoptosis in U-937cells [J]. Bioorg. Med. Chem.2008,16:2665-2675.
    [87] Bickoff, E. M.; Booth, A. N.; Lyman, R. L. Coumestrol, a new estrogen isolatedfrom forage crops [J]. Science.1957,126:969-970.
    [88]毛魏魏.新型香豆素类衍生物的合成及抗乳腺癌、抗HIV的活性研究[D].华南理工大学博士论文.2010.
    [89] Mao, W. W.; Zhu, Z. B.; Zeng, H. P.; Li, S. W. Simple synthesis, anti-breast canceractivity of novel coumarin-based sulfonamides: a coumestrol derivative and relatedmolecul [C].240th ACS National Meeting,22-26,2010.
    [90] Yao, T. L.; Yue, D.; Larock, R. C. An efficient synthesis of coumestrol andcoumestans by iodocyclization and pd-catalyzed intramolecular lactonization [J]. J.Org. Chem.2005,70:9985-9989.
    [91] Fiedler, V. B.; Scholtholt, J. Effects of carbocromene on myocardial oxygenconsumption in isolated dog hearts [J]. J. Pharmacol. Exp. Ther.1981,217,306-313.
    [92] Opherk, D.; Schuler, G.; Waas, W.; Dietz, R.; Kubler, W. Intravenous carbochromen:A potent and effective drug for estimation of coronary dilatory capacity [J]. Eur.Heart J.1990,11,342.
    [93] Campos-Toimil, M.; Orallo, F.; Santana, L.; Uriarte, E. Synthesis and vasorel-axantactivity of new coumarin and furocoumarin derivatives [J]. Bioorg. Med. Chem. Lett.2002,12:783-786.
    [94] Bertin, R.; Chen, Z.; Martínez-Vázquez, M.; García-Argaéza, A.; Froldia, G.Vasodilation and radical-scavenging activity of imperatorin and selected coumarinicand flavonoid compounds from genus Casimiroa [J]. Phytomedicine.2014,21:586-594.
    [95] Yue, J. M.; Xu, J.; Zhao, Y.; Sun, H. D.; Lin, Z. W. Chemical components fromCeratostigma willmottianum [J]. J. Nat. Prod.1997,60:1031-1033.
    [96] Li, N.; Wu, J. L.; Hasegawa, T.; Sakai, J. I.; Bai, L. M.; Wang, L. Y.; Kakuta, S.;Furuya, Y.; Ogura, H.; Kataoka, T.; Tomida, A.; Tsuruo, T.; Ando, M. Bioactivelignans from Peperomia duclouxii [J]. J. Nat. Prod.2007,70:544-548.
    [97] Zhang, G.; Shimokawa, S.; Mochizuki, M.; Kumamoto, T.; Nakanishi, W.; Watanabe,T.; Ishikawa, T.; Matsumoto, K.; Tashima, K.; Horie, S.; Higuchi, Y.; Dominguez, O.P. Chemical constituents of Aristolochia constricta: Antispasmodic effects of itsconstituents in Guineapigileum and isolation of a diterpenolignan hybrid [J]. J. Nat.Prod.2008,71:1167-1172.
    [98] Wu, T. S.; Chan, Y. Y.; Leu, Y. L. Constituents of the roots and stems of Aristolochiamollissima [J]. J. Nat. Prod.2001,64:71-74.
    [99] Song, S.; Li, Y.; Feng, Z.; Jiang, J.; Zhang, P. Hepatoprotective constituents from theroots and stems of Erycibe hainanesis [J]. J. Nat. Prod.2010,73:177-184.
    [100] Pérez-Castorena, A. L.; Martínez, M.; Maldonado, E. Labdanes and sucrose Estersfrom Physalis sordid [J]. J. Nat. Prod.2010,73:1271-1276.
    [101] Pereira, C. A. B.; Oliveira, F. M.; Conserva, L. M.; Lemos, R. P. L.; Andrade, E. H.A. Cinnamoyltyramine derivatives and other constituents from Sparattanthe-liumtupiniquinorum [J]. Biochem. Sys. Ecol.2007,35:637-639.
