软基基础与土相互作用分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软土地区常见的地下基础型式有桩基础和地下连续墙,近年来随着设计理论和施工工艺设备的发展,桩基础及地下连续墙基础的型式都有了很大的发展,如薄壁筒桩、集挡土、防渗及承重多功能于一体的地下连续墙等。这类复杂的软基基础结构与土体相互作用的受力机理相当复杂,目前相关的研究资料比较少。
     目前,在研究结构与土相互作用的问题时,常采用数值分析方法,建立结构与土共同作用体系的数学模型,通过有限元法计算出整体结构的应力和位移。由于结构与土的材料特性,受力性能等方面的差异,为了满足有限元计算精度和效率的要求,合理的反映结构与土体之间的位移协调,需要在结构与土体之间设置恰当的接触面单元,正确的模拟土的本构关系,并尽可能地简化结构的数值模型。
     本文在总结已有的结构与土相互作用问题中的接触面单元形式、土的本构关系以及结构的数值模拟方法的基础上,对满足摩尔库仑屈服条件的土体材料用常规的薄层单元模拟进行了更加深入的验证,在已有实心矩形截面桩与土相互作用描述模式的基础上推导了薄壁筒桩用梁模拟时与土相互作用分析模式,和考虑与土相互作用时用板单元模拟地下连续墙的分析方法。通过算例验证了本文提出的分析方法和导出的相应公式的正确性,同时指出用常规实体单元描述地下连续墙是不合适的,但若用文中介绍的西穆等提出的强化假定不连续应变元则可以得出与板单元相似的结果。这些为软基中的地下连续墙等复杂地下结构与土相互作用问题的有限元计算提供了一条简便的途径。
     文中对上海勘测设计院进行的薄壁筒桩水平承载能力试验进行了相应的计算分析,所得结果规律与试验结果较为吻合,使得本文提出的分析方法得到了现场试验的验证。
     文中最后将本文研究成果应用于上海浦南东海出海闸在典型荷载作用下的受力分析,得到了合理的结果。
Pile foundation and continuous wall foundation are widely used in coastal regions, where the character of local soil is always very weak. With the development of design method and the advancement of constructing technology, many new types of pile and continuous wall are applied, like the thin-wall hollow pile and the multi-function continuous wall, which can be used not only as temporary fencing structure, but also as permanent loading structures. The interactional mechanics characteristic between such kind of complex underground structures is difficult to realize. Unfortunately, few systemic researches have been engaged on this topic, and there are few references can be consulted up till now.
    At present, numerical analysis is widely used in such complex structure-soil interaction questions. It is effective to apply 3D nonlinear finite element in practical projects after setting up the numerical models for them. Due to the difference of material characters and mechanics performance between concrete structures and soils, it is necessary to pay great attention to model the interface element, simulate the soil behavior and the optimization of the finite elements to satisfy the numerical precision and the compatibility relation of the whole project.
    Several classical methods of interface element, soil behaviors and structure characters are presented in this paper. The author made great effort on the modeling of the interface element and the underground structure element, while considering the soil obey the Mohr-Columnb yielding principle, modified the existing beam element for solid rectangle pile and applies this element into thin-wall hollow pile, proposes a kind of board element. Some examples are presented in the paper to test these new concepts and corresponding formulas. The calculation results also prove that the standard solid element is not appropriate for modeling these complex underground structures. All these efforts intend to obtain a convenient numerical method for analyzing the interaction between complex foundations and soft soil.
    The test on horizontal bearing capacity of thin-wall hollow pile is analyzed in the paper, which has been carried by Shanghai investigation and design institute. The calculation results conform to the testing results. So, the analysis methods presented in the paper are validated by the results from field test.
    In the end, these methods are used to analyze the continuous wall foundation of the outlet-gate in east Punan, Shanghai and find its internal force under typical load. The final conclusions are retional.
引文
[1] 丛蔼森,地下连续墙的设计施工与应用.中国水利水电出版社,2001
    [2] 刘建航、侯学渊,基坑工程手册.中国建筑工业出版社,1997
    [3] 孙更生、郑大同,软土地基与地下工程.中国建筑工业出版社,1984
    [4] 黄强,深基坑支护工程设计技术.中国建筑工业出版社,1995
    [5] H.F.温特科恩、方晓阳,基础工程手册.中国建筑工业出版社,1985
    [6] R.E. Goodman, R. L. Taylor and T. L. Berkke, A Model for the Mechanics of Jointed Rock, J. ASCE, 1968, Vol.94, SM3, p637~659
    [7] H. Peterson, Application of the Finite Element Method in the Analysis of Contact Problems, Proc. Int. Conf. On Finite Elements and Mechanics, Geilo, Norway, Vol.2, Aug., 1977
    [8] O. C. Zienkiewicz et al., Analysis of Nonlinear Problems with Particular Reference to Jointed Rock Systems, Proc. 2nd, Int. Conf. Soc. Of Rock Mech., Belgard, 1970 Vol.3, Aug.
