MIMO-OFDM系统实现方案及盲估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从20世纪末到21世纪初,无线通信技术在全世界范围内以前所未有的速度向前发展,人们对通过无线方式随时随地接入因特网获取信息以及在手机上实现更多多媒体业务的需求也显得日益迫切,这就为新一代无线通信系统的产生打下了一个坚实的市场基础,同时也吸引了全世界范围内众多科研人员投入到新的无线通信技术的研究中。
     MIMO技术和OFDM技术是未来无线通信系统中的2个重要的技术,而将MIMO技术和OFDM技术结合在一起形成的MIMO-OFDM系统能够使频谱效率得以成倍提高,也能使信道容量得到提高;同时大大降低在多径环境下的接收机复杂度,因此成为了未来无线通信系统中的核心解决方案。为了在未来无线通信系统中充分发挥MIMO-OFDM系统的优越性能,需要对MIMO-OFDM系统中的编解码、系统方案、信道分析、信道估计及实现等方面进行更深入的研究。
     本文对MIMO-OFDM系统的方案进行了深入的研究,提出了具有更低运算量更好误码率性能的TR-STBC-OFDM系统方案;在此基础上利用几何方法推导出了多信道间相关系数的封闭解表达式,分析了相关性对MIMO-OFDM系统的影响;为了更好地提高TR-STBC-OFDM系统的频谱利用率及性能,对基于二阶统计特性的信道盲估计技术进行了研究,提出了在接收天线数少于或等于发射天线数情况下的信道估计方法,克服了子空间方法及线性预测方法在这方面的不足。
     本文的主要工作包括:
     一、针对传统的MIMO-OFDM系统,提出了发射天线数为2和3、发射信号为实信号及复信号下的一种新的解码方法。该解码方法将信道矩阵与编码矩阵结合在一起,使得在进行空时解码的过程中,不仅完成了空时解码,而且还可同时将复信号映射为实信号,为接收机后续工作的进行提供了更便利的条件,有助于简化接收机的设计。
     二、将TR-STBC编码技术与OFDM技术结合起来,提出了2种新的MIMO-OFDM系统方案。这两种方案一方面利用了TR-STBC编码技术的优势,使得在频率选择性信道下,较传统的STBC编码技术能在不损失分集增益的前提下更方便地将多发天线转换为单发天线;另一方面通过采用OFDM技术,能够将频率选择性信道方便地转换为一组频率平坦性信道,大大简化了接收机的结构。除了以上提到的优点外,本文所提出的2种TR-STBC-OFDM系统方案还具有如下优点:
     (1)、本文提出的TR-STBC-OFDM系统方案1在发射端首先进行1次IFFT运算完成OFDM调制后再进行TR-STBC编码;在接收端先进行TR-STBC解码再进行一次FFT运算完成OFDM解调。通过这样的操作流程,TR-STBC-OFDM系统方案1较传统的MIMO-OFDM系统减少了运算量,同时通过仿真实验可看到本文提出的TR-STBC-OFDM系统方案1具有更好的误码率性能。
     (2)、本文提出的TR-STBC-OFDM系统方案2在发射端进行IFFT运算的次数与传统的MIMO-OFDM系统相同,但减少了进行IFFT运算的点数,在接收端进行FFT运算的次数与发射天线数相同,但每个FFT运算的点数都得到了减少。通过这样的操作,从另一个角度减少了系统的运算量,同样通过仿真实验可看到本文提出的TR-STBC-OFDM系统方案2具有更好的误码率性能。
     三、建立了MIMO-OFDM系统背景下微小区中无线信道间相关系数的封闭解表达式。该封闭解表达式是基于通用的微小区椭圆信道模型,利用几何方法进行推导而得到。仿真结果指出由于在微小区中具有丰富的散射体,所以不论是在基站(BS)端附近还是在移动台(MS)端附近,都具有较大的角度扩展,在较小天线阵元间距时无线信道间亦能达到较小的相关性,因此本文提出在微小区中可以设置较小的收/发端天线阵阵元间距,达到一个较小的相关系数。该结论能够帮助设定3GPP的SCM模型的相关系统参数,更好地为系统方案及算法的验证服务。
     四、针对本文提出的TR-STBC-OFDM系统中下行链路的情况,提出了基于二阶统计特性的信道盲估计技术在接收天线数等于或少于发射天线数情况下进行信道盲估计的方法。该方法充分利用了TR-STBC-OFDM系统中TR-STBC技术带来的新特性,利用矩阵变换工具,方便地将接收天线数少于或等于发射天线数的系统转化为接收天线数大于发射天线数的系统,从而满足了基于二阶统计特性的子空间法、线性预测方法等信道盲估计方法要求接收天线数大于发射天线数的条件。通过信道盲估计技术的研究也可以看到,本论文中所提出的TR-STBC-OFDM系统方案较传统的MIMO-OFDM系统方案不仅仅能够减少运算量提高误码率性能,而且能够为基于二阶统计特性的信道盲估计方法在下行链路中的使用提供强有力的支持。
From the end of the 20th century to the beginning of the 21st century, the wireless communication technology develops forward within the whole world range with hitherto unknown speed. People also appears gradually urgent to the need for gaining information and realizing more medium business on mobile telephone at any time and any place. It establishes solid market base for the generation of the new generation wireless communication system, at the same time it has attracted a lot of scientific research personnel.
