海上风电机组系统动力学建模及仿真分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风力发电产业快速的发展,欧美等国海上风力发电技术已日趋成熟,而我国海上风能的开发刚刚起步。为降低海上发电成本,需要风力发电机组的尺寸和复杂度不断的增加,对我国风力发电机组系统设计水平和制造能力提出了更新、更高的要求。正确地建立大型海上风力发电机组的系统动力学模型并通过仿真分析风力发电机组的性能及运动规律是海上风力发电机组系统设计的一个重要内容。对提高我国海上风力发电机组系统设计水平和制造能力,具有重要意义。
     在国家科技支撑计划项目“5.0MW近海风电机组研制及风能核心技术研究(项目编号:2009BAA22B02)”的资助下,将其子项目“海上风电机组系统动力学建模及仿真分析”的作为研究课题。在综合国内外相关研究的基础上,建立了包括近海风力发电机组风场、风轮气动力、流体动力学、结构动力学和控制模型的多场耦合风力发电机组系统动力学模型。论文完成的主要研究工作有:
     第一章中回顾了海上风力发电的历史发展,分析了现代海上风力发电技术发展的特点,综述了国内外海上风力发电机组风场建模、空气动力学、结构动力学及整机系统动力学建模与仿真的研究现状,从而提出了海上风力发电机组说明了系统动力学仿真分析的研究,给出了论文的主要研究内容,创新点和技术路线。
     第二章研究了海上风场的变化规律,针对于目前广泛使用的Von.karman随机功率谱的不足,分别采用修正Von.karman和Mann随机功率谱表示风速随时间的随机变化,建立不同点的风速互相关函数,通过逆Fourier变换得到风轮叶片上随时间变化风速时间历程。分别给出了叶素动量理论模型、固定尾迹模型以及自由尾迹模型三种空气动力学模型。在Matlab/Simulink下建模,并结合得到湍流风速时间历程,对某2MW海上风力机风轮进行气动分析,为风力发电机组系统动力学模型和空气动力学模型打下基础。
     第三章分别研究了规则波浪理论和不规则波浪理论。对Morison方程在工程上的适用范围进行更好的确定,应用Morison方程对海上风力发电机桩基础的波流力进行计算,并对流场作用于塔筒上的水动力的变化开展了研究。
     第四章在基于变速变桨主控策略基础上,针对变速变桨风力发电机组如何抑制传动链的扭转振动和塔架前后、侧向运动。动态入流以及估计风速,增加了载荷控制环、动态入流控制环以及估计风速前馈控制环,通过时域和频域分析与对比,说明增加的辅助控制环不但有利于降低载荷,减少超调量,同时也提高了控制系统的稳定性。
     第五章建立了基于Kane方法的作大范围运动海上风力发电机组系统的结构动力学模型,并使用假设模态离散化方法对其进行柔性化。将该模型与风场、气动力模型、波浪力模型一起,组成了海上风电机组气-弹-流相互耦合系统动力学模型。以变速变桨控制5MW海上风力发电机组为例,计算了在考虑线性波和非线性波情况与稳态风场和Mann湍流风场下的风力发电机组叶片和塔架的受力和变形情况。
     第六章通过建立浮式平台水动力学模型和锚泊系统动力学模型,并将耦合的水动力载荷与气动载荷加载到该漂浮式风电机组多柔体动力学的模型上,在ADAMS环境下进行风力机结构动态仿真分析。以某NREL5MW基本型数据,对漂浮式风电机组系统动力学模型进行仿真,并对发电机输出功率,叶尖在风轮面内与面外的位移以及浮式平台的摇荡位移进行分析。
     最后,在第七章总结了全文主要内容与成果,并展望了今后的研究工作。
With the rapid development of offshore wind energy, the technology of Europe and U.S. for offshore wind turbine design was matured, and Chinese offshore wind energy development has just started. In order to reduce cost of offshore wind power, it is necessary to the increase of size and complexity of homemade offshore wind turbine. Also it has requested the improvement in wind turbine systematic design technology and manufacturing capacity. A reasonable systematic dynamic model and analysis of performance and dynamic load are important parts for systematic design of MW-class offshore wind turbine. Due to harsh marine environment of offshore wind turbine operation, the performance and extreme load will be impacted greatly. Therefore, a study of dynamics of offshore wind turbine has an important significance for development of offshore wind turbine systematic design and manufacturing capacity.
