高性能计算技术及其在电磁散射中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能计算(High Performance Computing, HPC)是计算机科学的一个重要分支,它是研究并行算法和并行计算机体系结构的学科。随着信息化社会的飞速发展,传统单机运算速度和容量遇到硬件瓶颈,高性能计算受到广泛重视,而高性能计算水平已成为衡量一个国家科研能力的标志之一。在一些学科,如计算力学、电磁散射和生物科学领域,高性能计算平台已成为科学研究的必备工具。
     电磁散射在军事和工程领域均有广泛应用,本文研究钻井探测中的微波散射现象。探测方法研究涉及计算机并行处理、计算数学和计算电磁学等多个学科,是一门综合的多领域交叉科学。钻井微波探测工具在近几十年获得持续高速发展,其在石油、天然气等地下资源的勘探发掘中起关键作用。钻井挖掘方法从垂直勘探、倾斜勘探到可扩展侧向伸展勘探,使得每次挖掘可获得更广袤地域的地下信息。探测工具中的天线经历了从极子天线、环型天线到倾斜环型天线,使得工具可探测更多地质层中的介质信息。
     本文对钻井微波探测中的时域和频域并行仿真方法进行研究。提出在时域方法中采用无条件稳定策略,同时利用模型(部分)旋转对称的特性,对问题进行分解简化,以加快算法的处理速度。在频域方法中,伪解析法作为一种半解析半数值的方法,具有速度快、精度高的优点,但之前研究对象均为各向同性介质。本文研究更复杂介质的情况,并将伪解析法推广到轴各向异性地质介质,分析和实验均显示出这种方法的优越性。传播矩阵法作为伪解析法的一种推广形式,其适用性更强,文中用传播矩阵方法分析了全各向异性以及轴向非均匀地质介质。本文围绕一种目前主流的钻井微波探测工具—随转探测微波工具(Logging While Drilling, LWD),对几种主要的仿真方法进行了深入研究,主要工作可列举如下:
     一、对在柱坐标系中几种主要的时域有限差分方法(Finite-Difference Time-Domain, FDTD)进行了研究,主要侧重无条件稳定的时域方法。交替方向隐式(Alternating Direction Implicit, ADI)FDTD方法可模拟细网格模型,但却有分步误差。我们提出一种矫正策略,引入一个近似项对误差进行修正,实验分析表明,此策略可将分步误差从三阶精度提高到四阶精度。文中对另一种无条件稳定方法,局部一维(Locally One-Dimension, LOD)FDTD方法的任意阶精度格式进行了分析,给出一致性数值色散关系,并对高阶收敛性进行了分析证明。
     二、结合钻井工具的工作环境,讨论了旋转对称结构(Body-Of-Rotation)中FDTD方法的数值特性。并将Crank-Nicolson(CN)FDTD方法推广到旋转对称结构,首次给出CN-BOR-FDTD方法的计算公式,并将其用于钻井探测工具模型LWD中。CN-FDTD方法的计算时间较ADI-FDTD方法和LOD-FDTD方法长,但不含分步误差,而采用BOR策略可有效节约计算时间。实验证明CN-BOR-FDTD方法是一种快速准确的时域方法。
     三、伪解析法作为一种半解析半数值方法,具有速度快精度高的特点,但其适用的环境受到很大限制。已有研究均假设钻井环境中地质层是各向同性介质,但由于重力等因素,岩层中介质在水平和垂直方向表现出不同的电磁特性。文中讨论了Maxwell方程在轴各向异性中特征函数展开形式,首次将伪解析法推广到轴各向异性地质层的情况。提出归一化策略,可计算任何(大)尺寸问题,并采用迭代格式避免在求解过程中使用病态矩阵逆运算。这种方法可用半径无限大的圆来近似模拟岩层直线边界的情况,是一种快速、实用的方法。
     四、提出用传播矩阵法计算更复杂地质层介质模型。传播矩阵法作为伪解析法的一种推广,可用于计算更加复杂的介质模型。我们全面系统的推导了在轴各向异性介质、全各向异性介质和轴向非均匀介质中传播矩阵法的计算公式。与伪解析法进行对比验证的结果表明,传播矩阵方法同样具有很高计算精度。另外用传播矩阵法分析了凿洞中液体在周围地质层中非均匀扩散时,钻井微波探测工具的响应情况。
     本文所有算法均通过编程实现,大部分算法经并行化处理,其中一部分在集群多机并行环境下通过验证,其余部分在美国俄亥俄州超级计算中心高性能计算平台Glenn上通过验证。另外对某些算法性能给出了理论分析。
High Performance Computing (HPC) is one of the important branches of the Computer Science, in which the researches involve the parallel algorithms and parallel computer framework. As the development of information industry, the capabilities of computation of single computer have encountered the physical hardware bottleneck. The HPC technology has received more and more attention. It becomes a scale of scientific research for each country. In some fields, such as Computational Mechanics, Electromagnetic Scattering and Bioinformation et.al., parallel computing plat is a necessary toolkit.
