冲击地压预测的声发射信号处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声发射(Acoustic Emission, AE)技术是无损监测评估中的一种重要方法,目前声发射预测冲击地压的普及仍然存在很多方面的问题,主要存在且急需解决的是抗噪声性能差、定位不准确及预测预报需要人为干预等问题。本文在分析冲击地压机理的基础上,从声发射信号处理的角度对以下关键问题进行研究:
     1.准确获取能表征煤岩体特征的声发射信号是准确预测冲击地压的前提条件。针对井下噪声复杂多变且具有特殊规律的环境,在分析矿井噪声特性的基础上,提出并设计了双自适应滤波器,并应用于预测冲击地压声发射信号的消噪处理。同时对双自适应滤波器涉及的两个方面:自适应滤波算法和自适应非均匀子带滤波器进行分析设计。
     2.矿井声发射监测中定位主要采用被动时差定位法,其中时间延迟估计是最关键、最核心的问题,其准确程度直接决定定位的精度。声发射信号在煤岩体中的传播特性直接影响其定位算法的选择,本文首次搭建了声发射信号在煤岩体中传播的物理模型,并以此建立了以数字滤波器级联构成的数学模型。在建立时差定位模型的基础上,提出并设计了小波分析和广义互相关相结合的时延估计方法。
     3.声发射预测预报专家系统可以弥补矿井人才缺乏,提高预测的精度。本文将在实验室测定的煤岩层冲击倾向性指标和现场的声发射监测数据相结合,采用层次分析法建立冲击地压预测预报的三层模型。并且将自适应模糊神经网络引入模型中来训练隶属度函数,克服由于人为原因造成预测的误差。通过仿真证明了方法的可行性和准确性。
     4.传感器的布置一方面影响时差定位的准确性,另一方面影响系统成本。在矿井中对声发射传感器的布置与其他方面的应用很大的不同的点就是随着开采区域的扩展,需要监控的区域不断扩大。如何通过增加少数传感器可以达到最佳的监控效果是必须要考虑的问题。同时为了弥补微弱声发射信号只被一个固定传感器检测到,导致无法准确定位的缺点,提出了一种无线传感器网络与有线网络相结合的监测矿震的方法,建立监控模型,并对无线网络的定位算法进行了分析和改进。
AE (Acoustic Emission, AE) is an important method in nondestructive monitoring evaluation, but there are still many problems in the popularity of AE forecasting rockburst. The main problems to be resolved are poor anti-noise performance, inaccurate location and forecasting which requires human intervention etc. Based on the analysis of the impact of the mechanism,this paper studys the following key problems from the perspective of AE signal processing.
     1. To obtain accurate AE signals which can represent mass characteristics of coal and rock is prerequisite to accurately predict the rockburst. The noise sources underground are multitudinous and complex, and have an environment with special rules. Based on the analysis of interference noise characteristics, the paper proposed to design a pair of adaptive filters to counteract the noise signal in ground pressure on the AE signal. The double adaptive filter involves two aspects: the adaptive filtering algorithms and adaptive non-uniform subband filter.
     2. Passive TDOA location method is mainly adapted in monitoring mine AE location and time delay is estimated to be the most crucial core question. The characteristics of AE signal propagation in coal and rock directly affect its localization algorithm. This paper constructs the physical model of the AE signal transmission in coal and rock for the first time, and establish mathematical model. Based on analysis of noise propagation characteristics and distribution, the paper proposes and designs time delay estimation method which combines with the wavelet analysis and the cross-correlation method.
     3. AE forecasting expert system can compensate for the shortage of qualified personnel of mine, improve forecast accuracy. The paper establishes the three layers model of rock prediction, combining with coal strata impact tendentiousness index measured in the laboratory and the AE monitoring data measured in the mine, and introduces the adaptive fuzzy neural network to train membership functions, overcomes the prediction error caused by individual. The feasibility and accuracy of this method has proved through data simulation.