     MIMO and OFDM are two important techniques in future wireless communication system. MIMO-OFDM system, which combines MIMO with OFDM, can improve spectrum efficiency, the channel capacity and simplify the receiver structure under the multipath environment. So MIMO-OFDM is a key scheme for the future wireless communication system. Based on the importance of MIMO-OFDM, the encoding/decoding scheme, system scheme, channel analysis, channel estimation and system implementation are studied by more research personnel.
     In this thesis, the author deeply studied the MIMO-OFDM scheme. The TR-STBC-OFDM with lower compute complexity and better BER performance is brought forward. The channel correlation coefficient in microcellular has been derived by making use of geometry method. And the blind channel estimation algorithms which is based on second order statistics are studied under the TR-STBC-OFDM system.
     The main contributions of the thesis include:
     1. A novel decoding scheme for MIMO-OFDM system is brought forward. In this scheme, channel matrix is combined with encoding matrix to form new decoding matrix. Through this decoding matrix the complex signal is converted conveniently into real signal, at the same time the space-time decoding is completed.
     2. Combining TR-STBC technology with OFDM technology to form two novel TR-STBC-OFDM system schemes. In these two novel schemes, TR-STBC is adopted to convert multiple transmitting antennas into single transmitting antenna; OFDM is adopted to convert frequency-selective channel into a group of frequency-flat channels.
     1) TR-STBC-OFDM system scheme 1 changes the position of OFDM modulator and space-time encoder, so it only need one IFFT at transmitter and one FFT at receiver. Through this way, TR-STBC-OFDM system scheme 1 cuts down the compute complexity. Simulation results indicate that TR-STBC-OFDM system scheme 1 has better BER performace than tranditional MIMO-OFDM system.
     2) TR-STBC-OFDM system scheme 2 also changes the position of OFDM modulator and space-time encoder. At transmitter, the times of IFFT is the same with the tranditional MIMO-OFDM system but it decreace the points of the IFFT; at receiver the times of FFT is equal with the transmitting antennas and the points of the FFT are also decreased. Through this way, TR-STBC-OFDM system scheme 2 cuts down the compute complexity. Simulation results indicate that TR-STBC-OFDM system scheme 2 also has better BER performace than tranditional MIMO-OFDM system.
     3. Making use of geometry method to analyze the correlation of the wireless channel and the close expression of the correlation coefficient is derived. Here, the ellipse model is adopted, because it can better describe the microcellular which has rich scatters. These results can effectively help the design of the MIMO-OFDM system and the analysis of the correlation in MIMO-OFDM system.
     4. The blind channel estimation which is based on the second order statistics has been studied. The method for the situation that the receiving antennas are less or equal the transmitting antennas in downlink is brought forward. Under the TR-STBC-OFDM system, through the new characteristic of TR-STBC, 2 transmiting antennas 2 receiving antennas system can be converted into 2 transmiting antennas 4 receiving antennas system, and 3 transmiting antennas 1 receiving antenna system can be converted into 3 transmiting antennas 4 receiving antennas system. Through this way, the condition that the receiving antennas must be more than transmitting antennas in blind channel estimation algorithm which is based on the second order statistics is satisfied One hand this result can help the application of the blind channel estimation algorithm in downlink, at another hand, it indicates the TR-STBC-OFDM system brought forward by this thesis can powerfully support the application of the blind channel estimation which is based on second order statistics.