    [102] Pan, P. C.; Cheng, M. J.; Peng, C. F.; Huang, H. Y.; Chen, J. J.; Chen, I. S.Secondary metabolites from the roots of Litsea hypophaea and their antitubercularactivity [J]. J. Nat. Prod.2010,73:890-896.
    [103] Park, J. B.; Schoene, N. N-Caffeoyltyramine arrests growth of U937and Jurkat cellsby inhibiting protein tyrosine phosphorylation and inducing caspase-3[J]. CancerLett.2003,202:161-171.
    [104] Chen, J. J.; Chung, C. Y.; Hwang, T. L.; Chen, J. F. Amides and benzenoids fromZanthoxylum ailanthoides with inhibitory activity on superoxide gener-ation andelastase release by neutrophils [J]. J. Nat. Prod.2009,72:107-111.
    [105] Maganha, E. G.; Halmenschlager, R. C.; Rosa, R. M.; Henriques, J. A. P.; Ramos, A.L. L. P.; Saffi, J. Pharmacological evidences for the extracts and secondarymetabolites from plants of the genus Hibiscus [J]. Food Chem.2010,118:1-10.
    [106] Park, J. B. Isolation and characterization of N-feruloyltyramine as the P-Selectinexpression suppressor from garlic (Allium sativum)[J]. J. Agric. Food Chem.2009,57:8868-8872.
    [107] Han, E. H.; Kim, J. Y.; Kim, H. G.; Choi, J. H.; Im, J. H.; Woo, E. R.; Jeong, H. G.Dihydro-N-caffeoyltyramine down regulates cyclooxygenase-2expression byinhibiting the activities of C/EBP and AP-1transcription factors [J]. Food Chem.Toxicol.2010,48:579-586.
    [108] McLaughlin, J. L. Paw paw and cancer: Annonaceous acetogenins from discovery tocommercial products [J]. J. Nat. Prod.2008,71:1311-1321.
    [109] Tang, Y.-Z.; Liu, Z.-Q.; Wu, D. Lidocaine: an inhibitor in the free-radical-ind-ucedhemolysis of erythrocytes [J]. J. Biochem. Mol. Toxicol.2009,23:81-86.
    [110] Lankalapalli, R. S.; Eckelkamp, J. T.; Sircar, D.; Ford, D. A.; Subbaiah, P. V.;Bittman, R. Synthesis and antioxidant properties of an unnatural plasmalogenanalogue bearing a trans O-vinyl ether linkage [J]. Org. Lett.2009,11:2784-2787.
    [111] Hafez, O. M. A.; Amin, K. M.; Abdel-Latif, N. A.; Mohamed, T. K.; Ahmed, E. Y.;Maher, T. Synthesis and antitumor activity of some new xanthotoxin derivatives [J].Eur. J. Med. Chem.2009,44:2967-2974.
    [112] Moller, P.; Wallin, H. Adduct formation, mutagenesis and nucleotide excision repairof DNA damage produced by reactive oxygen speciesand lipid peroxidationproducts [J]. Mutat. Res.1998,410:271-290.
    [113] Yu, J.; Wang, L.; Walzem, R. L.; Miller, E. G.; Pike, L. M.; Patil, B. S. Antioxidantactivity of citrus limonoids, flavonoids, and coumarins [J]. J. Agric. Food Chem.2005,53:2009-2014.
    [114] Zhang, P.; Omaye, S. T. DNA strand breakage and oxygen tension: effects ofcarotene, tocopherol and ascorbic acid [J]. Food Chem. Toxicol.2001,39:239-246.
    [115] Reed, C. J.; Douglas, K. T. Chemical cleavage of plasmid DNA by glutathione inthe presence of Cu(II) ions [J]. Biochem. J.1991,275:601-608.