     The dissertation proposes a study entitled "Study on Systematic Dynamics and Simulation Analysis for offshore Wind Turbine", sponsored by National Support Science and Technology Project "5.0MW offshore wind turbine development and core technology research" (project number: 2009BAA22B02). Based on preliminary studies of foreign and domestic technology, offshore wind turbine systematic dynamic model include wind field model, rotor aerodynamic model, hydrodynamic model, structural dynamic model and advanced control model. In the dissertation, the major work and tasks are summarized as follows:
     In chapter 1, the historical development of offshore wind power generation is reviewed, and the modern development features of technology for offshore wind turbine is analyzed, and offshore wind farm, aerodynamics, hydrodynamics, structural dynamics and whole turbine systematic dynamics of modeling and simulation for foreign and domestic research on offshore wind turbine is summarized. The main research contents——systematic simulation and analysis of multi-field coupled model for offshore wind turbine and innovation and technology roadmap are discussed.
     In chapter 2, the variation pattern of offshore wind farm for offshore wind turbine is studied.the original BEM theory for wind turbine’s rotor was introduced and was modified to take the tip loss correction, yaw error correction and blade azimuth into consideration. The modified BEM model was set up in Simulink. Using the model, the inflow factor, the tangential factor of blade, rotor’s torque and output power was calculated. The Simulink model has taken more correction factors into consideration, and can simulate aerodynamics more correctly; besides, the model is easy to understand and to expand. Comparison between the results and Blade’s showed that the model was credible.
     The chapter 3, the theory of regular and irregular wave is described. The scope which Morison equation was used in project was better determined, and the wave force for the foundation of offshore wind turbine was calculated with Morison equation. In this chapter, the vibration of water dynamic when flow field acted on the tower was also studied.
     In chapter 4,For the requirements of drive train torsional vibration suppression of variable speed variable pitch wind turbine, the for-after and side-side vibration suppression of tower and the speed of dynamic response, the model of load control loop, GDW control loop and estimated wind speed feed forward control loop which were added to the main controller were created based on the variable speed variable pitch control strategy in the fourth chapter.
     In chapter 5, the structural dynamics model of offshore wind turbine which was flexible with the assumed mode discrimination method was established based on Kane method. The model includes the wind field, aerodynamic model, wave force model, form an aero-elasticity-flow coupling system dynamics model of offshore wind turbine. With variable speed variable pitch 5MW offshore wind turbine, for example, the force and deformation situation of wind turbine blade and tower was calculated taking into account linear and nonlinear wave and steady-state wind conditions and Mann turbulent wind field.
     In chapter 6, Dynamics of deep-sea floating wind turbine was analyzed by the computer simulation technology. Firstly the wave dynamics model of floating platform was established. Secondly the force was loaded on the multi-flexible body dynamics mode.And then the whole model and results were turned into ADAMS model. Taking a 5MW wind turbine for example, floating wind turbine system was the analyzed by multi-field coupling dynamic model. The results show that: during operation of the floating wind turbine, its floating platform must withstand great hydrodynamic force, and the dynamic response of whole structure and fluctuation of power are great impacted by the coupling of aerodynamic and hydrodynamic loads. In Chapter 7, the important results and conclusions of the dissertion are summarized the prospect of the research is opened up.
引文
[1]李俊峰,蔡丰波,唐文倩等.2011中国风电发展报告[J].中国可再生能源学会风能专业委员会.2011.
    [2] World wind energy report 2008[R].World Wind Energy Association WWEA, 2009.
    [3] Joe Verrengia.Wind Technology Center Installing a Dynamic Duo[EB/OL]. http:// www.nrel.gov/features/20090821_turbines.html.
    [4] Arthouros Zervos.The European Experience in Wind Power Development[R]. The European wind energy association.2010.
    [5] The U.S. Department of Energy . The IEA Wind Energy Annual Report 2008 [EB/OL].http//www.ieawind.org/.
    [6] 2010中国风电装机统计[R].中国风能协会.2011
    [7] Kitagawa T,Nomura T.A wavelet-based method to generate artificial wind fluctuation data[J].Wind Eng Ind Aerodyn ,2003,91:943-964.
    [8] E.E. Morfiadakis, G.L. Glinou, M.J. Koulouvari.The suitability of the von Karman spectrum for the structure of turbulence in a complex terrain wind farm[J] Journal of Wind Engineering and Industrial Aerodynamics 62 (1996) 237-257.