     4. The layout of the sensor affects location accuracy of AE source positioning on one hand, on the other hand directly impacts on the system cost. The very different point between the arrangement of AE sensors in mines and other applications is that as the expansion of mining areas is more and more covered, the areas of being monitored is increasing as well, it must be taken into account that how to reach the best monitoring effect sensors adding a few sensor. Week signals were only detected by a fixed sensor which failed in accurate locations. In order to overcome this shortcoming, this paper proposes a wireless sensor network to complement the wired network, establishes the monitoring method for wireless sensor network monitoring rock orientation, analyzes and improves the positioning algorithm of wireless networks.
引文
[1]潘立友.冲击矿压前兆信息的可识别性研究.山东科技大学博士论文,2003.5
    [2]窦林名,何学秋.冲击矿压防治理论与技术[M].中国矿业大学出版社,2001.10.
    [3]涂敏,杜英.深部开采巷道矿压显现及控制[J].矿山压力与顶板管理,1994(2) :51-55.
    [4]唐绍辉,吴仕军.煤岩声发射活动规律的理论与实验研究[J].矿压研究与开发,2002(2),Vol.20,NO.1:16-18.
    [5]刘建东.基于声发射与微震技术的新型岩体稳定性监测系统及应用[J].有色金属,2008.7 Vol.60,NO.4:32-35.
    [6]张银平.岩体声发射与微震监测定位技术及应用[J].工程爆破,2002.8:58-61.
    [7]耿荣生.声发射信号的波形分析技术[J].中国无损检测学会第七届年会/国际无损检测技术交流研讨会论文集,1999:566-569.
    [8]耿荣声,沈功田,刘时风.声发射信号处理专题综述[J].无损检测,2002.1-12,Vol.24,NO.1-12.
    [9]沈功田,戴光,刘时风.中国声发射检测技术进展——学会成立25周年纪念[J].无损检测,2003,25(6):302-307.
    [10].A. Tang. Numerical simulation of the rock fragmentation process Induced by Indenters[J].International Journal of Rock Mechanics and Mining Sciences. 2000, 37(2) :655-659.
    [11]Unander T E. The Effect of Attenuation on B-values in Acoustic Emission Measurements: A Theoretical Investigation [J] .Int. J. Rock Mech. Min.Sci. Gromech.Abstr, 1994, 31 (1) :947~950.
    [12]Tan Jiong Kie Rockburst. Case Records.Theory and Control[J] .Procedding of the intemational symposium on engineering in complex rock formation. 1986, :33~47 .
    [13]Katsuhiko Sugawara,etal. Prediction of Coal Outburst[J] .Theoretical Investigation.1998 :1251~1254 .
    [14]肖栋.煤岩电磁辐射与声发射相关性研究.中国矿业大学硕士论文,2005.5
    [15]王恩元,何学秋,窦林名,周世宁,聂百胜,刘贞堂.煤矿采掘过程中煤岩体电磁辐射特征及应用[J]地球物理学报, 2005,(01) .
    [16]石显鑫;蔡栓荣;冯宏;李华.利用声发射技术预测预报煤与瓦斯突出,《煤田地质与勘探》1998(3).
    [17]张伟民;周勇;王珂奇.声发射预测煤与瓦斯突出危险性方法及指标的研究,煤矿安全,1999(5).
    [18]耿荣生,沈功田,刘时风.基于波形分析的声发射信号处理技术[J].无损检测,2002(24).
    [19]沈功田,耿荣生,刘时风.声发射信号的参数分析方法[J].无损检测,2002,24(2):72-77.
    [20]耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002,24(1):23-28(6):257-261.
    [21]郝宇宁.基于DSP的小波分析在声发射信号处理中的应用研究,广西大学硕士论文,2007.5.
    [22]Gopal T,Venkatesan. Automatic fault monitoring using acoustic emissions[J].IEEE.1997:1893-1896.
    [23]刘叙华.模糊逻辑与模糊推理[M],吉林大学出版社,1988.3.
    [24]H.Aksay,M.Ercanoglu. Determination of rockfall source in an urban settlement area by using a rule-based fuzzy evaluation Nat.Hazards Earth Syst.Sci. 2006.6:941-954.
    [25]侯玮,骈龙江,郝彬彬.深部开采冲击地压发生条件及预测防治,河北工程大学学报(自然版)。Vol.25 No.2,2008:65-68
    [26]李兴伟.工作面冲击地压声发射模式与应用.山东科技大学硕士论文,2004.6.