    [116] Zhu, B. Z.; Kitrossky, N.; Chevion, M. Evidence for production of hydroxylradicals by pentachlorophenol metabolites and hydrogen peroxide: Ametal-independent organic Fenton reaction [J]. Biochem. Biophys. Res. Commun.2000,270:942-946.
    [117] Munoz-Munoz, J. L.; Garcia-Molina, F.; Varon, R.; Tudela, J.; García-Cánovas,F.;Rodriguez-Lopez, J. N. Quantification of the antioxidant capacity of differentmolecules and their kinetic antioxidant efficiencies [J]. J. Agric. Food Chem.2010,58:2062-2070.
    [118] Li, Y. F.; Liu, Z. Q.; Luo, X. Y. Properties of synthetic homoisoflavonoids to reduceoxidants and to protect linoleic acid and DNA against oxidations [J]. J. Agric. FoodChem.2010,58:4126-4131.
    [119] Zennaro, L.; Rossetto, M.; Vanzani, P.; Marco, V. D.; Scarpa, M.; Battistin, L.; Rigo,A. A method to evaluate capacity and efficiency of water soluble antioxidants asperoxyl radical scavengers [J]. Arch. Biochem. Biophys.2007,462:38-46.
    [120] Bowry, V. W.; Stocker, R. Tocopherol-mediated peroxidation: the prooxidationeffect of vitamin E on the radical-initiated oxidation of human low-densitylipoprotein [J]. J. Am. Chem. Soc.1993,115:6029-6044.
    [121] Feng, J. Y.; Liu, Z. Q. Phenolic and enolic hydroxyl groups in curcumin: whichplays the major role to scavenge radicals [J]. J. Agric. Food Chem.2009,57:11041-11046.
    [122]柳旺艳,李娟,李岩,刘东艳,李静.化合物OCAM的体外抗肿瘤活性[J].西安交通大学学报(医学版).2010,31:255-257.
    [123] Tang, Y. Z.; Liu, Z. Q. Physicochemical and rheological properties of crystallizedblends containing trans-free and partially hydrogenated soybean Oil [J]. J. Am. OilChem. Soc.2007,84:1095-1100.
    [124] Bovicelli, P. Radical-scavenging polyphenols: new strategies for their synthesis [J].J. Pharm. Pharmacol.2007,59:1703-1710.
    [125] Cooke, M. S.; Evans, M. D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage:mechanisms, mutation, and disease [J]. FASEB J.2003,17:1195-1214.
    [126] Horssen, J.; Witte, M. E.; Schreibelt, G.; De Vries, H. E. Radical changes inmultiple sclerosis pathogenesis [J]. Biochim. Biophys. Acta (BBA)-Molecular Basisof Disease,2011,1812:141-150.
    [127] Salvador, Mena.; Angel, Ortega.; José, M. Estrela, Oxidative stress in environ-mental-induced carcinogenesis [J]. Mutat. Res.2009,674:36-44.
    [128] Koichi, Sugamura.; John, F.; Keaney, Jr. Reactive oxygen species in cardiovasculardisease [J]. Free Radic. Biol. Med.2011,51:978-992.
    [129] Fraga, C. G.; Oteiza, P. I. Dietary flavonoids: role of (–)-epicatechin and relatedprocyanidins in cell signaling[J]. Free Radic. Biol. Med.2011,51:813-823.
    [130] Liu, Z. Q.; Chemical methods to evaluate antioxidant ability [J]. Chem. Rev.2010,110:5675-5691.
    [131] L nn, M. E.; Dennis, J. M.; Stocker, R.; Actions of “antioxidants” in the protectionagainst atherosclerosis [J]. Free Radical Biol. Med.2012,53:863-884.
    [132] Riganti, C.; Gazzano, E.; Polimeni, M.; Aldieri, E.; Ghigo, D. The pentosephosphate pathway: an antioxidant defense and a crossroad in tumor cell fate [J].Free Radical Biol. Med.2012,53:421-436.
