基于主动队列管理的拥塞控制策略及其稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拥塞控制机制在维护网络稳定和保障服务质量上起着至关重要的作用,其主要由基于端到端的传输控制协议(Transmission Control Protocol, TCP)和基于路由的主动队列管理(Active Queue Managment, AQM)组成。部署在路由端的AQM机制能够主动的避免和缓解网络拥塞,有着提高链路利用率、减少丢包率以及降低队列排队延时的优势。但研究表明,AQM算法面对动态突变以及混杂流量的网络场景,存在参数配置难、队列性能不稳定、链路利用率低等不足,进而引起了国内外学术界和工业界的关注。
     本文围绕着这一系列问题展开了对AQM机制的深入研究。首先搭建了一个基于NS2(Network Simulator 2)的算法设计/性能测试平台,并通过此平台对几个典型的AQM算法进行分析和比较,归纳影响算法性能的主要因素。然后在此基础上,分别提出了3种不同类型的AQM算法。最后,使用丢包概率增益代替复杂的AQM算法控制函数,从非线性分岔理论的角度,着重分析了网络时滞?对拥塞控制系统稳定性及动力学行为的影响。
     本文的主要工作和研究成果如下:
     1.针对目前国内外尚未有一个统一的AQM算法设计/测试框架,提出了一个基于NS2的AQM算法设计/性能测试平台架构。该平台包括四个模块:AQM算法引擎模块、性能分析模块、网络拓扑模块和流量突发模块。在分析和总结现实网络中各类拥塞突发场景的基础上,设计了一系列网络测试场景,并在该平台上验证了几种代表性的AQM算法性能。仿真结果表明:网络三元组(N ,RTT ,C )、短时Web流、非响应UDP(User Datagram Protocol)流以及AQM算法的拥塞检测尺度和队列控制函数,都将影响拥塞控制系统的性能。
     2.针对网络流量突变场景,为提高算法的瞬态响应性能,提出一种带加速因子的自适应SABlue(Self-tune Accelerate Blue)算法。该算法将瞬时队列长度作为早期拥塞检测参量,依据队列负载因子控制丢包步长,实现丢包概率幅度的自适应调整,最终将路由队列长度稳定在目标区域内。为了提高网络突变跨度较大情况时算法的性能,在队列警戒区域内引入了加速因子? ,综合考虑算法各性能指标,最终选取? ? [1.4 3.7]区间。仿真结果表明:由于加速因子的引入,SABlue算法的瞬时队列收敛时间相对PI算法和SBlue算法快,且稳态队列控制性能与PI算法相当;同时,在面对各种突变的网络场景时,SABlue算法的瞬时队列收敛时间较短,链路利用率较高,丢包率较小,且具有一定的鲁棒性。
     3.针对复杂多变的网络场景,为获得更好的平滑过渡非线性控制输出效果,提出一种基于活动流参数估计的自适应模糊NFL(adaptive Fuzzy-Logic algorithm with active-flow-Number estimation)算法。本文在综合权衡各性能指标的基础上,设计了一组能适应一定网络变化的模糊规则,并对该算法进行了运算优化。为捕获网络突发流,引入了一种基于Bloom Filter的无状态维护活动流参数估计策略,并依此提出一个模糊AQM输出增益补偿器。仿真结果表明:面对负载动态变化时,相对同类型的FAFC算法和FEM算法,NFL算法能较好的适应网络变化,具有更快的收敛速度和稳定的稳态队列控制性能。
     4.为了解决UDP/TCP混杂流场景中AQM算法存在公平性问题,提出了一种速率感知的多虚拟队列RMVQ(Rate-perceptive Multi Virtual Queue)算法。该算法引入了区分服务思想,为UDP/TCP流维护两个逻辑上独立的虚拟队列,并对它们采用不同的拥塞控制策略。同时,根据活动流感知器提供的UDP流和TCP流负载特征,自适应动态的调整虚拟队列大小。仿真结果表明,相对其他算法,在面对混杂流的场景,RMVQ算法不仅提高了链路吞吐量,也保障了流之间的竞争公平性。
     5.由于不确定的网络时滞将会造成拥塞控制系统性能不稳定,本文将AQM算法进行模型化抽象,使用丢包概率增益k代替复杂的AQM算法控制函数的输出,来着重研究网络时滞?对时滞GAIMD/AQM(Generalized Additive Increase Multiplicative Decrease/Active Queue Management)系统性能所造成的影响。通过分析时滞GAIMD/AQM系统的特征方程根分布情况,给出了关于时滞?的系统稳定性充要条件。同时,将时滞?作为分岔参数,应用中心流形定理和规范型理论,推得系统的Hopf分岔存在条件、周期解的Hopf分岔方向以及稳定性结论。基于上述结论,给出了拥塞控制参数对GAIMD(? , ? )、网络三元组参数( N , ? , C)、丢包概率函数增益k对GAIMD/AQM系统分岔性质的影响规律。理论分析和仿真结果验证了上述分析的合理性和有效性。
Network congestion control mechanism plays a key role in maintaining network stability and guaranteeing quality of service. There are two kinds of congestion control, one is end hosts based (TCP) and the other is intermediate router based (AQM). The AQM has advantages in the enhancement of the efficiency of transfers, network congestion preventing and mitigating, the link utilization improvement, and the packet loss rate reduction, etc. But many researchers find that AQM algorithm is very sensitive to network-load variations, which include burst network traffic, delay jitter and bandwidth limitation, and mixed type traffic. Thus, how to avoid network congestion, increase network traffic performance, and optimize the configuration of network resources to ensure network reliability, timeliness, stability, robustness, arouse the academia and industry's extensive attention.
     This thesis focuses on the following topics. First, the platform of AQM based on NS2 is made up. In order to induce the influence factor of the performance of AQM, a series of typical AQM are analysed and compared through this platform. Then, based on the above conclusions, three different types of AQM are proposed. Finally, from the perspective of nonlinear theory, using the packet loss probability gain instead of the complex control function of AQM algorithm, the stability and dynamic behavior of congestion control system is analyzed with the network delay? .