     Electromagnetic Scattering has various applications in both of civil and military engineering. In this paper, we study the phenomena of the electromagnetic scattering of electrical well-logging. Microwave detecting techniques involve the knowledge of Parallel Computing, Computational Mathematics and Computational Electromagnetics. It is a cross field of many subjects. Tools for electrical well-logging have been developed rapidly in these decades. Its applications play key roles in the exploration of subsurface resource, such as oil and gas etc. The approach in drilling well has been improved from vertical well, directional well to extended-reach well, in order to extending their physical coverage. The antennas used in Electrical Well-Logging tools have changed from dipole antennas, coil antennas and tilted coil antennas, in order to getting more sensitivity for the medium of subsurface beds.
     In this paper, both of the methods in time-domain and frequency-domain are studied. We proposed the hybrid implementation of unconditionally stable time-domain finite-difference scheme and the Body-Of-Rotation (BOR) scheme. The BOR scheme takes the advantage of (partially) axial symmetry in the environment of Well-Logging to accelerate the code. Among the frequency-domain methods, the pseudo-analytical method, which is a semi-analytical and semi-numerical method, has the virtue of computational effectiveness and high accuracy. However, the previous researches are based on the assumption of isotropic medium. In this paper, we studied the complex medium. The pseudo-analytical method has been extended for axially anisotropic medium. The experiences have validated the effectiveness of the new pseudo-analytical method. We derived the formulas of the propagator matrix method for the model of Electrical Well Logging tools. This method is an extension of the pseudo-analytical method, with much more applicable fields. By using the propagator matrix method, the medium of full anisotropy and radial inhomogeneity are studied. Involving the classical Electrical Well Logging tool, Logging-While-Drilling (LWD) tool, several main simulation algorithms have been discussed. The main works can be summarized as following:
     (I) Several main cylindrical Finite-Difference Time-Domain (FDTD) methods are studied, emphasizing the time-domain methods with unconditionally stability. The Alternating-Direction-Implicit (ADI) FDTD method is suitable for fine grid model. However, it involves splitting error. We proposed a correction scheme, in which an approximation term is introduced to reduce the splitting error. Numerical analysis shows that the error has been reduced from third-order to four-order. Meanwhile, we analyze the performance of higher-order Locally One-Dimension (LOD) FDTD methods. We have presented the uniform formulas of their numerical dispersion relationship, and proved the convergence as the order increases.
     (II) Based on the environment where LWD is applied, we discuss the numerical properties of the BOR-FDTD methods. The BOR scheme is utilized into Crank-Nicolson (CN) FDTD method, and the updating equations for the CN-BOR-FDTD method are given to simulate the LWD tools. The CN-FDTD method takes more computational time than those of the ADI-FDTD method and the LOD-FDTD method, but with no splitting error. The BOR scheme can reduce the computational time sharply. Numerical experiments show that the CN-BOR-FDTD method is an effective and accurate time-domain method.
     (III) The pseudo-analytical method, combination of analytical method and numerical method, can achieve high computational accuracy and require low computer time. However, the range of the application of the pseudo-analytical method is very limited. All of the previous researches on the pseudo-analytical method in LWD model are based on the assumption of isotropic medium. Due to the effect of gravity etc., Earth formations exhibit anisotropic conductivities, in which the vertical components may differ from the horizontal ones. In this work, we extend the pseudo-analytical method to anisotropic Earth formations. The formalism is based on an expansion of the field components in terms of the appropriate cylindrical eigenfunctions in uniaxial anisotropic media. A normalized scheme is proposed to simulate arbitrary-size geometry. An iterative solver is applied to overcome the inversion of ill-conditioned matrix as well. The proposed can also simulate the flat bed boundary by a circle of sufficiently large radius. Numerical experiments validate its efficiency.