    [133] Rahman, I. Pharmacological antioxidant strategies as therapeutic interventions forCOPD [J]. Biochim. Biophys. Acta (BBA)-Molecular Basis of Disease,2012,1822:714-728.
    [134] Belluti, F.; Fontana, G.; Bo, L. D.; Carenini, N.; Giommarelli, C.; Zunino, F. Design,synthesis and anticancer activities of stilbene-coumarin hybrid compounds:Identification of novel proapoptotic agents [J]. Bioorg. Med. Chem.2010,18:3543-3550.
    [135] Maria, E.; Riveiro, A. M.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; De Celis,E. R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-inducedapoptosis in U-937cells [J]. Bioorg. Med. Chem.2008,16:2665-2675.
    [136] Roussaki, M.; Kontogiorgis, C. A.; Hadjipavlou-Litina, D.; Hamilakis, S.; Detsi, A.A novel synthesis of3-aryl coumarins and evaluation of their antioxidant andlipoxygenase inhibitory activity [J]. Bioorg. Med. Chem. Lett.2010,20:3889-3892.
    [137] Neichi, T.; Koshihara, Y.; Murota, S. I. Inhibitory effect of esculetin ons-lipoxygenase and leukotriene biosynthesis [J]. Biochim. Biophys. Acta.1983,753:130-132.
    [138] Fylaktakidou, K. C.; Hadjipavlou-Litina, D. J.; Litinas, K. E.; Nicolaides, D. N.Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidantactivities [J]. Curr. Pharm. Des.2004,10:3813-3833.
    [139] Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.;Carradori, S.; Rivanera, D.; Zicari, A.; Scaltrito, M. M.; Sisto, F. Synthesis,selective anti-Helicobacter pylori activity, and cytotoxicity of novelN-substituted-2-oxo-2H-1-benzopyran-3-carboxamides [J]. Bioorg. Med. Chem.Lett.2010,20:4922-4926.
    [140] Kostova, I. Coumarins as inhibitors of HIV reverse transcriptase [J]. Curr. HIV Res.2006,4:347-363.
    [141] Chilin, A.; Battistutta, R.; Bortolato, A.; Cozza, G.; Zanatta, S.; Poletto, G.;Mazzorana, M.; Zagotto, G.; Uriarte, E.; Guiotto, A.; Meggio, F.; Moro, S.Coumarin as attractive casein kinase2(CK2) inhibitor scaffold: an integrateapproach to elucidate the putative binding motif and explain structure–activityrelationships [J]. J. Med. Chem.2008,51:752-759.
    [142] Wang, Y. H.; Avula, B.; Nanayakkara, N. P. D.; Zhao, J. P.; Khan. I. A. CassiaCinnamon as a source of coumarin in cinnamon-flavored food and foodsupplements in the United States [J]. J. Agric. Food Chem.2013,61:4470-4476
    [143] Loprinzi, C. L.; Kugler, J. W.; Sloan, J. A.; Rooke, T. W.; Quella, S. K.; Novotny, P.;Mowat, R. B.; Michalak, J. C.; Stella, P. J.; Levitt, R.; Tschetter, L. K.; Windschitl,H. Lack of effect of coumarin in women with lymphedema after treatment forbreast cancer [J]. N. Engl. J. Med.1999,340:346-350.
    [144] Cox, D.; O’ Kennedy, R.; Thornes, R. D. The rarity of liver toxicity in patientstreated with coumarin (1,2-benzopyrone)[J]. Hum. Toxicol.1989,8:501-506.
    [145] Xiao, C.; Song, Z. G.; Liu, Z. Q. Synthesis of methyl-substituted xanthotoxol toclarify prooxidant effect of methyl on radical-induc ed oxidation of DNA [J]. Eur. J.Med. Chem.2010,45:2559-2566.
    [146] Song, A.; Wang, X. B.; Lam, K. S. A convenient synthesis of coumarin-3-carboxylic acids via Knoevenagel condensation of Meldrum’s acid with ortho-hydroxyaryl aldehydes or ketones [J]. Tetrahedron Letters,2003,44:1755-1758.