    [9] Characteristics of atmospheric turbulence near the ground[R] ESDU85020.
    [10] Guidelines for Design of Wind Turbines [M] DNV/Ris?.Denmark, 2002.
    [11] Sebastien Poncet ,Roland Schiestel, Romain Monchaux.Turbulence modeling of the Von Karman flow: Viscous and inertial stirrings [J].International Journal of Heat and Fluid Flow 29 (2008) 62–74.
    [12] Poul S?rensen, Anca D. Hansen, Pedro Andre.Wind models for simulation of power fluctuations from wind farms [J] Journal of Wind Engineering and Industrial Aerodynamics 90 (2002) 1381–1402.
    [13] Jakob Mann.The spatial structure of neutral atmospheric surface-layer turbulence [J].Fluid Mech.273:141-168.
    [14] Jakob Mann, Wind field simulation[J].Probabilistic Engineering Mechanics, 1998, (8):269-286.
    [15] Jakob Mann. The spectral velocity tensor in moderately complex terrain [J].Journal of Wind Engineering and Industrial Aerodynamics 88 (2000):153-169.
    [16] E A Bossany.GH Bladed Version 3.67 Theory Manual[R].2005,Garrad Hassan & PartnersLimited.
    [17] P.J. Moriarty, A.C. Hansen. FAST Theory Manual [EB/OL]. http://wind.nrel.gov/designcodes/simulators
    [18] D.M. Pitt,D.A. Peters.Theoretical Prediction of Dynamic inflow Derivatives[J].Vertica,1981,5(1):21-34.
    [19] Chengjian He.Development and Application of a Generalized Dyanmic Wake Thoery for Lifting Rotors[D].School of Aerospace Engineering, Georgia Institute of Technology,1989.
    [20] Akihiro Suzuki.Application of Dynamic Inflow Theory to Wind Turbine Rotors[D].The University of Utah,2000.
    [21]金鑫.风力发电机组系统建模与仿真研究[D].重庆大学,2007.
    [22]李俊.大型风电机组整机及关键零部件仿真分析与优化设计研究[D].重庆大学,2011.
    [23] Christopher Joseph Fisichella.An improved prescribed wake analysis for wind turbine rotors[D].The Graduate College of the University of Illinois,2001.
    [24] Clark D R, Leiper A C. The free wake analysis a method for the prediction of helicopter rotor hovering performance [J]. Journal of the American Helicopter Society, 1970, 15 (1):3 - 11.
    [25] Landgrebe A J.An analytical and experimental investigation of helicopter rotor hover performance and wake geometry characteristics [R]. USAAMRDL TR, 1971:71 - 34.
    [26] Sadler S G. Development and application of a method for predicting rotor free wake positions and resulting rotor blade airloads[R]. NASA-CR-1911, 1971.
    [27] Bliss.D.B, Teske M E, Quackenbush T R.Free wake calculations using curved vortex elements[C].Proc of at the International conference on rotorcraft basic research, 1985.
    [28] Bagai A, Leishman J.G.Rotor free-wake modeling using a pseudo-implicit algorithm [J]. Journal of Aircraft, 1995, 32 (6):1276- 1285.
    [29] Sandeep Gupta.Development of a time-accurate viscous lagrangrian vortex wake model for wind turbine [D].Department of Aerospace Engineering, 2006.
    [30] Fingersh.L. Simms.D, Hand.M.Wind tunnel testing of NREL’s unsteady aerodynamics experiment.[R]AIAA Paper 2001-0035, National Renewable Energy Laboratory,2001.
    [31] L.J. Vermeer, J.N. S?rensen, A. Crespo.Wind turbine wake aerodynamics [J] Progress in Aerospace Sciences 39 (2003) 467–510.
    [32]史勇杰,樊枫,徐国华.基于混合CFD方法的旋翼桨-涡干扰噪声计算[J]航空学报,2011,32(1):91-98.
    [33] J.F. ManWell,J.G. McGowan,A.L. Rogers.Wind energy explained– theory, design and application[M].London:John Wiley & Sons Ltd,2002.
    [34] Offshore wind energy: technical course 2010[EB/OL] http://www.risoe.dtu.dk.
    [35] Passon P, Kühn1 M, Butterfield S, et al.OC3–Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes 2008[EB/OL]. http://www.nrel.gov/wind/pdfs/41930.pdf
    [36] Elizabeth Wayman.Couple dynamics and economic analysis of floating wind turbine systems [D].Civil and environmental engineering Massachusetts Institute of Technology, 2004:1:98.