     The main contributions of the work are as follows:
     1. There has not existed a universal AQM designing and testing frame yet. A designing and testing platform for AQM algorithm based on Network Simulator 2 is introduced. The platform is divided into the following four parts: The AQM algorithm engine module; the algorithm performance analysis module; network topology module and traffic burst module. Seeking to cover all the contingencies of network congestion, the universal test scenarios are designed for AQM testing based on previous experience. Following an exhaustive simulation evaluation through this testing platform, we test and verify the performance of many AQM. The result shows that the network parameters ( N , RTT ,C ), the short-time Web traffic, the non-response UDP traffic, the congestion detection method and the queue control function of AQM, are all effecting the performance of congestion control system.
     2. We present a self-tune AQM algorithm with acceleration factor by analyzing Blue algorithm and its variants, which is called SABlue (Self-tune Accelerate Blue). In order to make the queue length keep in the aim area, this algorithm adopts instantaneous queue length as the parameter of incipient congestion detection and calculates the step size of packet drop probability by using load factor. Furthermore, for the sake of response speed, we lead in the acceleration factor in alert area when the network traffic is changed suddenly. Parameter ? can affect the stability of the queue and response rate of burst stream, taking into account the performance trade-offs of the link utilization and packet loss ratio, we choose ? between 1.4 and 3.7. Finally, the simulation demonstrates that SABlue algorithm is more robust, carrying lower packet loss and shorter convergence time in the situation of dynamic traffic. The combination property of SABlue is more excellent than other AQM algorithms.
     3. In order that the AQM algorithm has smooth control effect, especially in the dynamic network, an adaptive Fuzzy-Logic algorithm with active-flow-Number estimation (called NFL) is poposed. It is composed of two main parts: the fuzzy AQM and the active-flow estimation strategy. Taken the tradeoff among the queue performance, link utilization and other indicators, a set of fuzzy rule is built for NFL to adapt to the dynamic network situation. Furthermore, an optimization mothed is raised, which reduces the computational complexity of fuzzy AQM. A stateless active-flow estimation strategy baesd on Bloom Filter is introduced to capture network congestion status. In order to make up for the deficiency of fixed fuzzy rules, which leads fuzzy AQM robustless, an output gain compensator for fuzzy AQM in accordance with active-flow-number parameter is proposed. Simulation results demonstrate that NFL is adpatvie to dynamic network, while having fast convergence rate and stable steady-state queue control performance. The comprehensive performance of NFL is more excellent than other AQM algorithms.