    [27]李文,纪洪广,武玉.深井冲击地压发生机理分析及预测方法研究[J].中国矿业,2007.7, Vol.16,No.7:105-107.
    [29]唐礼忠.深井矿山地震活动与岩爆监测及预测研究.中南大学博士论文,2008.4.
    [30]梁忠雨,高峰.单轴下岩石声发射参数的分形特征[J],力学与实践,2009,2,Vol.30,No.1:43-46.
    [31]刘卫东,陶锐.声发射信号分类研究[J].电声技术,Vol.32,No.11,2008:35-38
    [32]顾峰.基于DSP的地音监测系统的设计与实现.中国矿业大学硕士论文,2006.5
    [33]吴自立.地音信号拾取及提高监测系统抗干扰性能的措施[J].矿业安全与环保,2007,4,Vol.27,No.2:35-37
    [34]何振亚.自适应信号处理[M].北京:国防工业出版社,2002.
    [35]谢胜利,何昭水,高鹰.信号处理的自适应理论[M],北京:科学技术出版社,2006.3.
    [36]龚耀寰.自适应滤波(第二版)—时域自适应滤波和智能天线[M].电子工业出版社,2003.7.
    [37]Widdrow B.Hoff M.E..JR(1960)Adaptive switching circuits. IRE WESCON conv.REc,1960,4:96-104.
    [38]沈富民.自适应信号处理[M] .西安:西安电子科技大学出版社,2001.
    [39]孙娟,王俊,刘斌.一种新的变步长LMS算法及其应用.雷达科学与技术,Vol.5 No.5 2007.
    [40]Aboulnasr T,Mayyas K. A Robust Variable Step-Size LMS-Type Algorithm: Analysis and Simulations [J].IEEE Trans. on Signal Processing,1997,45(3):631-639.
    [42]Johnston J.D. A filter family designed for use in quadrature mirror filter banks,IEEE ICASSP ,1980:291-294.
    [43]Nussbaumer H.J. Pscudo. QMF filter bank [J]. IBM Tech. Disclosure Bulletin Vol.24.Nov.1,1981:3081-3087.
    [44]Vaidyanathan P.P. Hoang P.Q. Lattice Structures for Optimal design and robust implementation of two-channel perfect reconstruction QMF banks [J]. IEEE Trans. On ASSP,1988.:81-94.
    [45]Nguyen T.Q. and Vaidyanathan P.P., Two-channel perfect reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters, IEEE Trans.SP,Vol.37,may 1989:676-690.
    [46]Soman A.K., Valdyanathan P.P.,Nguyen T.Q., Linear phase paraunitary filter banks :theory,factorization and design [J]. IEEE Trans. On SP,Dec,1993:3480-3496.
    [47] Tanja Karp,Fliege N.J., Modified DFT filter banks with perfect reconstruction [J]. IEEE Trans. On CS-II:analog and digital signal processing,Vol.46,Nov., 1999:1404-1414
    [48]石光明.子带滤波器组的设计方法与应用.西安电子科技大学博士论文,2001.12
    [49]廖明亮.均匀及非均匀滤波器组的设计.西安电子科技大学硕士论文,2007.1
    [50] W. Kellermann . Analysis and design of multirate systems for cancellation of acoustic Echoes.in Proc. ICASSP-88, pp. 2570-2573, 1988.
    [51] P. P. Vaidyanathan. Multirate Systems and filter banks.Prentice-Hall, 1993.
    [52] Jan Mark de Haan, Nedelko Grbic. Ingvar Claesson. Filter Bank Design for Subband Adaptive Filtering Applications [J]. Kaserntryckeriet AB, Karlskrona ,2001
    [53]谢胜利,田森平,柳书棠.基于向量图分析的自适应滤波快速算法.控制理论与应用,2003,(20)6:838-842.
    [54]Qu.J.,Luo Z.Q.,Wong K.M., Optimum filter banks for signal decomposition and its application in adaptive echo cancellation [J]. IEEE Trans. On SP,1996,(44)7:1660-1680.