    [147] Maggi, R.; Bigi, F.; Carloni, S.; Sartori, A. M. G. Uncatalysed reactions in water:Part2. Preparation of3-carboxycoumarins [J]. Green Chem.2001,3:173-174.
    [148] Munoz-Munoz, J. L.; Garcia-Molina, F.; Varon, R.; Tudela, J.; García-Cánovas, F.;Rodriguez-Lopez, J. N. Quantification of the antioxidant capacity of differentmolecules and their kinetic antioxidant efficiencies [J]. J. Agric. Food Chem.2010,58:2062-2070.
    [149] Yim, S. K.; Yun, S. J.; Yun, C. H. A continuous spectrophotometric assay forNADPH-cytochrome P450reductase activity using1,1-diphenyl-2-picrylhy-drazyl[J]. J. Biochem. Mol. Biol.2004,37:629-633.
    [150] Wang, R.; Liu, Z. Q. Solvent-free and catalyst-free Biginelli reaction to synthesizeferrocenoyl dihydropyrimidine and kinetic method to express radical-scavengingability [J]. J. Org. Chem.2012,77:3952-3958.
    [151] Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.Antioxidant activity applying an improved ABTS radical cation decolorizationassay [J]. Free Radical Biol. Med.1999,26:1231-1237.
    [152] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: diverse chemicalfunction from a few good reactions [J]. Angew. Chem. Int. Ed. Engl.2001,40:2004-2021.
    [153] Huang, Q.; Zheng, M.; Yang, S.; Kuang, C. X.; Yua, C. J.; Yang, Q. Structure–activity relationship and enzyme kinetic studies on4-aryl-1H-1,2,3-triazoles asindoleamine2,3-dioxygenase (IDO) inhibitors [J]. Eur. J. Med. Chem.2011,46:5680-5687.
    [154] Brik, A.; Muldoon, J.; Lin, Y. C.; Rapid diversity-oriented synthesis in microtiterplates for in situ screening of HIV protease inhibitors [J]. ChemBioChem.2003,4:1246-1248.
    [155] Lee, L. V.; Mitchell, M. L.; Huang, S. J.; Fokin, V. V.; Sharpless, K. B.; Wong, C; H.A potent and highly selective inhibitor of human α-1,3-fucosyltransferase via clickchemistry [J]. J. Am. Chem. Soc.2003,125:9588-9589.
    [156] Soto-Ortega, D. D.; Murphy, B. P.; Gonzalez-Velasquez, F. J.; Wilson, K. A.; Xie,F.; Wang, Q.; Moss, M. A. Inhibition of amyloid-β aggregation by coumarinanalogs can be manipulated by functionalization of the aromatic center [J]. Bioorg.Med. Chem.2011,19:2596-2602.
    [157] Sivakumar, K.; Xie, F.; Cash, B. M.; Long, S.; Barnhill, H. N.; Wang, Q. Afluorogenic1,3-dipolar cycloaddition reaction of3-azidocoumarins and acetylenes[J]. Organic letters.2004,6(24):4603-4606.
    [158] Wang, Q.; Sivakumar, K. Preparation of triazolylchromenones as chemoselectivefluorogenic molecular linkers [P]. PCT Int. Appl.(2005),85pp. WO2005103705
    [159] Du, Y; L.; Ni Y. N.; Li, M.; Wang, B. H. A fluorescent hydrogen peroxide probebased on a ‘click’modified coumarin fluorophore [J]. Tetrahedron letters.2010,51(8):1152-1154.
    [160] Janis, R. A.; Triggle, D. J. New developments in calcium ion channel antago-nists[J]. J. Med. Chem.1983,26:775-785.
    [161] Briukhanov, V.M.; Zverev-laf Elkin, V. I. The effect of calcium antagonists on thedevelopment of inflammatory edema in rats [J]. Exp. Clin. Pharmacol.1994,57:47–49.