     4. In order to solve the fair resources competition issues for TCP flows and UDP flows, an RMVQ(Rate-perceptive Multi Virtual Queue) algorithm is introduced. We use the instantaneous queue length as the primary means, and apply the active flow perceive module as the supplementary means. The active flows perceive module collects flows’information online, and calculates the number of activity UDP, the rate of UDP, and the number of activity TCP periodicly. According to load information, virtual queue distribution module divides buffsize into two parts. One for UDP, anothor is for TCP. The idea of differentiated services is introduced to design the two queue strategies. Simulation results show that, in the UDP/TCP mixed flow scenarios, RMVQ algorithm can catch UDP load trends, and allocate virtual queue accurately. Compared with the other AQMs, the comprehensive performance of RMVQ is satisfactory.
     5. The uncertain communication delay can cause network congestion control system performance degradation, and even instability. Stability of the equilibrium solution of GAIMD/AQM (Generalized Additive Increase Multiplicative Decrease/Active Queue Management) system is investigated based on analyzing the corresponding transcendental characteristic equation. Using the delay as the bifurcation parameter, we demonstrate that when the delay crosses a critical value, Hopf bifurcation occurs and a periodic solution generates from the equilibrium point. Then, the bifurcation direction and stability of periodic solution is analyzed by means of the center manifold theorem and the normal form theory. Moreover, the impact of the parameters configuration on the performance of the GAIMD/AQM system is investigated exhaustively. Finally, numerical simulations are carried out to verify the feasibility of the theoretical results. The results show that there is a key value of the bifurcation ? 0 for the system. This is consistent with the theoretical results.
引文
[1]鲁维.三网融合时代的机遇和挑战[J].电信科学,2011,27(02):7-11.
    [2] Schulze H, Mochalski K, Internet Study 2008/2009[R], IPOQUE Report, http://www.ipoque.com/ resources/ internet-studies/internet-study-2008_2009.
    [3] ITU Strategy and Policy Unit (SPU). ITU Internet Reports 2005: The Internet of Things[R]. Geneva: International Telecommunication Union (ITU), 2005.
    [4] Cusumano M. Technology strategy and management, the evolution of platform thinking [J]. Communications of the ACM, 2010, 53(1):32-34.
    [5]刘强,崔莉,陈海明.物联网关键技术与应用[J].计算机科学,2010,37(06):1-4+10.
    [6]王万良,蒋一波等.网络控制与调度方法及其应用[M].北京:科学出版社,2009:15-21.
    [7] Jacobson V. Congestion avoidance and control [J]. SIGCOMM Comput Commun. Rev. 1995,25(01): 157-187.
    [8] Van Kranenburg R. The Internet of Things [M].Amsterdam: Waag Society, 2008.
    [9]罗万明,林闯,阎保平. TCP/IP拥塞控制研究[J].计算机学报,2001,24(01):1-18.
    [10]郭松涛.基于主动队列管理的拥塞控制机制的动态行为研究[D].重庆大学博士论文, 2008.
    [11] Afanasyev A, Tilley N, Reiher P, et al. Host-to-Host Congestion Control for TCP [J].IEEE Communications Surveys & Tutorials,. 2010, 12(3): 304-342.
    [12]章淼,吴建平,林闯.互联网端到端拥塞控制研究综述[J].软件学报,2002,13(3):354-363.
    [13]钱艳平.互联网拥塞控制算法若干问题研究[D].东南大学博士论文, 2006.
    [14] Arpaci M, Copeland J A. An adaptive queue management method for congestion avoidance in TCP/IP networks[C]. IEEE GLOBECOM '00. 2000:309-315.
    [15]尹凤杰.基于控制理论的主动队列管理算法及其稳定性研究[D].东北大学博士论文, 2006.
    [16]章森.互联网端到端拥塞控制的研究[D].清华大学博士学位论文, 2004.
    [17] Wang L, Min G, Awan I. Modeling and evaluation of congestion control for different classes of network traffic [J]. Concurrency and Computation: Practice and Experience. 2007, 19(8): 1141-1156.
    [18] Budzisz L, Stanojevic R, Shorten R, et al. A strategy for fair coexistence of loss and delay-based congestion control algorithms [J]. IEEE Communications Letters. 2009, 13(7): 555-557.
    [19] Papachristodoulou A, Jadbabaie A. Delay Robustness of Nonlinear Internet Congestion Control Schemes [J].Transactions on Automatic Control, IEEE. 2010, 55(6): 1421-1427.