    [55] Mitra S.K.,Digital Signal Processing :A computer—Based Approach, Second Edition[M]. The McGraw-Hill Companiers,2005.
    [56] M. Vetterli, and D. LeGall,.Perfect Reconstruction FIR Filter Banks: Some Properties and Factorizations [J]. IEEE Trans. ASSP, pp. 1057-1071, July 1989.
    [57] M. Vetterh . A Theory of Multirate Filter Banks[J]. IEEE Trans. ASSP, Vol. ASSP-35, pp. 356-372, March 1987.
    [58]陶然,张惠云,王越.多抽样数字信号处理理论及其应用[M].北京:清华大学出版社,2008.5.
    [59] K. Eneman, M. Moonen. DFT modulated $lter bank design for oversampled subband systems [J]. Proceedings of the IEEE,Benelux Signal Processing Symposium, Leuven, Belgium, March 1998, pp. 87–90.
    [60] K. Eneman, M. Moonen.Hybrid subband frequency domain adaptive systems. Signal Processing, January 2001:117–136.
    [61]M. Vetterli, D. Le Gall, Perfect reconstruction FIR filter banks: some properties and factorizations, IEEE Trans. Acoustic, Speech Signal Process. 37 (7) ,July 1989:1057–1071.
    [62] X.G. Xia, B. Suter, FIR paraunitary filter banks given several analysis filters: factorizations and constructions [J]. IEEE Trans. Signal Process. 44 (3) ,March 1996: 720–723.
    [63] S R Popovich, D E Melton and M C Allie. New adaptive multi-channel control systems for sound and vibration[J], Proc. Of Inter-Noise, 1992.: pp. 405-408,
    [64] D E Melton and R A Greiner, Adaptive feed forward multiple-input, multiple output active noise control [J], Proceedings of ICASSP, Vol.2, 1992:229-232.
    [65] J. J. Shynk, Frequency Domain and multirate adaptive filtering, IEEE Signal Processing Magazine, Vol 9, pp. 14-37, Jan 1992.
    [66] A. Gilloire ,M.Vetterli, Adaptive Filtering in sub-bands[J]. Proc. ICASSP, Vol. 3,1988: 1572-1575.
    [67] GUSTAFSSON S. and MARTIN R.. Combined Acoustic Echo Control and Noise Reduction for Mobile Communications [J]. Proc. Euro Speech,1997: 1403–1406.
    [68] GILLOIRE A. and VETTERLI M. Adaptive Filtering in Sub-bands with Critical Sampling: Analysis, Experiments and Applications to Acoustic Echo Cancellation, IEEE. Trans. Signal Processing, 40,1994:320–328.
    [69] KELLERMANN W. Analysis and Design of Multirate Systems for Cancellation of Acoustical Echoes[J]. IEEE. Proc. Int. Conf. Acoustics, Speech and Signal Processing, ICASSP-88, 1988: 2570-2573.
    [70]Haykin.S. Adaptive Filter Theory, Fourth Edition[M], Prentice Hall,2006.11.
    [71] A. Gillore and M. Vetterli. Adaptive filtering in subbands with criticalsampling: analysis, experiments, and application to acoustic echo cancellation[J]. IEEE Transactions on Signal Processing, vol. 40, no.8, Aug. 1992:1862-1875.
    [72] M. M. Sondhi and W. Kellermann. Adaptive echo cancellation for speech signals. in Advances in Speech Signal Processing. New York, NY: Marcel Dekker,Inc., 1992. 11. [73P.Q. Hoang and P.P. Vaidyanathan,“Non-uniform multirate filter banks: theory and design,”ISCAS,1989:371-374.
    [74]Nayebi K.,Barnwell T.P.,Smith M.J.T. The Design of Perfect Reconstruction Nonuniform Band Filter Banks, IEEE ICASSP,1991,Toronto,Canada:1781-1784.
    [75]Kovacevic J and Vetterli M.., Perfect Reconstruction Filter Banks with Rational Sampling Factors, IEEE Trans. On SP, Vol.41,Jun,1993:2047-2066.