引文
[1] Qi Bi, et al. Wireless mobile communication at the start of the 21st century. IEEE Commun. Mag., 2001, 39(1):110-116
    [2] L. J. Cimini, Jr, et al. Advanced Cellular Internet Service(ACIS). IEEE Commun. Mag., 1998, 36(10):150-159
    [3] Eric A. Berver, et al. A network architecture for heterogeneous mobile computing. IEEE Personal Communications, 1998, 10:8-24
    [4] J. Chuang, N. Sollenberger. Beyond 3G: Wideband wireless data access basedon OFDM and dynamic packet assignment. IEEE Commun. Mag., 2000, 38(7):78-87
    [5] 李剑峰等.高速蜂窝因特网体系结构的关键问题.电信技术,2003,6:25-28
    [6] Zysman. G. Y. Tarallo. J. A. Howard. R. E, et al. Technology evolution for mobile and personal communications. BLTJ, 2000 Jam-Mar: 107-129
    [7] 罗涛,乐光新等.多天线无线通信原理与应用.北京:北京邮电大学出版社,2005,1-5
    [8] Bria A. Gessler F. Queseth O, et al. 4th-Generation Wireless Infrastructures: Scenarios and Research Challenges. IEEE Personal Communications, Dec. 2001.8(6):25-31
    [9] Y Kim, et. al. Beyond 3G: Vision. Requirements, and Enabling Technologies. IEEE Comm. Magazine. Mar. 2003, 40(3):120-124
    [10] Blostein, S. D.. Multiple antenna systems their role and impact in future wireless access, IEEE Comm. Mag, Jul. 2003. 41(7):94-101
    [11] Gordon L. Stuber, John R. Barry, Steve W. Mclaughlin, Ye(Geoffrey) Li, Mary Ann Ingram, Thomas G. Pratt. Broadband MIMO-OFDM Wireless Communications. Proceedings of the IEEE, February, 2004, 92(2):271-294
    [12] Arogyaswami J. Paulraj, Dhananjay A. Gore, Rohit U. Nabar, Helmut Bolcskel. An Overview of MIMO Communications—A Key to Gigabit Wireless. Proceedings of the IEEE, February, 2004, 92(2):198-218
    [13] Yonghong Zeng, Tung-Sang Ng. A Semi-Blind Channel Estimation Method for Multiuser Multiantenna OFDM Systems. IEEE Transactions on Signal Processing, May 2004, 52(5):1419-1429
    [14] Hongwei Yang. A Road to Future Broadband Wireless Access:MIMO-OFDM-BASED Air Interface. IEEE Communications Magazine, January 2005, 43(1):53-60
    [15] Foschini G. J.. Layered space-time architecture for wireless communication in fading environment when using multi-element antennas. Bell Labs Tech. J. 1996, 1(2):41-59
    [16] Telatar I. E. Capacity of multi-antenna Gaussian channels, European Trans. On Telecomm. Nov. /Dec. 1999, 10(6): 585-595
    [17] Foschini G. J and Gans M. J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications. 1998, 6(3): 311-335
    [18] Stridh R. Karlsson P. Ottersten B. MIMO channel capacity on a measured indoor radio channel at 5. 8 GHz. In Proceedings of the Asilomar Conference on Signals, Systems and Computers, October 2000,1(1): 895- 903
    [19] Tarokh V. Seshadri N. and Calderbank A. R. Space- time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans. Inf. Theory, March 1998, 44(2):744 - 765
    [20] Wolniansky P. W. Foschini G. J. Golden G. D, et al. V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. Signals, Systems, and Electronics, 1998, 1(1) :295 - 300
    [21] Foschini G. J.. Layered space-time architecture for wireless communication in fading environment when using multi-element antennas. Bell Labs Tech. J. 1996, 1(2): 41-59
    [22] ITU-R.M. 1225. Guidelines for evalution of radio transmission technologies for IMT-2000.1997
    [23] Jim K. Proud. Applying COST259 Channel Models to UMTS Uplink System-level Simulations with Smart Antennas. IEEE Trans. on Communication, Oct 2000, 37(9):1439-1448
    [24] Pedersen K.I. Andersen J. B. Kermoal J. P, et al. A stochastic multiple-input multiple-output radio channel model for evaluation of space-time coding algorithms. Proc. IEEE Vehi. Tech. Conf. (VTC' 00 Fall), Boston, MA USA, Sept. 2000:893-897
    [25] Al-Dhahir N. FIR channel-shortening equalizers for MIMO ISI channels. IEEE Trans. Commun., Feb. 2001, 49(2) :213 - 218