    [20]刘明.面向网络拥塞控制的主动队列管理机制研究[D].国防科学技术大学博士论文, 2006.
    [21] Braden B. Recommendations on queue management and congestion avoidance in the Internet[Z].IETF RFC2309, 1998.
    [22] Jong-Hwan K, Ikjun Y. Reducing Queue Oscillation at a Congested Link [J]. IEEE Transactions on Parallel and Distributed Systems, 2008, 19(3): 394-407.
    [23]荣亮,王建新.基于控制论的主动队列管理的研究进展[J].小型微型计算机系统. 2007, 28(11):2038-2046.
    [24] Thiruchelvi G, Raja J. A Survey on Active Queue Management Mechanisms [J]. International Journal of Computer Science and Network Security. 2008, 8(12): 130-145.
    [25] Floyd S, Fall K. Promoting the use of end-to-end congestion control in the Internet [J]. IEEE/ACM Transactions on Networking. 1999, 7(4): 458-472.
    [26] Hong J, Joo C, Bahk S. Active queue management algorithm considering queue and load states [J]. Computer Communications. 2007, 30(4): 886-892.
    [27] Long L, Aikat J, Jeffay K, et al. The Effects of Active Queue Management and Explicit Congestion Notification on Web Performance [J]. IEEE/ACM Transactions on Networking. 2007, 15(6): 1217-1230.
    [28] Gao J, Rao N S V. TCP AIMD dynamics over Internet connections [J]. Communications Letters, IEEE. 2005, 9(1): 4-6.
    [29] Kunniyur S, Srikant R. End-to-end congestion control schemes: utility functions, random losses and ECN marks [J]. Networking, IEEE/ACM Transactions on. 2003, 11(5): 689-702.
    [30] Yong X, Subramanian L, Stoica I, et al. One More Bit is Enough[J]. Networking, IEEE/ACM Transactions on. 2008, 16(6): 1281-1294.
    [31]龙承念.高动态异构INTERNET拥塞控制算法研究[D].燕山大学博士论文, 2004.
    [32] Floyd S. Random early detection gateways for congestion avoidance [J]. IEEE/ACM Transactions on Networking. 1993, 1(4): 397-413.
    [33] Martin M, Bolot J, Diot C, Lyles B. Reasons not to deploy RED[C], Proc.of IWQoS'99, London, UK, 1999, 260-262.
    [34] Floyd S, Gummadi R, Shenker S, et al. Adaptive RED:An algorithm for increasing the obustness of RED’s active queue management[R], http://www.cs.Berkeley.edu/
    [35] Ott TJ, Lakshman TV, Wong LH. SRED: Stabilized RED[C]. Proc.of INFOCOM’99, New York, NY, USA, 1999, 1346-1355.
    [36] Lin D, Morris R. Dynamics of random early detection[C]. Proc.of ACM SIGCOMM’97, Cannes, France, 1997, 139-150.
    [37]肖萍萍.网络拥塞控制的TCP友好与主动队列管理研究[D].吉林大学博士论文, 2008.
    [38] Aweya J, Ouellette M, Montuno DY. An optimization-oriented view of random early detection [J]. Computer Communications. 2001, 24(12): 1170-1187.
    [39] Aweya J, Ouellette M, Montuno D Y. A linear system analysis of RED [J]. Computer Communications. 2002, 25(18): 1736-1750.
    [40] Aweya J, Ouellette M, Montuno D Y. A control theoretic approach to active queue management[J]. Computer Networks. 2001, 36(2-3): 203-235.
    [41] Zhou K, Yeung K L, Li V O K. Nonlinear RED: A simple yet efficient active queue management scheme [J]. Computer Networks. 2006, 50(18): 3784-3794.
    [42] Abbasov B, Korukoglu S. Effective RED: An algorithm to improve RED's performance by reducing packet loss rate [J]. Journal of Network and Computer Applications. 2009, 32(3): 703-709.
    [43] Wang B, Kasthurirangan B, Xu J. Subsidized RED: an active queue management mechanism forshort-lived flows[J]. Computer Communications. 2005, 28(5): 540-549.
    [44] Ohsaki H, Eguchi T, Murata M. FI-RED: AQM Mechanism for Improving Fairness among TCP Connections in Tandem Networks[C]. Proc.of SAINT '06, Washington, DC, USA, 2006, 63-70.