    [76]Lee J.J. and Lee B.G., A design of Nonuniform Cosine Modulated Filter Banks [J]. IEEE Trans. On Circuits and System-II: Analog and digital signal processing Vol.42,Nov.1995:732-737.
    [77]F.Agrenti and E.Del Re.Nonuniform Filter Based on a Multiprototype Cosine Modulation. Proc. IEEE ICASSP,Atlanta,GA,May,1996.
    [78]Li.J.,Nguyen T.Q. and Tantaratana S. A simple Design Method for Near-perfect Reconstruction Nonuniform Filter Banks. IEEE Trans. On SP., Vol.45 Aug.1997:2105-2109
    [79]Kok C.W., Hui Y. and Nguyen T.Q. Nonuniform Modulated Filter Banks [J]. SPIE Vol.31, 1997:438-447.
    [80] T. Nagai, T. Futie, and M. lkehara. Direct design of nonuniform filter banks. in Proc. IEEE ICASSP, vol. 3, pp. 2429-2432, Apr.1997.
    [81]Sony J., Akkarakaran and Vaidyanathan P.P.,New Results and Open Problems on Nonuniform Filter banks .Proc.IEEE ICASSP99,1999:1501-1504.
    [82]J. D. Griesbach, T. Bose, and D. M. Etter. Non-uniform filter bank bandwidth allocation for system modeling subband adaptive filters. Proc. IEEE Int. ConJ on Acoust., Speech and Sig. Proc., Phoenix, AZ, Mar. 1999.
    [83]Chan S.C.,Xie X.M. and Yuk T.I., Theory and Design of a Class of Cosine Modulated Nonuniform Filter Banks[J]. Proc. ICASSP-2000, Vol.1,2000:504-507.
    [84]A. Oakman and P. A. Naylor. Dynamic structures for non-uniform adaptive filters [J]. in Proc. IEEE Int.Conf. Acoust., Speech, SignalProcess. (ICASSP), 2001:3717–3720.
    [85] J. D. Griesbach, M. R. Lightner, and D. M. Etter. Subband adaptive filtering decimation constraints for oversampled non-uniform filter banks [J]. IEEE Trans. Circuits Syst. II, vol. 49, no.10,Oct. 2002:677–681.
    [86]S.C.chan and T.I.Yuk.. A Class of perfect Reconstruction Nonuniform Cosine Modulated Filter Banks with Dynamic Recombination [J].In Proc.Eusipco’02,Vol.2,2002:549-552.
    [87] Cox RV. The design of uniformly and nonuniformly spaced pseudo quadrature mirror filters. IEEE Transactions on Acoustics,Speech and Signal Processing, 1986(5).
    [88] J. D. Griesbach, M. R. Lightner, and D. M. Etter. Constituent subband allocation for system modeling nonuniform subband adaptive filters[J]. IEEE Trans. Signal Process., vol. 53, no. 2, pp. 539–549, Feb. 2005.
    [89] J. D. Griesbach, M. R. Lightner, and D. M. Etter. Mean square error analysis of nonuniform subband adaptive filters for system modeling [J]. IEEE Trans. Signal Process., vol. 53, no. 2, Feb. 2005:550–563.
    [90]石光明,焦李成,谢雪梅.完全重构的非均匀滤波器组设计[J].自然科学进展,2001.4,Vol.11,No.4:398-403.
    [91]李伟.基于余弦调制的子带滤波器组的设计.大连理工大学博士论文,2007.12.
    [92] S. Vitale, G. Heinzel etc. Recommendation for an algorithm for Power Spectral Density estimation for LISA Pathfinder[J],Issue,2006.9.
    [93]陈玲,李少洪.无源测向测时差定位算法研究.电子与信息学报,Vol.25,No.6,2003:771-776.
    [94]武永贵,王树勋,汪飞.四元数在时延和方向角同时估计中的应用[J].吉林大学学报(信息科学版),2005年05期
    [95]严素清,黄冰.传声器阵列的声源定位研究[J].电声技术,2004年12期
    [96]张坤雷.基于四元数的谐波信号与矢量阵列信号多参量估计算法研究[D].吉林大学,2007年
    [97]孙超.水下多传感器阵列信号处理[M].西北工业大学出版社,2007.6
    [98]王成,李少洪等.测时差被动定位算法的研究.系统工程与电子技术,V0l.23,No.11,2001:9-12.