    [26] Bauch G and Naguib A. MAP equalization of space - time coded signals over frequency selective channels. In Proc. Wireless Commun. Networking Conf. (WCNC), Sept. 1999. : 261-265
    [27] Jongren G. Skoglund M. Ottersten B, et al. Combining beamforming and ortho-gonalspace- time block coding. IEEE Trans. Inform Theory, 2002, 48(3):611-627
    [28] Tarokh V. Jafarkhani H. Calderbank A. R. Space-time Block codes from orthogonal designs. IEEE Trans. Inf. Theory, July 1999, 45(5):1456-1467
    [29] Tarokh V. Naguib A. Seshadri N, et al. Combined array processing and space-time coding. IEEE Trans. on Inf. Theory, May 1999, 45(4):1121 - 1128
    [30] Su Hsuan-Jung. Space-time turbo codes with full antenna diversity. IEEE Trans. Comm., Jan. 2001, 49(1): 47-57
    [31] S. Weinstein and P. Ebert. Data transmission by frequency division multiplexing using discrete Fourier transforms. IEEE Trans. Commun. Tech., Oct. 1971, COM-19:pp. 628-634
    
    [32] A. Peled and A. Ruiz. Frequency domain data transmission using reduced computational complexity algorithms. ICASSP' 80, April 1980, 3(9-11):964-967
    [33] B.Muquet, et al. Cyclic prefixing or zero padding for wireless multicarrier transmissions. IEEE Trans. On Comm., Dec. 2002, 50(2):2136-2148
    [34] W. Y. Zou and Y. Wu. COFDM: an overview. IEEE Trans. On Broadcasting, Mar.1995, 41(1): 1-8
    [35] N. Dinur and Dov Wulich. Peak-to-average power ratio in high-order OFDM. IEEE Trans. On Comm., Jun. 2001, 49(6):1063-1072
    [36] J.Armstrong. Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM. IEEE Trans. Commum., Mar. 1999, 47(3):365-369
    [37] J. Chuang and N. Sollenberger. Beyond 3G: Wideband Wireless Data Access Based on OFDM and Dynamic Packet Assignment. IEEE Communications Magazine, July 2000, 38(7):78-87
    [38] H. Bolcskei, D. Gesbert, and A. J. Paulraj. On the capacity of OFDM-based spatial multiplexing systems. IEEE Trans. On Commun., Feb. 2002, 50(2):225 - 234.
    [39] Y. Gong and K. B. Letaief. An efficient space-frequency coded wideband OFDM system for wireless communications. Proc. IEEE ICC, 2002, 1(2):475-479
    [40] D. Agrawal, V. Tarokh, A. Naguib, and N. Seshadri. Space-time coded OFDM for high data-rate wireless communication over wideband channels. In IEEE Vehicular Technology Conference, 1998, 3(1): 2232-2236
    [41] Y. (G.) Li, N. Seshadri, and S. Ariyavisitakul. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. IEEE J. Select. Areas Commun., Mar. 1999, 17(2):461 - 471
    [42] H. Sampath, et al. A Fourth-Generation MIMO-OFDM Broadband Wireless System: Design, Performance, and Field Trial Results. IEEE Communications Magazine, Sep. 2002, 40(9):143-149
    [43] Y. (G.) Li. Simplified Channel Estimation for OFDM Systems With Multiple Transmit Antennas. IEEE Trans. On Wirel. Commum., Jan. 2002, 1(1):67-75
    [44] King F. Lee and Douglas B. Williamos. Pilot-Symbol-Assisted Channel Estimation for Space-Time Coded OFDM Systems. EURASIP Journal on Applied Signal Processing 2002, 5(1):507-516
    [45] T. S. Rappaport. Wireless communications: principles & practice. 北京:电子工业出版社, 1998
    [46] B. Sklar. Rayleigh fading channels in mobile digital communication systems part1:characterization. IEEE Communications Magazine, 1997, 35(9):136-146
    [47] B. Sklar. Rayleigh fading channels in mobile digital communication systems part2: Mitigation. IEEE Communications Magazine, 1997, 35(9):148-155
    [48] L. C. Godara. Applications of Antenna Arrays to Mobile Communications, Part I: Performance Improvement, Feasibility, and System Considerations. Proceedings of the IEEE, 1997, 85(7):1031-1060
    [49] Arogyaswami J. Paularj and Constantinos B. Papadias. Space-Time Processing for Wireless Communications. IEEE Signal Processing Magzine, 1997,11(1):126-132
    [50] J. H. Winters. Smart Antenna for Wireless Systems. IEEE Personal Communications, 1998, 1(2): 23-27.