    [45] Sun J, Ko K T, Chen G, et al. PD-RED: to improve the performance of RED[J]. IEEE Communications Letters. 2003, 7(8): 406-408.
    [46]黄磊,吴春明,姜明等. REDu:一种新的识别并惩罚非适应流的主动式队列管理算法[J].电子学报. 2010, 38(08): 1759-1762.
    [47]武航星,慕德俊,龚贤武等. FERED:公平性增强的RED算法[J].计算机科学. 2009, 36(02): 122-124.
    [48]刘治,倪杰,文俊朝等.基于参数不敏感设计的网络拥塞控制算法[J].控制理论与应用. 2009, 26(11): 1239-1246.
    [49] Misra V, Gong W, Towsley D. Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED[C]. Proc.of IEEE ACM/SIGCOMM’00, Stockholm, Sweden, 2000, 151-160.
    [50] Hollot C V, Misra V, Towsley D, et al. On Designing Improved Controllers for AQM Routers Supporting TCP Flows[R]. Amherst, MA, USA, 2000.
    [51] Hollot CV, Misra V. Analysis and design of controllers for AQM routers supporting TCP flows[J]. IEEE Transactions on Automatic Control. 2002, 47(6): 945-959.
    [52] Heying Z, Baohong L, Wenhua D. Design of a robust active queue management algorithm based on feedback compensation[C]. Proc.of IEEE ACM/SIGCOMM '03, New York, USA, 2003, 277-285.
    [53]张鹤颖,刘明,窦文华.自适应的PIP主动队列管理机制[J].计算机研究与发展. 2007, 44(02): 201-207.
    [54] Hong Y, Yang OWW. Adaptive AQM controllers for IP routers with a heuristic monitor on TCP flows [J]. International Journal of Communication Systems. 2006, 19(1): 17-38.
    [55]卢锡城,张明杰,朱培栋.自适应PI主动队列管理算法[J].软件学报. 2005, 16(5): 903-910.
    [56]王德进.基于流体流量的线性化TCP模型的稳定性分析[J].控制与决策. 2005, 20(12): 1384-1387.
    [57] Wang J, Rong L. AOPC: An Adaptive Optimized Proportional Controller for AQM[C]. Proc.of International Conference on Parallel Processing, Columbus, OH, 2006, 164-174.
    [58] Wang D. Stability Analysis of PI TCP/AQM Networks: A Parameter Space Approach [J]. Acta Automatica Sinica. 2007, 33(7): 756-760.
    [59] Melchor AD, Niculescu S. Computing non-fragile PI controllers for delay models of TCP/AQM networks [J]. International Journal of Control. 2009, 82(12): 2249-2259.
    [60]刘锋,党小林,徐桢.基于网络状态参数估计的主动队列管理PI改进算法[J].计算机研究与发展. 2009, 46(07): 1086-1093.
    [61]任丰原,王福豹,任勇等.主动队列管理中的PID控制器[J].电子与信息学报. 2003(01): 94-99.
    [62] Ryu S. PAQM: an adaptive and proactive queue management for end-to-end TCP congestion control [J]. International Journal of Communication Systems. 2004, 17(8): 811-832.
    [63] Zhou C, Zhang L, Chen Q. An adaptive PID controller for AQM with ECN marks based on neural networks[C]. Proc.of 7th Asian Control, Piscataway, USA, 2009, 779-783.
    [64]陆锦军,王执铨.基于粒子群优化的网络拥塞控制新算法[J].电子学报. 2007, 35(8): 1446-1451.
    [65]陆锦军,王执铨,李志权.基于量子粒子群优化的主动队列管理新算法[J].仪器仪表学报. 2009, 30(3): 564-569.
    [66] Feng W, Shin K G, Kandlur D D, et al. The BLUE Active Queue Management Algorithms [J]. IEEE/ACM Transactions on Networking. 2002, 10(4): 513-528.
    [67] Feng W, Kandlur D D, Saha D, et al. Stochastic Fair Blue: A Queue Management Algorithm for Enforcing Fairness[C]. Proc.of INFOCOM’01, Anchorage, USA, 2001, 1520-1529.
    [68] Wydrowski B, Zukerman M. GREEN: an active queue management algorithm for a self managed Internet[C]. Proc.of ICC'02, New York, USA, 2002, 2368-2372.