    [99]沈功田,耿荣生,刘时风.连续声发射信号的源定位技术.无损检测,Vol.24,No.4,2002:164-167.
    [100]HASSAN ELKAMCHOUCH,MOHAMED ABD,ELSALAM MOFEED. Direction of Arrival Methods(DOA) and Time Difference of Arrival (TDOA) Position Location Technique[J],Twenty Second National Radio Science Conference (NRSC 2005),Cairo Egypt,2005.3:1-6.
    [101] Dave Adamy.Time of arrival emitter location.Journal of Electronic Defense.June 1995,pp80-81.
    [102]Joe C.Chen,Ralph E.Hudson, Kung Yao. Maximum-likelihood source location and unknown sensor location estimation for wideband signals in the near-field[J], IEEE,Trans. On SP, Vol.50,No.8, Aug.2002:1843-1854
    [103]王永诚,张令坤.多站时差定位技术研究.现代雷达,Vol.25,No.2,2003:1-4.
    [104]Tade Kosel,Igor Grabel,Franc Kosel. Intelligent location of two simultaneously active acoustic emissionsources [J]. Aerospace Science and Technology, 2005(9):45-53.
    [105]黄志强,王树勋,王波.一种近场源四维参数的估计方法.吉林大学学报(工学版), 2006年01期
    [106]张坤雷;基于四元数的谐波信号与矢量阵列信号多参量估计算法研究[D];吉林大学;2007年
    [107]孙仲康,周一宇,何黎星.单多基地有源无源定位技术.北京:国防工业出版社,1996
    [108]张正明.辐射源无源定位研究.博士学位论文.西安电子科技大学,2000
    [109]许占伟.基于DSP的被动声定位技术研究.硕士论文.南京理工大学,2002.12
    [110] Dave Adamy.Radar waring receivers:the digital revolution.,Journal of Electronic Defense. June.2000.no45-49.
    [111]刘卫东,张薇,窦林名.声发射定位中时差计算研究.计算机工程与科学,2009,Vol.31,No.4:127-129.
    [112]刘卫东,张申等.时间延迟算法估计研究.第十二届声发射会议,2009.8
    [113]王宏禹,邱天霜.自适应噪声抵消与时间延迟估计[M].大连理工大学出版社,1999.8
    [114] Dave Adamy. Precise targeting:sensors get smarter [J]. Journal of Electronic Defense ,Sept.2000.
    [115]杨杰.声发射信号处理与分析技术的研究.[学位论文]:吉林大学,2005
    [116]崔锦泰(美)著,程正兴译.小波分析导论[M].西安:西安交通大学出版社,1995
    [117]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999
    [118]李晓波,朱援祥,孙秦明.基于小波包分析的声发射源定位方法[J].武汉理工大学学报,Vol.25,No.2,2003:91-94.
    [119]M. Takemoto, H. Nishino and K. Ono.Wavelet Transform - Applications to AE Signal Analysis. Acoustic Emission - Beyond the Millennium, Elsevier (2000):35-56.
    [120] K. C. Ho, L. Kovavisaruch, and H. Parikh.Source localization using tdoa with erroneous receiver positions. in Proc. IEEE Acoust., Speech, Signal Processing, vol. 3, May 2004, pp. 453–456.
    [121] Neal Patwari . Location estimation in sensor networks[J]. Electrical Engineering: Systems in The University of Michigan,2005
    [122] Augus Errington. Sensor placement for micro-seismic event location[D].Departmen of electrical engineering university of Saskatchewan Saskatoon.2006.
    [123] J. Blumenthal, F. Reichenbach, M. Handy, and D. Timmermann. Optimal adjustment of the coarse grained localization-algorithm for wireless sensor networks[C]. Invited Paper, Proceedings of 1st Intl. Workshop on Positioning, Navigation, and Communication WPNC'2004, Hanover, Germany, March 2004.
    [124]Julius O. Smith and Jonathan S. Abel, The spherical interpolation method of source location [J]. IEEE Journal of Oceanic Engineering, Vol.12,No.1,1987:297-305.