    [51] Arogyaswami J. Paulraj, et al. Space-Time Modems for Wireless Personal Comm. IEEE Personal Communications, 1998, 1(2):36-48.
    
    [52] J. G. Proakis, Digital Communications, 4th Ed. New York:McGraw-Hill
    [53] Yingbo Hua. Senjian An and Yong Xiang. Blind Identification of FIR MIMO Channels by Decorrelating Subchannels. IEEE Trans. On Signal Processing, May. 2003, 51(5):1143-1155
    [54] A. J. Paulraj, R. Narbar and D. Gore. Introduction to Space-Time Wireless Communications. 影印版.北京:清华大学出版社, 2005.6
    [55] E. Telatar. Capacity of multi-antenna Gaussian channels. Euro Trans Tele., 1999, 10(6): 585-595
    [56] G. J. Foschini and M. J. Gans. On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Commun., Mar. 1998, 6(3):315-335
    [57] L. Shao and S. Roy. Rate-one space-frequency block codes with maximum diversity for MIMO-OFDM. IEEE Trans. Wireless Commun., July 2005, 4(4):1674-1687
    [58] H. sampath et al. A fouth-generation MIMO-OFDM broadband wireless system: design, performance and field trial results. IEEE Commun. Mag., Sep. 2002, 40(1): 143-149
    [59] Gordon L.Stuber, John R.Barry, Steve W.Mclaughlin, Ye(Geoffrey) Li, Mary Ann Ingram, Thomas G. Pratt. Broadband MIMO-OFDM Wireless Communications. Proceedings of the IEEE, February, 2004, 92(2):271-294
    [60] Arogyaswami J. Paulraj, Dhananjay A. Gore, Rohit U. Nabar, Helmut Bolcskel. An Overview of MIMO Communications-A Key to Gigabit Wireless. Proceedings of the IEEE, February, 2004, 92(2):198-218
    [61] Yonghong Zeng, Tung-Sang Ng. A Semi-Blind Channel Estimation Method for Multiuser Multiantenna OFDM Systems. IEEE Transactions on Signal Processing, May 2004, 52(5):1419-1429
    [62] Hongwei Yang. A Road to Future Broadband Wireless Access:MIMO-OFDM-BASED Air Interface. IEEE Communications Magazine, January 2005, 43(1):53-60
    [63] Murat Uysal, Naofal Al-Dhahir, Costas, N. Georghiades. A Space-Time Block-Coded OFDM Scheme for Unknown Frequency-Selective Fading Channels. IEEE Communication letters, October 2001, 5(10):393-395
    [64] Chan-Byoung Chae, Marcos Katz, Changho Suh, Hongsil Jeong. Adaptive Spatial Modulation for MIMO-OFDM. WCNC 2004/IEEE Communication Society :87-92
    [65] Kwie, Yok, Kuan, S. Suthaharan, A. Nallanathan. An Adaptive Channel Estimation Scheme for OFDM System with Transmitter Diversity. Globecom 2003:873-877
    [66] Zhengrong xiao, shaogang zhao, weiling wu. A New Differential Space-Time Coded OFDM System. IEEE 6th CAS Symp. On Emerging Technologies: Mobile and Wireless Comm. Shang hai, china, May 31- June 2, 2004: 813-817
    [67] S.N. Diggavi, N. Al-Dhahir, A. Stamoulis, A. R.Calderband. Differential Space-Time Coding for Frequency-Selective Channels. IEEE Communications letters, June 2002, 6(6):253-255
    
    [68] Branka Vucetic, Jinhong Yuan. Space-Time Coding. Australia: Wiley, 2004:90-110
    [69] S. N. Diggavi, N. Al-Dhahir, A. Stamoulis, A. R. Calderband. Differential Space-Time Coding for Frequency-Selective Channels. IEEE Communications letters, June 2002, 6(6):253-255
    [70] Erik Lindskog, Arogyaswami Paulraj. A Transmit Diversity Scheme for Channels with Intersymbol Interference. ICC 2000, 1:307-311
    [71] Petre Stoica, Erik Lindskog. Space-Time Block Coding for Channels with Intersymbol Interference. IEEE, 2001, 1(1):252-256
    [72] Eric G. Larsson, Petre Stoica, Erik Lindskog, Jian Li. Space-Time Block Coding For Frequency-Selective Channels. IEEE, 2002,1(1):2405-2408
    [73] Erik Lindskog, Dino Flore. Time-Reversal Space-Time Block Coding and Transmit Delay Diversity Separate and Combined. IEEE, 2000, 1(1):572-577
    [74] Dino Flore and Erik Lindskog. Time-Reversal Space-Time Block Coding Vs. Transmit Delay Diversity -A Comparison Based on a GSM-like System. Proc. 9th DSP Workshop:1-5