    [69] Long C, Zhao B, Guan X, et al. The Yellow active queue management algorithm [J]. Computer Networks. 2005, 47(4): 525-550.
    [70]张顺亮,叶澄清,李方敏.一种加强的主动队列管理算法——EBLUE[J].通信学报. 2003, 24(11): 109-115.
    [71]张顺亮,叶澄清,李方敏.一种基于速率的BLUE改进方法[J].计算机研究与发展. 2004, 41(04): 660-666.
    [72]吴春明,姜明. SBlue:一种增强Blue稳定性的主动式队列管理算法[J].通信学报. 2005, 26(3): 68-74.
    [73]刘伟彦,孙雁飞,张顺颐等.一种参数自适应的主动队列管理算法—自适应BLUE[J].电子与信息学报. 2009, 31(2): 442-446.
    [74] Kelly FP. Charging and Rate Control for Elastic Traffic [J]. European Transactions on Telecommunications. 1997, 8: 33-37.
    [75] Kelly FP, Maulloo AK, Tan DKH. Rate control for communication networks: shadow prices, proportional fairness and stability [J]. Journal of the Operational Research society. 1998, 49(3): 237-252.
    [76] Kunniyur S, Srikant R. An Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management [J]. IEEE/ACM Transactions on Networking. 2004, 12(02): 286-299.
    [77]董永强,纪其进.主动队列管理算法性能评价:比较研究[J].通信学报. 2005, 26(11): 100-105.
    [78] Long C, Zhao B, Guan X. An adaptive parameter design for adaptive virtual queue management algorithm[C]. Proc.of ICON’04, 2004, 104-108.
    [79] Long C, Zhao B, Guan X. SAVQ: stabilized adaptive virtual queue management algorithm [J]. Communications Letters, IEEE. 2005, 9(1): 78-80.
    [80] Tan L, Yang Y, Lin C, et al. Scalable parameter tuning for AVQ[J]. Communications Letters, IEEE. 2005, 9(1): 90-92.
    [81]杨燕,谭连生,熊乃学. PDAVQ:一种基于PD控制的自适应虚拟队列管理算法[J].通信学报. 2005, 26(03): 39-44.
    [82]康巧燕,孟相如,王建峰等. QPID-AVQ:一种基于队列的PID控制的AVQ算法[J].电子与信息学报. 2009, 31(02): 430-434.
    [83] Park E, Lim H, Park K, et al. Analysis and design of the virtual rate control algorithm for stabilizingqueues in TCP networks [J]. Computer Networks. 2004, 44(1): 17-41.
    [84]傅春,张敬辕,谢剑英.一种基于模糊逻辑的主动队列管理算法[J].电子学报. 2002, 30(08): 1246-1249.
    [85] Ren F, Ren Y, Shan X. Design of a fuzzy controller for active queue management [J]. Computer Communications. 2002, 25(9): 874-883.
    [86] Fan Y, Ren F, Lin C. Design of an active queue management algorithm based fuzzy logic decision[C]. Proc. of ICCT’03, New York, USA, 2003, 286-289.
    [87] Habibipour F, Khajepour M, Galily M. Fuzzy Congestion Avoidance in Communication Networks [J]. Parallel and Distributed Processing and Applications. 2005: 882-889.
    [88] Liu M, Dou W, Xiao R. Design of a Multi-model Fuzzy Controller for AQM[J]. Fuzzy Systems and Knowledge Discovery. 2006: 739-742.
    [89] Giuseppe DF, Hoffmann F, Re GL, et al. A genetic algorithm for the design of a fuzzy controller for active queue management [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2003, 33(3): 313-324.
    [90] Chrysostomou C, Pitsillides A, Rossides L, et al. Fuzzy logic controlled RED: congestion control in TCP/IP differentiated services networks [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications. 2003, 8(2): 79-92.
    [91] Chrysostomou C, Pitsillides A, Rossides L, et al. Congestion control in differentiated services networks using Fuzzy-RED [J]. Control Engineering Practice. 2003, 11(10): 1153-1170.
    [92] Hadjipollas CP, Chrysostomou C, Pitsillides A, et al. Fuzzy Logic Congestion Control in TCP/IP Best-Effort Networks[C]. Proc. of the Australian Telecommunications, Networks and Applications Conference (ATNAC). Melbourne, Australia, 2003. (CD ROM Proceedings - ISBN: 0-646-42229-4).