     (IV) The propagator matrix method is proposed to handle complex Earth formations. This method is an extension of the pseudo-analytical method, by which we can simulate complex medium. The formulism of the propagator matrix method for uniaxial anisotropic medium and full anisotropic medium are derived. Compared with results of the pseudo-analytical method, the propagator matrix method has similar accuracy. The response of the well-logging tools for the inhomogeneous penetration of the borehole liquid into Earth formation is investigated by using the propagator matrix method.
     All of the algorithms mentioned in this paper are implemented by computer programming. Most of them have been parallelized. Some parallelized codes run on cluster environment, and the others run on the plat of Ohio State Supercomputing Center, named Glenn. We also give theoretical analysis for the performance of some algorithms.
引文
[1]王嘉澳,沈毅.并行计算方法(上册)[M].北京:国防工业出版社,1987.
    [2]陈国良.并行计算–结构·算法·编程[M].北京:高等教育出版社,2003.
    [3]张宝琳,袁国兴,刘兴平,陈劲.偏微分方程并行有限差分方法[M].北京:科学出版社, 1994.
    [4]康立山.解数学物理问题的并行异步算法[M].北京:科学出版社,1985.
    [5]迟学斌.高性能并行计算[M],电子版,2005.
    [6] David G.. What every computer scientist should know about ?oating-point arithmetic [J]. ACM Computing Surveys, 1991, 23(1).
    [7] Gui?aut C. and Mahdjoubi K.. A parallel FDTD algorithm using the MPI library [J]. IEEE Antennas and Propagation Magazine, 2001, 43(2):94-103.
    [8] Hanawa T., Kurosawa M., and Ikuno S.. Investigation on 3-D implicit FDTD method for parallel processing [J]. IEEE Transactions on Magnetics, 2005, 41(5): 1696-1699.
    [9] Araujo J.S., Santos R.O., Sobrinho C.L.S.S., Rocha J.M., Guedes L.A., and Kawasaki R.Y.. Analysis of antennas by FDTD method using parallel processing with MPI [J]. IEEE International Microwave and Optoelectronics Conference, 2003, 2: 1049-1054.
    [10] Yu W., Mittra, R., and Yang X. et.al.. High-performance conformal FDTD techniques [J]. IEEE Microwave Magazine, 2010, 11(4): 43-55.
    [11] Wait J. R.. Geo-Electromagnetism [M]. New York: Academic Press, 1982.
    [12] Wait J. R.. Electromagnetic probing in geophysics [M]. The Golem Press, 1971.
    [13] Liu S. and Sato M.. Electromagnetic logging technique based on borehole radar [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9): 2083-2092.
    [14] Doll H. G.. Introduction to induction logging and application to logging of wells drilled with oil based mud [J]. J. Petroleum Technol, 1949, 1(6): 148-162.
    [15] Hue Y. K.. Numerical simulation of electromagnetic well-logging tools [D]. Master’s thesis. The Ohio State University, 2003.
    [16] Hue Y. K.. Analysis of electromagnetic well-logging tools [D]. Ph.D. dissertation, Columbus: The Ohio State University, 2006.
    [17] Bittar M.. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations [P]. U.S.: Patent 6,163,155, Dec. 19, 2000.
    [18] Hagiwara T. and Song H.. Directional resistivity measurements for azimuthal proximitydetection of bed boundaries [P]. U.S.: Patent 6,181,138, Jan. 30, 2001.
    [19] Bittar M. S.. Electromagnetic wave resistivity tool having a tilted antenna for determining the horizontal and vertical resistivities and relative dip angle in anisotropic earth formations [P]. U.S.: Patent 7557579 B2, Jul. 7, 2009.
    [20] Chou L., Li Q., and Darquin A. et.al.. Steering toward enhanced production [J]. Oil?eld Review, 2005, 17(3): 54-63.
    [21] Wang T. and Fang S.. 3-D electromagnetic anisotropy modeling using ?nite differences [J]. Geophys, 2001, 66(5): 1386-1398.
    [22] Teixeira F. L. and Chew W. C.. Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1530-1543.
    [23] Wang T. and Sigorelli J.. Finite difference modeling of electromagnetic tool response for logging drilling [J]. Geophysics, 2004, 69(1): 152-160.
    [24] Lee H. O. and Teixeira F. L.. Cylindrical FDTD analysis of LWD tools through anisotropic dipping-layered earth media [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 383-388.