    [37] http://www.risoe.dtu.dk/en/Research/sustainable_energy/wind_energy/projects/VEA_DeepWind.aspx
    [38] Tony Burton,David Sharpe,Nick Jenkins.Wind Energy Handbook[M].England John Wiley & Sons, Ltd.2001.
    [39] Christian Bak.Research in Aeroelasticity EFP-2005[R].RisΦ-R-1559. RisΦnational laborary,2008.
    [40] Steinhart E. Dynamic and aero elastic characteristics of complete wind turbines systems [A]. 7th European Rotor craft and Powered lift Aircraft Forum[C] . Garmisch2Partenkirchen , 1981 :142 - 156.
    [41] N Bazeos , GD Hatzigeorgiou , I D Hondros , et al . Static ,seismic and stability analyses of a prototype wind turbine steel tower[J ] .Engineering Structures , 2002 ,24 :1015 - 1025.
    [42] P J Murtagh , B Basu , B MBroderick. Along2wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading [J]. Engineering Structures, 2005, 27:1209 - 1219.
    [43] T. Srisupattarawanit , L. Lehmann , H. G. Matthies ,Simulation of Offshore Wind Turbines with a Coupled Multi-Physics Model,COMPUTATIONAL MECHANICS,2004(18):123-143
    [44] Gunjit Bir and Jason Jonkman,Aero elastic Instabilities of Large Offshore and Onshore Wind Turbines,Journal of Physics:1-19
    [45] Liang Q H , Zang J , Borthwick A GL , et al. Numerical simulation of non2linear wave interaction with an offshore wind turbine foundation[A] . Proceedings of the Seventh 2006 ISOPE Pacific/ Asia Offshore Mechanics Symposium[C] . Dalian : ISOPE , 2006 :231 - 236.
    [46] Henderson A R (Ceasa) , Zaaijer MB. Hydrodynamic loading on offshore wind turbines [A]. Proceedings of the International Offshore and Polar Engineering Conference[C]. Toulon: ISOPE, 2004: 142 - 149.
    [47] P. Agarwal,SIMULATION OF OFFSHORE WIND TURBINE RESPONSE FOR EXTREME LIMIT STATES,Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering,OMAE2007,June 10-15, 2007, San Diego, California, USA
    [48] M.B. Zaaijer,Foundation modeling to assess dynamic behavior of offshore wind turbines,Applied Ocean Research [J], (2006) 45–57.
    [49] Helge Gravesena,, Sbren L. Sbrensena, Per Vblundb, Anne Barkerc, Garry Timco,Ice loading on Danish wind turbines,Cold Regions Science and Technology ,41 (2005) 25– 47.
    [50] Qiuhua Liang, Jun Zang, Alistair G.L. Borthwick, Paul H. Taylor, Shuxue, Liu and Christopher Smith,Numerical Simulation of Non-linear Wave Interaction with an Offshore Wind Turbine Foundation,Proceedings of The Seventh (2006) ISOPE Pacific/Asia Offshore Mechanics Symposium Dalian, China, September 17-21, 2006.
    [51] http://www.risoe.dtu.dk/en/Research/sustainable_energy/wind_energy/projects/WindWave.aspx
    [52] Arkadiusz Mro′z,Mitigation of ice loading on off-shore wind turbines: Feasibility study of a semi-active solution,Computers and Structures 86 (2008) :217–226
    [53] P Passon, M Kühn1, S Butterfield, J Jonkman, T Camp, T J Larsen,OC3–Benchmark Exercise of Aero-elastic Offshore Wind Turbine Codes,National Renewable Energy Laboratory
    [54] Puneet Agarwal,Lance Manuel?,Incorporating Irregular Nonlinear Waves in Coupled Simulation of Offshore Wind Turbines,48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,4 - 7 January 2010, Orlando, Florida
    [55]王湘明,陈亮,邓英等.海上风力发电机组塔架海波载荷分析[J ] .沈阳工业大学学报,2008,30(1) :42 - 45.
    [56]张学志,黄维平,李华军.考虑流固耦合时的海洋平台结构非线性动力分析[J ] .中国海洋大学学报,2005 ,35 (5) :823 -826.
    [57]王懿,段梦兰,尚景宏,安磊,海上风机基础结构力学分析,中国海洋平台,2009,(4),14-20.