    [93] Chrysostomou C, Pitsillides A, Hadjipollas G. Fuzzy Logic Control for Active Queue Management[C]. Proc. of Mediterranean Conference on Control and Automation (MED’04). 2004, 6-9.
    [94] Chrysostomou C, Pitsillides A. Fuzzy Logic Congestion Control in TCP/IP Tandem Networks[C]. Proc. of ISCC '06, Sardinia, Italy, 2006, 123-129.
    [95] Chrysostomou C, Pitsillides A, Sekercioglu Y A. Fuzzy explicit marking: A unified congestion controller for Best-Effort and Diff-Serv networks [J]. Computer Networks. 2009, 53(5): 650-667.
    [96] Yassine HA, Nafaa A, Negru D, et al. FAFC: Fast adaptive fuzzy AQM controller for TCP/IP networks[C]. Proc.of GLOBECOM’04, Dallas, United states, 2004, 1319-1323.
    [97] Yassine HA, Mehaoua A, Skianis C. A fuzzy logic-based AQM for real-time traffic over internet [J]. Computer Networks. 2007, 51(16): 4617-4633.
    [98]樊燕飞,林闯,任丰原等.一种具有ECN能力的智能分组丢弃算法(英文版)[J].软件学报. 2005, 16(9): 1636-1646.
    [99]郭小清,张少博,周之平等.一种基于组合型模糊控制的主动队列管理算法[J].信息与控制. 2007(02): 204-210.
    [100]孙雁飞,张顺颐,周雷.基于模糊免疫PID的时滞网络自适应主动队列管理[J].通信学报. 2005, 26(08): 36-43.
    [101] Low SH, Lapsley DE. Optimization flow control. I. Basic algorithm and convergence [J]. IEEE/ACMTransactions on Networking. 1999, 7(6): 861-874.
    [102] Low SH, Paganini F, Doyle JC. Internet congestion control [J]. Control Systems Magazine, IEEE. 2002, 22(1): 28-43.
    [103] Low SH. A duality model of TCP and queue management algorithms [J]. IEEE/ACM Transactions on Networking. 2003, 11(4): 525-536.
    [104] Lapsley D, Low S. Random early marking for Internet congestion control[C]. Proc.of GLOBECOM'99, Rio de Janeireo, Brazil, 1999, 1747-1752.
    [105] Lapsley D, Low S. Random Early Marking: An Optimization Approach to Internet Congestion Control[C]. Proc.of ICON '99, Brisbane, Australia, 1999, 67-74.
    [106] Athuraliya S, Lapsley D, Low S. An enhanced random early marking algorithm for Internet flow control[C]. Proc.of INFOCOM’00, Tel Aviv, Israel, 2000, 1425-1434.
    [107] Athuraliya S, Li V H, Low S H, et al. REM: Active Queue Management [J]. IEEE Network. 2001, 15(3): 48-53.
    [108] Qinghe Y, Low S H. Convergence of REM flow control at a single link[J]. Communications Letters, IEEE. 2001, 5(3): 119-121.
    [109] Qinghe Y, Low S H. On stability of REM algorithm with uniform delay[C]. Proc.of GLOBECOM'02, 2002, 2649-2653.
    [110] Paganini F. A global stability result in network flow control [J]. Systems & Control Letters. 2002, 46(3): 165-172.
    [111] Long C, Wu J, Guan X. Local stability of REM algorithm with time-varying delays [J]. IEEE communications letters. 2003, 7(3): 142-144.
    [112] Huijun G, James L, Changhong W, et al. Further results on local stability of REM algorithm with time-varying delays [J]. IEEE Communications Letters. 2005, 9(5): 402-404.
    [113] Imer O C, Basar T. Lyapunov-based stability analysis for REM congestion control[C]. Proc.of American Control Conference, 2004, 2943-2947.
    [114]杨洪勇. Internet拥塞控制算法的动力学研究[D].东南大学博士论文, 2005.
    [115] Johari R., D. Tan, End-to-end congestion control for the Internet: Delays and stability, IEEE/ACM Trans on Network. 2001,9(6) :818-832.
    [116] Massoulie L. Stability of distributed congestion control with heterogeneous feedback delays [J]. IEEE Transactions on Automatic Control. 2002, 47(6): 895-902.