    [162] Hilgeroth, A.; Lilie, H. Structure-activity relationships of first bishydroxy methyl-substituted cage dimeric4-aryl-1,4-dihydropyridines as HIV-1proteaseinhibitors [J]. Eur. J. Med. Chem.2003,38:495-499.
    [163] Kumar, B. R. P.; Masih, P.; Karthikeyan, E.; Bansal, A.; Vijayan, P. Synthesis ofnovel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biologicalinterest: a3D-QSAR study on their cytotoxicity [J]. Med. Chem. Res.2010,19:344-363.
    [164] Samzadeh-Kermani, A.; Shafaroodi, H.; Miri, R.; Mirkhani, H.; Vosooghi, M.;Shafiee, A. Lipophilic2-(4-chlorophenyl)-4-thiazolyl-1,4-dihydropyridines:synthesis, calcium channel antagonist activity, and protection againstpentylenetetrazole-induced seizure [J]. Med. Chem. Res.2009,18:112-126.
    [165] Tusell, J. M.; Serratosa, J. Anticonvulsant activity of δ-HCH, calcium channelblockers and calmodulin antagonists in seizures induced by lindane and otherconvulsant drugs [J]. Brain research.1993,622:99-104.
    [166] W chter, G. A.; Davis, M. C.; Martin, A. R.; Franzblau, S. G. Antimycobacterialactivity of substituted isosteres of pyridine and pyrazinecarboxylic acids [J]. J. Med.Chem.1998,41:2436-2438.
    [167] Desai, B.; Sureja, D.; Naliapara, Y.; Shah, A.; Saxena, A. K. Synthesis and QSARStudies of4-Substituted phenyl-2,6-dimethyl-3,5-bis-N-(substituted-phenyl)carbamoyl-1,4-dihydropyridine as potential antitubercular agents [J]. Bioorg. Med.Chem.2001,9:1993-1998.
    [168] Kharkar, P. S.; Desai, B.; Gaveria, H.; Rajesh, L.; Yogesh, N.; Anamik, S.; Kulkarni,V. M. Three-dimensional quantitative structure-activity relationship of1,4-dihydropyridines as antitubercular agents [J]. J. Med. Chem.2002,45:4858-4867.
    [169] Cooper, K.; Fray, M. J.; Parry, M. J.; Richardson, K.; Steele, J.1,4-Dihydrop-yridines as antagonists of platelet activating factor.1. Synthesis andstructure-activity relationships of2-(4-heterocyclyl) phenyl derivatives [J]. J. Med.Chem.1992,35:3115-3129.
    [170] Choi S. J.; Cho, J. H.; Im, I.; Lee, S. D.; Jang, J. Y.; Oh, Y. M.; Jung, Y. K.; Jeon, E.S.; Kim, Y. C. Design and synthesis of1,4-dihydropyridine derivatives as BACE-1inhibitors [J]. Eur. J. Med. Chem.2010,45:2578-2590.
    [171] Zhang, T. Y.; Stout, J. R.; Keay, J. G. Regioselective synthesis of2-chloro-3-pyridinecarboxylates [J]. Tetrahedron.1995,51:13177-13184.
    [172] Ma, X. Q.; Gang, D. R. The lycopodium alkaloids [J]. Nat. Prod. Reports.2004,21:752-772.
    [173] Kotharkar, S. A.; Shinde, D. B. Microwave assisted synthesis of1,4-dihydr-opyridines [J]. Ukra. Bioorg. Acta.2006,1:3-5.;
    [174] Wang, S. X.;Li, Z. Y.; Zhang, J. C.; Li, J. T. The solvent-free synthesis of1,4-dihydropyridines under ultrasound irradiation without catalyst [J]. Ultrasonicssonochemistry.2008,15:677-680.
    [175] Legeay, J. C.; Vanden Eynde, J. J.; Bazureau, J. P. Ionic liquid phase technologysupported the three component synthesis of Hantzsch1,4-dihydropyridines andBiginelli3,4-dihydropy rimidin-2(1H)-ones under microwave dielectric heating [J].Tetrahedron.2005,61:12386-12397.