    [25] Wu D., Chen J., and Liu C. R.. An ef?cient FDTD method for axially symmetric LWD environments [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 652-656.
    [26] Hue Y. K., Teixeira F. L., and Martin L. S. et.al.. Three-dimensional simulation of eccentric LWD tool response in boreholes through dipping formations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 257-268.
    [27] Hu F. L., Xiao L. Z., and Zhang Y. Z.. Numerical Simulation of NMR Logging Tools [J]. 7th International Symposium on Antennas and Propagation & EM Theory, 2006: 1-3.
    [28] Chen X., Liu D., and Ma Z.. The High Accuracy simulation of resistivity LWD electric field using self-adaptive hp-FEM [J]. 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2010, 3: 874-877.
    [29] Liu Q.H., Lin Y., and Liu J. et.al.. A 3-D spectral integral method (SIM) for surface integral equations [J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2): 62-64.
    [30] Pardo D., Demkowicz L., and Torres-Verdn C. et.al.. Two-dimensional high-accuracy simulation of logging-while-drilling (LWD) measurements using a self-adaptive goal-oriented hp ?nite element method [J]. SIAM J. Appl. Math., 2006, 66(6): 2085-2106.
    [31] Novo M. S., Silva L. C., and Teixeira F. L.. Finite volume modeling of borehole electromagnetic logging in 3-D anisotropic formations using coupled scalar-vector potentials [J]. IEEE Antennas Wireless Propag. Letters, 2007,6: 549-552.
    [32] Wang H., So P., and Yang S. et.al.. Numerical modeling of multicomponent induction well-logging tools in the cylindrically strati?ed anisotropic media [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1134-1147.
    [33] Zhong L., Li J., and Bhardwaj A.et.al. Computation of triaxial induction logging tools in layered anisotropic dipping formations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1148-1163.
    [34] Ebihara S. and Inoue Y.. Analysis of eccentered dipole antenna for borehole radar [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4): 1073-1088.
    [35] Wang G.. L., Torres-Verdin C., and Gianzero S.. Fast simulation of triaxial borehole induction measurements acquired in axially symmetrical and transversely isotropic media [J]. Geophysics, 2009, 74(6): e233-e249.
    [36] Pearson L. W.. A construction of the ?elds radiated by z-directed point sources of current in the presence of a cylindrically layered obstacle [J]. Radio Sci., 1986, 21(4): 559-569.
    [37] Sato M., Fuziwara J., and Miyairi M. et.al. Directional induction logging methods [A]. Proceedings of the SPWLA 35th Annual Logging Symposium [C]. 1994: 1-16.
    [38] Hagiwara T., Banning E. J., and Ostermeier R. M. et.al. Effects of mandrel, borehole, and invasion for tilt-coil antennas SPE 78th [A]. Annual Technical Conference and Exhibition, paper SPE 84254 [C]. Denver, Colorado, 2003.
    [39] Hue Y. K. and Teixeira F. L.. Analysis of tilted-coil eccentric borehole antennas in cylindrical multilayered formations for well-logging applications [J]. IEEE Transaction on Antennas Propagation, 2006, 54(4): 1058-1064.
    [40] Lovell J. R. and Chew W. C.. Response of a point source in a multicylindrically layered medium [J]. IEEE Transactions on Geoscience and Remote Sensing, 1987, GE-25(6): 850-858.
    [41] Lovell J. R. and Chew W. C.. Effect of tool eccentricity on some electrical well-logging tools [J]. IEEE Transactions on Geoscience and Remote Sensing, 1990. 28(1): 127-136.
    [42] Harrington R. F.. Time-harmonics electromagnetic fields [M]. New York: McGraw-Hill, 1961.
    [43] Kong J. A.. Theory of electromagnetic waves [M]. New York: Wiley, 1975.
    [44] Constantine A. Balanis. Advanced engineering electromagnetics [M]. John Wiley & Sons, 1989.
    [45] Jordan. Structuring parallel algorithms in an MIMD shared memory environment [M]. Parallel Computing, 1986, 13.
    [46] Arie Keren and Amnon Barak. Opportunity cost algorithms for reduction of I/O and interprocess communication overhead in a computing cluster [J]. IEEE Transactions on Parallel and Distributed Systems, 2003, 14(1): 39-50.
    [47] Li K.-C., Chang H.-C., and Chao T. On construction of a visualization toolkit for MPI parallel programs in cluster environments [A]. Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA'05) [C]. 2005.