    [125]Barry R. Lienert, E Berg, and L. Neil Frazer, Hypocenter: An earthquake location method using centered,scaled and adaptively damped least squares[J], Bull.Seism. Soc. Am., Vol.76. No.3,p771-783,June 1986.
    [126]L. Geiger, Probability method for the determination of earthquake epicenters from arrival time only[J], Bull. St. Louis Univ. Vol.8,pp.60-71,1992.
    [127]Brian L.F. Daku, J. Eric Salt, Error analysis of a localization algorithm for finite duration events [J]. IEEE Trans. On SP, 2005:2311-2314.
    [128]Andrzej Kijko, An algorithm for the optimum distribution of a regional seismic network-I[J].Pure Appl. Geophys, Vol.115,pp.999-1009,1977.
    [129]Angus Errington, Brian L.F. Daku, David Dodds, and Arnfinn Prugger, Characterization of the energy spectral density for potash mine[J].In Proc. IEEE CCECE, 2005,pp247-250.
    [130]孙利民,李建中等.无线传感器网络[M].北京:清华大学出版社,2005.
    [131] Pradeep K.Mohanty.Application of Wireless Sensor Network Technology for Miner Tracking and Monitoring Hazardous Conditions in Underground Mines[J].A RFI Response (MSHA RIN 1219-AB44), MSHA,March 2006.
    [132]张永政,张申,韩培培等.基于无线传感器网络的矿震监测系统设计[J].传感器与微系统,2009,28(1):80-82.
    [133]朱近康.无线传感器网络技术[J].中兴通讯技术,2004,10(S0):4-15.
    [134]郑相全.无线自组网技术实用教程[M].北京:清华大学出版社,2004.
    [135]端木庆敏.无线传感器网络节点定位算法研究[D].北京:国防科技大学图书馆,2006.
    [136]张兴会,张志辉,邓志东.基于RSSI测距技术的三角形面积和定位算法[J].电子测量技术,2008,31(11): 92-98
    [137]徐燕,石江宏,吴晓芳.无线传感器网络中基于RSSI差值的改进定位算法[J].厦门大学学报,2008,47(5):263-265.
    [138]孟庆勇.基于RSSI矿井无线传感器网络定位技术研究[D].徐州:中国矿业大学图书馆,2008。
    [139]王书聪.无线传感器网络分布式定位算法研究[J].计算机技术与发展,2008,18(11):62-65.
    [140]余义斌.传感器网络定位算法及相关技术研究[D].重庆:重庆大学图书馆,2006.
    [141] MSHA, Testing Communication and Locating Devices for Underground Mines[EB/OL], Aug.2006. http://www.msha.gov.
    [142] Guo Jun, Xingrui Ji, Shi Yi, Chenpeng Hu, Wang lei. ACES-A1 Coal mine Enhancing System[R]. second price of IEEE CSIDC(Computer Society International Design Competition)2006.
    [143] Zhou Qiang, Zhang Shen, Wang Chaonan, Xu Yongjun. Wireless Sensor Networks for Mine Safety[C]. 2nd International Conference on Sensor Networks and Applications(SNA'06), Beijing, China, October 2006.
    [144]周晓军.煤矿冲击地压发生条件及其控制的理论与研究.重庆大学博士论文,1997.
    [145]刘增良.模糊技术与神经网络选编(4)[M].北京航空航天大学出版社.1999.
    [146]刘增良.模糊技术与神经网络选编(5)[M].北京航空航天大学出版社.2001.
    [147]王士同.模糊系统,模糊神经网络及应用程序设计.上海科学技术文艺出版社,1998
    [148]邹开其,李正吾.综合评判的神经网络方法[J].模糊系统与数学,1998年04期
    [149]王振峰,靳东明,李志坚;单体模糊神经网络自学习问题研究[J];电子学报; 1997年02期
    [150]刘辉,王海宁,吕志飞,模糊神经网络技术在矿山安全评价中的适应性研究.中国安全生产科学技术,2005年第1卷第03期
    [151]刘卫东,孟晓静等.模糊逻辑在矿井冲击矿压预测中的应用.煤矿安全,2008.1:66-68.