    [58]陈小波,海上风力发电塔脉动风速时程数值模拟,中国电机工程学报,2008(32):111-116
    [59]刘文白,李才志,近海风力发电导管架平台结构分析,计算机辅助工程,2008(4):55-59
    [60] Horizontal Axis Wind Turbine Free Wake Model for AeroDyn. Hugh Currin,
    [61] Sezer-Uzol, Nilay,Gupta, Ankur,Long, Lyle N.3-D time accurate invisicid and viscous CFD simulations of wind turbine rotor flow fields[C].Parallel Computational Fluid Dynamics,2007.
    [62] Schmitz. Sven,Chattot, Jean-Jacques.A coupled Navier-Stokes/Vortex-Panel solver for the numerical analysis of wind turbines[J].Computer and Fluids,2006,35(7):742-745.
    [63] Karl A. Stol.Dynamics modeling and periodic control of horizontal-axial wind turbines[D].the University of Colorado,2001.
    [64] Donghoon Lee . Multi-Flexible-Body analysis for application to wind turbine control design[D].2003,School of Aerospace Engineering Georgia Institute of Technology.
    [65] J.M. Jonkman . Modeling of the UAE Wind Turbine for Refinement of FAST_AD[R].NREL/TP-500-34755,National Renewable Energy Laboratory,2003.
    [66]李德源,叶枝全,包能胜,陈严.风力机旋转风轮振动模态分析[J].太阳能学报,2004,25(1):72-77.
    [67] K. Stol,G. Bir.Floquet Modal Analysis of a Teetered-Rotor Wind Turbine[J].Preceeding of the AIAA Wind Energy Symposium,2008.
    [68] O.A. Bauschau,Y.G. Nikishkov.An Implicit Floquet Analysis for Rotorcraft Stability Evaluation[C].Proc. 54th AHS Annual Forum,Washington DC,1998.
    [69] D.A. Peter.Fast Floquet Theory and Trim for Multi-Blade Rotorcraft[J].J. American Helicopter Society,39(4):82-89.
    [70] R.P. Coleman,A.M. Feingold.Theory of self-excited mechanical oscillations of helicopter rotors with hinged blades[R].NACA Technical Report TR 1351,1958.
    [71] G. Bir . Multibalde Coordinate Transformation and its Application to Wind Turbine Analysis[C].NREL/CP-500-42553,2008.
    [72] Karl A. Stol,Hans-Georg Moll,Gunjit Bir,Hazim Namik.A Comparison of Multi-Blade Coordinate Transformation and Direct Periodic Techniques for Wind Turbine Control Design[C].47th AIAA Aerospace Sciences Meeting,2009:5-8.
    [73] F. Mouzakis,E. Morfiadakis,P. Dellaportas.Fatigue loading parameter identification of a wind turbine operating in complex terrain[J].Wind Engineering and Industrial Aerodynamics,1999,82:69-88.
    [74] Kenneth Thomsen,Poul Srensen.Fatigue loads for wind turbines operating in wakes[J]. Wind Engineering and Industrial Aerodynamics,1999,80:121-136.
    [75] Vasilis A. Riziotis,Spyros G. Voutsinas.Fatigue loads on wind turbines of different control strategies operating in complex terrian[J].Wind Engineering and Industrial Aerodynamics,2000,85:211-240.
    [76] M.A. Mikitarenko,A.V. Perelmuter.Safe fatigue life of steel towers under the action of wind vibrations[J].Wind Engineering and Industrial Aerodynamics,1998,74:1091-1100.
    [77] J.D. Srensena,S. Frandsenb,N.J. Tarp-Johansen.Effective turbulence models and fatigue reliability in wind farms[J].Probabilistic Engineering Mechanics,2008,23(4):531-538.
    [78]李德源,叶志全,陈严,包能胜.风力机叶片载荷谱及疲劳寿命分析[J].工程力学,2004,21(6):118-123.
    [79] Hamid Reza Karimi, Senior Member.Semiactive vibration control of offshore wind turbine towers with Tuned Liquid Column Dampers Using H∞Output Feedback Control[J] 2010 IEEE International Conference on Control Applications,vol30:2245-2249.
    [80]何玉林,陈新厂,金鑫,刘桦,刘平.风力发电机组轮毂有限元分析与优化[J].机械与电子,2008,4:56-58.