    [176] Deshayes, S.; Liagre, M.; Loupy, A.; Petit, A. Microwave activation in phasetransfer catalysis [J]. Tetrahedron.1999,55:10851-10870.
    [177] Ko, S.; Yao, C. F. Heterogeneous catalyst: Amberlyst-15catalyzes the synthesis of14-substituted-14H-dibenzo[a,j] xanthenes under solvent-free conditions [J].Tetrahedron letters.2006,47:8827-8829.
    [178] Sirisha, K.; Achaiah, G.; Reddy, V. M. Facile synthesis and antibacterial, antituber-cular, and anticancer activities of novel1,4-dihydropyridines [J]. Archiv derPharmazie.2010,343:342-352.
    [179] Debache, A.; Ghalem, W.; Boulcina, R.; Belfaith, A.; Rhouati, S.; Carboni, B. Anefficient one-step synthesis of1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions [J].Tetrahedron Letters.2009,50:5248-5250.
    [180] Ludvik, J.; Pragst, F.; Volke, J. Electrochemical generation of triplet states:simplified estimation of triplet energies by electrogenerated chemiluminescencebased on the anodic cleavage of dimeric dihydroheteroarenes [J]. J. Electroanal.Chem. Interfacial Electrochem.1984,180:141-156.
    [181] Anniyappan, M.; Muralidharan, D.; Perumal, P. T. A novel application of the oxidi-zing properties of urea nitrate and peroxydisulfate-cobalt (II): aromatization ofNAD(P)H model Hantzsch1,4-dihydropyridines [J]. Tetrahedron.2002,58:5069-5073.
    [182] Heravi, M. M.; Derikvand, F.; Hassan-Pour, S. Oxidative aromatization ofHantzsch1,4-dihydropyridines in the presence of mixed-addenda vanadomoly-bdophosphate heteropolyacid, H6PMo9V3O40[J]. Bioorg. Med. Chem. Let.2007,17:3305-3309.
    [183] Bagley, M. C.; Lubinu, M. C. Microwave-assisted oxidative aromatization ofhantzsch1,4-dihydro-pyridines using manganese dioxide [J]. Synthesis.2006,8:1283-1288.
    [184] AliáZolfigol, M.; GhorbaniáChoghamarani, A. Silica modified sulfuric acid/NaNO2as a novel heterogeneous system for the oxidation of1,4-dihydro-pyridinesunder mild conditions [J]. Green Chem.2002,4:562-564..
    [185] Ghorbani-Choghamarani, A.; Zeinivand, J. Aromatization of Hantzsch1,4-dihydr-opyridines with Al(NO3)3·9H2O and/or Fe(NO3)3·9H2O in the presence of silicasulfuric acid under mild and heterogeneous conditions [J]. Syn. Commu.2010,40:2457-2463.
    [186] Correa, W. H.; Scott, J. L. Solvent-free, two-step synthesis of some unsymmetr-ical4-aryl-1,4-dihydropyridines [J]. Green Chem.2001,3:296-301.
    [187] Nakamichi, N.; Kawashita, Y.; Hayashi, M. Oxidative aromatizationof1,3,5-tri-substituted pyrazolines and Hantzsch1,4-dihydropyridines by Pd/C in acetic acid[J]. Org. Lett.2002,4:3955-3957.
    [188] Arhancet,G. B.; Woodard, S. S.; Iyanar, K.; Case, B. L.; Woerndle, R.; Dietz, J. D.;Garland, D. J.; Collins, J. T.; Payne, M. A.; Blinn, J. R.; Pomposiello, S. I.; Hu, X.;Heron, M. I.; Huang, H. C.; Lee, L. F. Discovery of novel cyanodihydropyridinesas potent mineralocorticoid receptor antagonists [J]. J. Med. Chem.2010,53:5970-5978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700