    [48]莫则尧,袁国兴.消息传递并行编程环境MPI [M].北京:科学出版社,2001.
    [49] Li G. Y. and Coleman T. F.. A parallel triangular solver for a hypercube multiprocessor [R]. Cornell University, 1986: 86-787.
    [50] Hermanns M.. Parallel programming in Fortran 95 using OpenMP [M]. Electronic version, 2002.
    [51] Ayguade E., Copty N., and Duran A. et.al.. The Design of OpenMP Tasks [J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20 (3): 404-418.
    [52]俄亥俄州超级计算中心. www.osc.edu,引用日期: 2010年8月10日.
    [53] Yee K.. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media [J]. IEEE Transactions on Antennas and Propagation, 1966, 16:302-307.
    [54]葛德彪,闫玉波.电磁波时域有限差分方法[M].第二版.西安:西安电子科技大学出版社, 2005: 8-31.
    [55] Ta?ove A. Advances in computational electrodynamics: The finite Di erence time domain method [M]. Artech House, 1998.
    [56] Ta?ove A., Hagness S.C.. Computational Electrodynamics: The finite-diference time-domain method [M]. The second edition. Artech House, 2000.
    [57] Namiki T.. A new FDTD algorithm based on alternating-direction implicit method [J]. IEEE Transactions Microwave Theory and Techniques, 1999, 47(10): 2003-2007.
    [58] Zheng F., Chen Z., and Zhang J.. Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method [J]. IEEE Transactions Microwave Theory and Techniques, 2000, 48: 1050-1058.
    [59] Garcia S. G., Lee T.-W., and Hagness S. C.. On the accuracy of the ADI-FDTD method [J]. IEEE Antennas and Wireless Propagation Letters, 2002, 1: 31-34.
    [60] Durbano J.P., Ortiz F.E., Humphrey J.R., Mirotznik M.S., and Prather D.W.. Hardware implementation of a three-dimensional finite-di?erence time-domain algorithm [J]. IEEE Antennas and Wireless Propagation Letters, 2003, 2: 54-57.
    [61] Zheng H.-X. and Leung K. W.. An efficient method to reduce the numerical dispersion in the ADI-FDTD [J]. IEEE Transactions Microwave Theory and Techniques, 2005, 53(7): 2295-2301.
    [62] Wang S., Teixeira F. L., and Chen J.. An iterative ADI-FDTD with reduced splitting error [J]. IEEE Antennas and Wireless Propagation Letters, 2005, 15(2): 92-94.
    [63] Ahmed I. and Chen Z.. Error reduced ADI-FDTD methods [J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4: 323-325.
    [64] Zhao P.. Improvement on the numerical dispersion of 2-D ADI-FDTD with artificial anisotropy [J]. IEEE Antennas and Wireless Propagation Letters, 2004, 14(6): 292-294.
    [65] Pereda J. A., Vielva L. A., Vegas A., and Prieto A.. Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz Criterion [J]. IEEE Transactions Microwave Theory and Techniques, 2001, 49(2): 377-381.
    [66] Hwang K.-P. and Ihm J.-Y.. A stable fourth-order FDTD method for modeling electrically long dielectric waveguides [J]. J. Lightwave Technological, 2006, 24(2): 1048-1056.
    [67] Chen J., Wang J., and Tian C.. Three-dimensional hybrid implicit-explicit finite-difference time-domain method in the cylindrical coordinate system [J]. IET Microwaves, Antennas & Propagation, 2009, 3(8): 1254-1261.
    [68] Mur G.. Absorbing boundary conditions for the ?nite-di?erence approximation of the time-domain electromagnetic ?eld equations [J]. IEEE Transactions on Electromagnetic Compatibility, 1981, EMC-23(4):377-382.
    [69] Berenger J.. Three-dimensional perfectly matched layer for the absorption of electromagnetic waves [J]. J. Comput. Phys., 1996, 127(2):363-379.
    [70] Teixeira F. L. and Chew W. C.. Systematic derivation of PML absorbing media in cylindrical and spherical coordinates [J]. IEEE Microwave and Guided Wave Letters, 1997, 7(11): 371-373.
    [71] Pardo D., Demkowicz L., and Torres-Verdn C. et.al. PML enhanced with a self-adaptive goal-Oriented hp ?nite-element method: simulation of through-casing borehole resistivity measurements [J]. SIAM J. Sci. Comput., 2008, 30(6): 2948-2964.