    [75] Suhas. N. Diggavi, Naofal Al-Dhahir, A. R. Calerbank. Algebraic Properties of Space-Time Block Codes in Intersymbol Interference Multiple-Access Channels. IEEE Transactions on, 2003,6(12):1023-1027
    [76] A. L. F. de Almeida, W. C. Freitas. Jr, F. R. P. Cavalcant, etc. A Two-Stage Reveiver for Co-channel Interference Cancellation in Space-Time Block-Coded Systems over Frequency Selective Channels. IEEE, 2000,1(1):238-242
    [77] R. Schober, H. Chen, and W. Gerstacker. Decision-Feedback Sequence Estimation for Time-Reversal Space-Time Block Coded Transmission. WCNC 2004/IEEE Communications Society: 1222-1227
    [78] Kishore Mehrotra, Ian Vince Mclonghlin. Time Reversal Space-Time Block Coding with Channel Estimation and Synchronization errors. IEEE, 2001,1(1):138-142
    [79] Mari Kobayash. A Low-complexity Approach to Space-Time Coding for Multipath Fading Channels. Eurasip Journal on Wireless Communications and Networking, March 2005, 1(1):437-446
    [80] Hakam Mheidat and Murat Uysal, Naofal Al-Dhahir. Comparative Analysis of Equalization Techniques for STBC with Application to EDEG. IEEE Communications Society 2004, 1(1):1012-1016
    [81] Shengli Zhou, Georgios B. Giannakis. Single-Carrier Space-Time Block-Coded Transmissions Over Frequency-Selective Fading Channels. IEEE Transactions on information theory, January 2003, 49(1):744-748
    [82] Shengli Zhou, Georgios B. Giannakis. Space-Time Coded Transmissions with Maximum Diversity Gains Over Frequency Selective Multipath Fading Channels. IEEE Communications Society, 2001,1(1):2011-2015
    [83] Shengli Zhou Georgios B.Giannakis. Space-Time Coding with Maximum Diversity Gains Over-Frequency Selective Fading Channles. IEEE Signal Processing Letters, October 2001, 8(10):229-233
    [84] Christof Jonietz, Wolf gang H. Gerstacker, Robert Schobes. Space-Time Block Coding and Receive Diversity for WLAN IEEE 802.11b. ICC, 2005:1012-1015
    [85] Frederik Petre, Geert Leus, Luc Deneire. Marc, Engels. Marc Moonen, Hugo Deman. Space-Time Block Coding for Single Carrier Block Transmission DS-CDMA Downlink. IEEE Journal on Selected Areas in Communications, April 2003, 21(3):351-357
    [86] K. C. B. Wavegedara, Dejan Djonin and Vijay. K. Bhargava. Space-Time Coded Uplink Transmission with Decision Feedback Sequence Estimation. IEEE Communications Society Globecom 2004:587-596
    [87] Bertrand Hochwald, Thomas L. Marzetta, B. Papadias. A Transmitter Diversity Scheme for Wideband CDMA Systems Based on Space-Time Spreading. IEEE Journal On Selected Areas in Communications, January 2001, 19(1):48-60
    [88] M. F. Fop, et al. Limitations of sum-of-sinusoids fsding channel simulators. IEEE Trans. On Comm, April. 2001, 49(4):699-708
    [89] D. J. Young, et al. The generation of correlated Rayleigh random variates by inverse discrete Fourier transform. IEEE Trans. On Comm., Jul. 2000, 48(7):1114-1127
    [90] K. Yu and B. Ottersten. Models for MIMO propagation channels-An overview. Wirel. Commun. Mob. Comput., 2002; 2(1):653 - 666
    [91] 3GPP. Physical Layer-general description. 3GPP Technical Specification, TS 25.202. March 2002, Available From www.3gpp.org
    [92] 3GPP. Physical Channels And Mapping Of Transport Channels On To Physical Channels(FDD). 3GPP Technical Specification, TS 25.211. March 2002, Available From www. 3gpp. org
    [93] 3GPP. Physical Layer Aspects Of UTRA High Speed Downlink Packet Access. 3GPP TSG-RAN Technical Report. TR 25. 848. Ver 4. 0. 0, 2001
    [94] 3rd Generation Partnership Project. Spatial Channel Model for Multiple Input Multiple Output (MIMO) simulations, Technical Specification Group Radio Access Network, TR 25.996. June 2003