    [117] Tian Y, Yang H. Stability of the Internet congestion control with diverse delays [J]. Automatica. 2004, 40(9): 1533-1541.
    [118] WANG DJ. Stability Analysis of PI TCP/AQM Networks: A Parameter Space Approach [J]. Acta Automatica Sinica. 2010, 36(02): 314-321
    [119] Long GE, FANG Bin, et al. Novel Graphical Approach to Analyze the Stability of TCP/AQM Networks [J]. Acta Automatica Sinica. 2007, 33(07): 756-760.
    [120] Ranjan P, La RJ, Abed EH. Global stability conditions for rate control with arbitrary communication delays [J]. Networking, IEEE/ACM Transactions on. 2006, 14(1): 94-107.
    [121] Veres A, Boda M. The chaotic nature of TCP congestion control[C]. Proc.of INFOCOM’00. Tel Aviv, Isr,2000, 1715-1723
    [122] Li C, Chen G, Liao X, et al. Hopf bifurcation in an Internet congestion control model [J]. Chaos, Solitons & Fractals. 2004, 19(4): 853-862.
    [123] Yang H, Tian Y. Hopf bifurcation in REM algorithm with communication delay [J]. Chaos, Solitons & Fractals. 2005, 25(5): 1093-1105.
    [124] Guo S, Zheng H, Liu Q. Hopf bifurcation analysis for congestion control with heterogeneous delays [J]. Nonlinear Analysis: Real World Applications. 2010, 11(4): 3077-3090.
    [125] Ding DW, Zhu J, Luo XS, et al. Controlling Hopf Bifurcation in Fluid Flow Model of Internet Congestion Control System [J]. Inetnation Journal of Bifurcation and Chaos. 2009, 19(4): 1415-1424.
    [126] Zheng YG, Wang ZH. Stability and Hopf bifurcation of a class of TCP/AQM networks [J]. Nonlinear Analysis. 2009, 40(1): 13-27.
    [127]侯萍,王执铨.无线网络拥塞控制中流体流模型的Hopf分岔及其稳定性[J].电子与信息学报. 2010, 32(4): 983-987.
    [128] UCN/LBL/VINT. The Network Simulator (NS2) [OL]. http://www.isi.edu/nsnam/ns/, 2010.
    [129] Wieland R, Mirschel W. Adaptive fuzzy modeling versus artificial neural networks [J]. Environmental Modelling & Software. 2008, 23(2): 215-224.
    [130] Thiruchelvi G, Raja J. A Survey On Active Queue Management Mechanisms [J]. International Journal of Computer Science and Network Security. 2008, 8(12): 130-145.
    [131] Cooke KL, Grossman Z. Discrete delay, distributed delay and stability switches [J]. Journal of Mathematical Analysis and Applications. 1982, 86(02): 592-627.
    [132] Hassard BD, Kazarinoff ND, Wan YH, Theory and Applications of Hopf Bifurcation [M], Cambridge: Cambridge University Press, 1981.
    [133] Wang L, Cai L, Liu X, et al. Bounds estimation and practical stability of AIMD/RED systems with time delays [J]. Computer Networks. 2010, 54(7): 1069-1082.
    [134] Pletka R, Kind A, Waldvogel M, et al. Closed-loop congestion control for mixed responsive and non-responsive traffic[C]. Proc.of GLOBECOM'03. San Francisco, USA, 2003: 4180-4185.
    [135] Chatranon G, Labrador M A, Banerjee S. Fairness of AQM schemes for TCP-friendly traffic[C]. Proc.of GLOBECOM'04. Texas, USA, 2004: 725-731.
    [136] Cheng-Yuan H, Yi-Cheng C, Yaw-Chung C. A TCP-Friendly Stateless AQM Scheme for Fair Bandwidth Allocation[C]. Proc.of ICAS-ICNS’05. Papeete, Tahiti, 2005: 14-20.
    [137]黄家玮,王建新.多速率802.11 WLAN中时间公平的主动队列管理算法[J].通信学报,2009,30(02):34-41.
    [138]武航星,慕德俊,龚贤武等. FERED:公平性增强的RED算法[J].计算机科学,2009,36(02):122-124
    [139] Manfredi S, di Bernardo M, Garofalo F. Design, validation and experimental testing of a robust AQM control [J]. Control Engineering Practice. 2009, 17(3): 394-407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700