    [72] Shibayama J., Muraki M., and Yamauchi J. et.al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme [J]. Electronics Letters, 2005, 41(19): 1046-1047.
    [73] Ahmed I., Chua E. K., and Li E.-P. et.al. Development of the three-dimensional unconditionally stable LOD-FDTD method [J]. IEEE Transactions on Antennas and Propagation, 2008, 56(11): 3596-3600.
    [74] Li E., Ahmed I., and Vahldieck R.. Numerical dispersion analysis with an improved LOD-FDTD method [J]. IEEE Microwave and Wireless Components Letters, 2007, 17(5): 319-321.
    [75] Jung K.-Y. and Teixeira F. L.. An iterative unconditionally stable LOD-FDTD method [J]. IEEE Microwave and Wireless Components Letters, 2008, 18(2): 76-78.
    [76] Fu W. and Tan E. L.. Stability and dispersion analysis for higher order 3-D ADI-FDTD method [J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3691-3696.
    [77] Liu G.. S., Zhang G.. J., and Hu B. J.. Numerical analysis for an improved ADI-FDTD method [J]. IEEE Microwave and Wireless Components Letters, 2008, 18(9): 569-571.
    [78] Sun G. and Trueman C. W.. Unconditionally stable crank-nicolson scheme for solving the two-dimensional Maxwell’s equations [J]. Electronics Letters, 2003, 39(7): 595-597.
    [79] Yang Y., Chen R. S., and Ding D. Z., et.al. Application of iterative solvers in 3D crank-nicolson FDTD method for simulating resonant frequencies of the dielectric cavity [J]. Proceedings of Asia-Pacific Microwave Conference, 2007, 1-5: 2085-2088.
    [80] Furse C. M., Roper D. H., and Buechler D. N.. The problem and treatment of DC offsets in FDTD simulations [J]. IEEE Transactions Antennas and Propagation, 2000, 48(8): 119-1201.
    [81] Furse C. M.. Faster than Fourier: Ultra-ef?cient time to frequency-domain conversions for FDTD simulations [J]. IEEE Antennas and Propagation Magazine, 2000, 42(6): 24-34.
    [82] Chew W. C.. The singularities of a fourier-type integral in a multicylindrical layer problem [J]. IEEE Transactions on Antennas Propagation, 1983, AP-31(4): 653-655.
    [83] Chew W. C. Waves and fields in inhomogeneous media [M]. Piscataway, NJ: IEEE, 1975.
    [84] Bittar M. and Rodney P.. The effect of rock anisotropy on MWD electromagnetic wave resistivity sensors [J]. Log Analyst, 1996, 37(1): 20-30.
    [85] Graciet S. and Shen L. C.. Theory and numerical simulation of induction and MWD resistivity tools in anisotropic dipping beds [J]. Log Analyst, 1998, 39(1): 24-37.
    [86] Li J. and Liu C.. A 3-D transmission line matrix method (TLM) for simulations of logging tools [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1522-1529.
    [87] Wang T. and Fang S. 3-D electromagnetic anisotropy modeling using ?nite differences [J].Geophysics, 2001, 66(5):1386-1398.
    [88] Vilenkin N. J.. Special functions and the theory of group representations [M]. Providence RI: Amer. Math. Soc., 1968.
    [89] Jin J. The finite element method in electromagnetics [J]. The 2nd edition. Wiley-Interscience, 2002.
    [90] Volakis J. L., Chatterjee A., and Kempel L. C.. Finite element method for electromagnetics [M]. IEEE Press: New York, 1998.
    [91] Anderson B., Liu Q. H., and R. Taherian et.al. Interpreting the response of the electromagnetic propagation tool in complex lithologies [J]. Log Analyst, 1994, 35: 65-83.
    [92] Jakoby, B.. Scattering of obliquely incident waves by an impedance cylinder with inhomogeneous bianisotropic coating [J]. IEEE Transactions on Antennas and Propagation, 1997, 45(4): 648-655.
    [93] Li Q., Bratton T., and Smits J. et.al. Field examples of LWD array resistivity interpretation in complex wellbore environments [C]. SPWLA, 2002.
    [94] Alexopoulos A. Resonance effects in electromagnetic propagation using a modified J.W.K.B. approach [J]. IEEE Conference on Radar, 2006: 288-295.
    [95] Abramowitz M. and Stegun I. A.. Handbook of Mathematical Functions [M]. Tenth printing. National Bureau of Standards, 1972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700