    [102] J. H. Winters. On the capacity of radio communications systems with diversity in Rayleigh fading environments. IEEE J. Selected Areas Comm., 1987, 5(1) :871-878
    [103] G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading environment when using multiple antennas. IEEE Wireless Personal Communications, 1998, 6:311-335
    
    [104] W. C. Jakes. Microwave Mobile Communications. IEEE Press, 1974
    [105] W. C. Y. Lee. Effects on correlation between two mobile radio base-station antennas. IEEE Trans. Comm., 1973, 21 (1): 1214-1224
    [106] J. Fuhl, A.. Molisch , and E. Bonek. Unified channel model for mobile radio systems with smart antennas. IEEE Proc. Radar, Sonar and Navigation, 1998, 145(1): 32-41
    [107] Andreas F. Molisch. A generic model for MIMO wireless propagation channels. IEEE, 2002: 655-659
    [108] li Abdi, M. K. A Space-Time Correlation Model for Multielement Antenna Systems in Mobile Fading Channels. IEEE Journal on selected areas in communications, 2002, 20(3): 550-560
    [109] F. Molisch, A. A channel model for MIMO systems in macro- and microcelular environments. IEEE, 2002: 277-282
    [110] 庄铭杰.计算机仿真无线 Rice 衰落信道的实现方法.电波科学学报, 2004, 19(5): 632-637
    [111] 金荣洪,耿军平,江冉,范瑜.倾斜天线蜂窝系统的双向信道优化模型.电波科学学报,2004,19(5).596-602
    [112] 高电波.戴逸松.卫星移动通信信道模型研究及仿真分析.电波科学学报,2001,16(4):508-512
    [113] S. Y. Seidel. UHF Indoor Radio Channel Models for Multipath Propagation Statistic for European Cities for Digital Cellular and Microcellular Radiotelephone. IEEE Trans. On Vehicular Technology, 1991, 40(4): 721-730
    [114] J. C. Liberti. Analysis of CDMA Cellular Radio Systems Employing Adaptiv Antennas. Ph. D. Dissertation MPRG-TR-95-17, Mobile & Portable Radio Research Group, Virginia Tech, Blacksburg, VA, 1995
    [115] J. C. Liberti, and T. S. Rappaport. A Geometrically Based Model for Line-of-Sight Multipath Radio Channels. IEEE Vehicular Technology Conf., 1996: 844-848
    [116] Matthias Stege, J. J., Marcus Bronzel, Gerhard Fettweis. A Multiple Input-Multiple Output Channel Model for Simulation of TX- and RX- Diversity Wireless Systems. IEEE, 2000, 1(1): 833-839
    [117] Svantesson, T. A. Physical MIMO Radio Channel Model for Multi-Element Multi-Polarized Antenna Systems. IEEE Comm. Mag., 2001, 1(1): 1083-1087
    [118] 康桂华.无线MIMO信道的模型、容量、估计和实现算法研究.浙江:浙江大学信息科学与工程学院,2004
    [119] 李焱,张璐,许家栋.基于移动端多天线系统的无线衰落信道模型.电波科学学报,2003,18(6):712-716
    [120] G. B. Giannakis and J. M. Mendel. Identification of nonminimum phase systems using higher-order statistics. IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-37, March 1989, 37(3):360-377,
    [121] D. Hatzinakos and C. L. Nikias. Blind equalization using a tricepstrum based algorithm. IEEE Trans. Commun., May 1991, COM-39:669-681
    [122] C. L. Nikias and A. P. Petropulu. High-Order Spectra Analysis. Englewood Cliffs. NJ:Prentice-Hall, 1993
    [123] B. Porat and B. Friedlander. Blind equalization of digital communication channels using high-order moments. IEEE Trans. Acous. Speech Signal Proc., Feb. 1991, vol. ASSP-39:522-526
    [124] Z.Jane Wang, Zhu Han, and K.J.Ray Liu. AMIMO-OFDM Channel Estimation Approach Using Time of Arrivals. IEEE Transactions on Wireless Communications, May 2005, 4(3):1207-1214
    [125] Liang Dong, Xiuying Cao, Guangguo Bi. Parametric Channel Estimation for OFDM Systems in Time-Varying Environment Based on Subspace Projecting and Tracking. First International Conference on Communications and Networking in China, 2006:1-6
    [126] Daofeng Xu, Luxi Yang. Subspace-Based Blind Channel Estimation for STBC-OFDM. ICASSP 2006, 4:4-6
    [127] Feifei Gao, Nallanathan, A. Subspace-Based Blind Channel Estimation for SISO, MISO and MIM0 OFDM Systems. IEEE International Conference on Communications, 2006,7:3025-3030.