    [81]贺德馨.风工程与工业空气动力学[M].绵阳:中国空气动力研究发展中心,1996.
    [82]李军.基于GIS的中国陆地表面粗糙度长度的空间分布[EB/OL]. http://www.tianmafc.cn/lwzzImg/1204079379088.pdf
    [83]周志勇,项海帆.多变量ARMA模型与大跨结构随机风场的数值仿真[J].自然科学进展,2001,11(6):631-634.
    [84]白海峰,李宏男.大跨越输电塔线体系随机脉动风场模拟研究[J].工程力学,2007,24(7):146-151.
    [85] Kurtis R. Gurley , Michael A . Analysis and simulation tools for wind engineering[J].Probabilistic Engineering. Mechancis,1997,12(1):9-31.
    [86] Zhaohui Du,M.S. Selig.The effect of rotation on the boundary layer of a wind turbine blade[J].Renewable Energy,2000,20:167-181.
    [87] Wim Bierbooms,Po-Wen Cheng.Stochastic gust model for design calculation of wind turbines[J].Journal of Wind Engineering and Industrial Aerodynamics,2002,90:1237-1251.
    [88] Shinozuka M,Jan C M.Digital simulation of random process and its application[J].Sound Vib.,1972,25(1):111-128.
    [89] Pawlak Mariusz.Aerodynamic forces and horizontal axis wind turbines[C].6th International Scientific Conference,2004.
    [90] J. Whale,C.G. Anderson,R. Bareiss,S. Wagner.An experimental and numerical study of the vortex structure in the wake of a wind turbine[J].Journal of Wind Engineering and Industrial Aerodynamics,2000,84:1-21.
    [91] D.P. Stylianos,J.M.R. Graham.Prediction of aerodynamic forces on horizontal axis wind turbines in free yaw and turbulence[J] . Journal of Wind Engineering and Industrial Aerodynamics,2000,86:1-14.
    [92]岂兴明.Matlab7.0程序设计快速入门[M].北京:人民邮电出版社,2009.
    [93]李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.
    [94] D.W. Lobitz.Aeroelastic stability predictions for a MW-sized blade[J].Wind Energy,2004,7(3):211-224.
    [95]王介龙,陈彦,薛克宗.风力发电机耦合转子-机舱-塔架的气弹响应[J].清华大学学报,2002,2:211-215.
    [96]杨卫东,董凌华.变转速倾转旋翼机多体系统气弹响应分析[J].哈尔滨工业大学学报,2006,38(2):282-286.
    [97]蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56.
    [98] Marshall L. Buhl Jr.The NWTC Design Codes Suite: An Overview[EB/OL]. http://wind.nrel.gov/designcodes/papers/BuhlCodeSuitePaper.pdf.
    [99] M.L. Buhl,A.D. Wright,K.G.. Pierce.FAST_AD Code Verification: A Comparison to ADAMS[R].NREL/CP-500-28848,2001.
    [100]李长凤.深海采油平台波浪载荷及响应[M]天津:天津大学出版社, 2005.
    [101] Li changfeng.Deep-sea wave load and response to oil platform[M]Tian Jin:Tian Jin university Press, 2005:47-62.
    [102] Elizabeth Wayman.Couple dynamics and economic analysis of floating wind turbine systems [D].Department of Civil and environmental engineering Massachusetts Institute of Technology,2004
    [103] O.M.Faltinsen.Sea loads on ships and offshore structures. [M]UK:Cambrige University Press,1999:1-92.
    [104] Jonkman J M. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation [EB/OL]. http://www.nrel.gov/wind/pdfs/41714.pdf.
    [105] BS EN 61400-3:2009.Design requirement of offshore wind turbine [S] London:British standards institution,2009
    [106] Dominique Roddier, Christian Cermelli, Alexia Aubault.WindFloat: A floating foundation for offshore wind turbines [J] Journal of renewable and sustainable energy, 2009, 003104:1-32
    [107] Felice Arena,Vincenzo Nava.On linearization of Morison force given by high three-dimensionalsea wave groups [J]Probabilistic engineering mechanics,2008,23:104-113
    [108] John Grue, Didier Clamond, Morten Huseby. Kinematics of extreme waves in deep water [J].Applied Ocean research, 2004, 25:355-366.
    [109] Patrick J.Moriarty, A.Craig Hansen. Aerodyn Theory Mannual [EB/OL] http://wind.nrel.gov/designcodes/simulators

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700