    [152]T.L. Saaty. The Analytic Hierarchy Process, Planning, Piority Setting, Resource Allocation[J]. McGraw-Hill, New york, 1980.
    [153]王淑坤,张万斌,吴耀坤.模糊综合评判煤的冲击倾向性研究[J].矿山压力与顶板管理,1992.1:75-79.
    [154]王宏图,许江等.煤岩体冲击倾向性能指标评价[J].矿山压力与顶板管理,1999.3:204-208.
    [155]尹光志,鲜学福等.冲击地压的区域危险性预测[J].重庆大学学报(自然科学版),1996.3,Vol.19, No.2:89-94.
    [156]冯涛,谢学斌.岩石脆性及描述岩爆倾向的脆性系数[J].矿冶工程,2000.12,Vol.20,No.4.
    [157]毛德兵.冲击矿压发生危险性评价方法[J].煤矿开采,2004.4:52-53.
    [158]陈彦强,赵计生,马利.邢东矿煤层冲击倾向性实验研究[J].矿山压力与顶板管理,2005.4:116-118.
    [159]陈绍杰,杨永杰,郭惟嘉.煤岩冲击倾向性实验及分析[J].实验室研究与探索,2007.11,Vol.26,No.11:294-296.
    [160]张绪言,康立勋,杨双锁.煤岩冲击倾向性与剩余能量释放速度的关系[J].煤矿安全,2009.2: 74-76
    [161]刘卫东,丁恩杰.矿井冲压预测技术的研究[J].工矿自动化,2006.10:18-20
    [162]腾山邦久.声发射(AE)技术的应用[M].北京:冶金工业出版社,1996.
    [163]毛建华,曹庆林,桑玉发,利用声发射技术预报采场冒顶的新方法[J].化工矿山技术,1996,Vol.25,No.2:10-12.
    [164]吴定洪,陆业海.用声发射监测技术预报岩体稳定性的可行性研究.第六届全国岩土力学数值分析与解析方法讨论会,中国广州,1998.8:434-549.
    [165]唐绍辉,唐海燕.基于声发射参数的采场安全等级划分[J].中国有色金属学报,1998.9:749-752.
    [166]李康.应用岩体声发射技术监测采场顶板稳定性的研究[J].工业安全与防尘,1999.9:20-23.
    [167]吴仕军.声发射技术在采场冒顶中的应用研究.云南冶金,2000.12,Vol.27,No.2:190-192.
    [168]王宁,岩体声发射监测技术在采场顶板安全分级中的作用[J].西南科技大学学报,2003.6,Vol.18,No.2:16-18.
    [169]王宁,赵明波等.评价岩石稳定性的声发射相对强弱指标[J].岩土工程学报,2005.2,Vol.27,No.2:190-192.
    [170]姚力.几种典型声发射信号的特征参数分布分析[J].无损探伤, 2 0 04 .4, Vol.28, No.2:19-22.
    [171]纪洪广,张天森等.无损检测中常用声发射参数的分析与评价.[无损检测]2001.7,Vol.23,No.7:289-292
    [722]刘卫东,丁恩杰.矿井冲压监测系统的实现[J].中国测试技术, 2006.11,Vol.32, No.6:126-128.
    [173]李俊平.岩体稳定性的声发射评价[J].中国钼业,1997.12,Vol.21,No.6:19-22
    [174]尹贤刚,李庶林,唐海燕,王春来.岩石破坏过程的声发射特征研究[J].矿业研究与开发,2003.6,Vol.23,No.3:11-12.
    [175]吴晓莉,林哲辉.MATLAB辅助模糊系统设计[M].西安电子科技大学出版社,2002.
    [176]闻新,周露. MATLAB逻辑工具箱的分析与应用[M].科学出版社,2001
    [177]夏卜敬.基于模糊综合评价和神经网络对边坡稳定性的分析研究[J].武汉科技大学硕士论文,2008.6
    [178] Weidong Liu , Enjie Ding , Xiaojing Meng. Study on the Application of a Rule-based Fuzzy Evaluation in Predicting the Rock Burst, 2008 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam, 17–20 December 2008:1168-1171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700