    [128] Ding Z, Ward D. B., Abhayapala T. D. Semi-blind channel estimation for precoded STBC systems over correlated MIMO channels. IEE/EURASIP Conference on DSPenabledRadio, 2005:1-8
    
    [129] D. N. Godard. Self-recovering equalization and carrier tracking in two dimension-nal data communication systems. IEEE Trans. Commun., Nov. 1980, vol.COM-28:1867-1875
    [130] O. Shalvi and E. Weinstein. New criteria for blind deconvolution of nonminimum phase systems (channels). IEEE Trans. Inform. Theory, March 1990, 36(1):312-321
    [131] O. Shalvi and E. Weinstein. Universal methods for blind deconvolution. Englewood Cliffs, NJ: Prentice-Hall, 1994
    [132] J. K. Tugnait. On blind identifiability of multipath channels using fractional sampling and second order cyclostationary statistics. IEEE Trans. Inform. Theory, Jan. 1995, vol. IT-41:308-311
    [133] A. Swami and J.M.Mendel. ARMA parameter estimation using only ouput cumulants. IEEE Trans. Speech, Signal Proc., July 1990, vol. ASSP-38:1257-1265
    [134] L. Tong. Identification of multivariate FIR systems using higher-order statistics. In Proc. 1996, Atlanta, GA, May 7-10, 1996 ICASSP:3037-3040
    [135] L. tong, Y. Inouye and R.Liu. A finite-step global convergence algorithm for parameter estimation of multichannel MA processes. IEEE Trans. Signal Proc., Oct. 1992, vol. SP-40:2547-2558
    [136] E. Moulines, P. Duhamel, J-F. Cardoso and S. Mayrargue. Subspace methods for the identification of multichannel FIR filters. IEE Trans. Signal Processing, February 1995, 43(1):516-525
    [137] M. Gurelli and C. Nikias. EVAM: An eigenvector-based algorithm for multichannel blind deconvolution of input colored signals. IEEE Trans. Signal Processing, January 1995, 43(1):783-785
    [138] P. Loubaton. Remarques sur l' identification sous-espace et les bases minimales plynomiales, Technical Report. Ecole Nationale Superieure des Telecommunication, Paris, September 1993.
    [139] A. Gorokhov and P. Loubatou. Subspace based techniques for second order blind separation of convolutive mixtures with temporally correlated sources. IEEE Trans. Circuit and Systems, September 1997, 44(9):813-820
    [140] G. Giannakis. Filter banks for blind channel identification and equalization. IEEE Signal Processing Letters, June 1997, 4(6):184-187
    
    [141] D.Slock. Blind Joint Equalization of Multiple Synchronous Mobile Users Using Oversampling and/or Multiple Antennas, Proc. 1994 Asilomar Conf. on Signals, Systems, and Computers, Nov. 1994:1154-1158
    [142] K. Abed-Meraim, P. Duhamel, D. Gesbert, L. Loubaton, S. Mayrargue, E. Moulines and D. Slock. Prediction Error Methods for Time-Domain Blind Identification of Multichannel Fir Filters, Proc. 1995 IEEE ICASSP, Detroit, MI, May 1995:1968-1971
    [143] Z. Ding. An Outer-Product Decomposition Algorithm for Multichannel Blind Identification. Proc. 8 th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, Corfu, Greece, June 1996:132-135
    [144] Z. Ding. Matrix Outer-product Decomposition Method for Blind Multiple Channel Identification. IEEE Trans. on Signal Processing, 1997, 45(12):3054-3061
    [145] L. Tong and Q. Zhao. Blind Channel Estimation by Least Squares Smoothing. Proc. Int. Conf. on Acoustics, Speech, and Signal Processing, Seattle, WA, May 1998:2345-2355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700