    [9] J. Ghaboussi, E. L. Wilson and J. Isenberg, Finite Element for Rock Joints and Interfaces, J. ASCE, Vol.99, SM10, p834~848, 1973
    [10] M.G. Katona, A Simple Contact-friction Interface Element With- Applications to Buried Culverts, Int. J. Numer, & Anal. Meth. Engrg, 1988, Vol.7, p2723~2738
    [11] L. R. Herrmann, Finite Element Analysis of Contact Problems, J. ASCE, 1978, Vol. 104, EM5, p1043~1057
    [12] C. S. Desai et al, Thin-Layer Element for Interfaces and Joints, Int. J. Numer. Anal. Meth. Engng, 1984, Vol.8, p19~43
    [13] C. S. Desai et al, Modelling for Cyclic Normal and Shear Behavior of Interfaces, ASCE., 1988, Vol.34, No.7,p398~1217
    [14] C. S. Desai et al, Cyclic Testing and Modelling of Interfaces, ASCE.,1985, Vol.31, No.6, p793~815
    [15] E. C. Drumn and C. S. Desai, Determination of Parameters for a Model of the
    
    Cyclic Behavior of Interfaces, Earth. Eng. & Struct. Dyn., 1986, Vol. 14, p1~18
    [16] K. J. Bath, Finite Element Procedures, Prentice Hall, Englewood Cliffs, New Jersey, 1996
    [17] 钱家欢、殷宗泽主编,土工原理与计算(第二版).中国水利水电出版社,1996
    [18] 殷宗泽等,土与结构材料接触面的变形及其数学模拟、岩土工程学报,Vol.16(3),p14~21,1994
    [19] 雷晓燕,G. Swoboda,杜庆华,接触摩擦单元理论及其应用,岩土工程学报,1994,Vo.16,No.3
    [20] 土力学与地基(天津大学),人民交通出版社,1986
    [21] Zhang Gende, The Nonlinear Constitutive Model for Geological Material, Proceedings of the Int. Conference on Nonlinear Mechanics, Shanghai, China, 1985, p201~206
    [22] Duncan, J.M., & Chang, C.Y., Nonlinear Analysis of Stress and Strain in Soils, J. of Soil Mech. and Found. Div., ASCE, Vol.96, SM5, 1970, p1629~1653
    [23] 吴世明、杨挺,岩土工程新技术.中国建筑工业出版社,2001.1
    [24] 卓家寿,弹性力学中的有限元法.弹性力学专题教材,1986
    [25] 卓家寿,弹塑性力学中的广义变分原理.北京,水利电力出版社,1989.11
    [26] 朱伯芳,有限单元法原理与应用(第二版).中国水利水电出版社,1998
    [27] 王勖成、邵敏,有限单元法基本原理与数值方法.清华大学出版社,1988
    [28] 姜弘道,陈和群,有限单元法程序设计.水利电力出版社,北京,1989
    [29] 田斌,高水头、大直径地下钢筋混凝土岔管的计算研究,硕士论文.河海大学,1992.6
    [30] 丁予通,考虑垂直变位调整对二滩拱坝应力的影响.水电站设计,1980
    [31] Q.H.Qin & X.Q.He, Variational Principals, FE and MPT for Analysis of Non-linear Impact-contact Problems, Comput. Methods Appl. Mech. Engrg. Vol. 122, p205~222,1995
    [32] J.T. Oden, Exterior Penalty Methods for Contact Problems in Elasticity, in K.J. Bathe, E. Stein and W. Wunderlich, eds. Nonlinear Finite Element Analysis in Structural Mechanics, Europe-US Workshop, Springer, Berlin, 1980
    
    
    [33] T. F. Conry and A. Seirg, A Mathematical Programming Method for Design Elastic Bodies in Contact, J. Appl. Mech. 1971, Vol.38, p387~392
    [34] W. X. Zhong and S. M. Sun, A Finite Method for Elastic-plastic Structure and Contact Problem by Parametric Quadratic Programming, Int. J. Numer. Methods Engrg. 1988, Vol.26, p2723~2738
    [35] M. Nataraja, Finite Element Solution of Stresses and Displacements in Soil-culvert System, Ph. D. Dissertation, Civil Engineering, West Lafayette, Indiana
    [36] 杜成斌、任青文,用于接触面模拟的三维非线性接触单元,东南大学学报(自然科学版),2001.7,Vol.31 No.4
    [37] 邵炜、金峰、王光纶,用于接触面模拟的非线性薄层单元,清华大学学报(自然科学版),1999,Vol.39 No.2
    [38] 姚纬明、李同春、任旭华,带软弱结构面岩体的弹塑性有限元分析.河海大学学报,1999.3
    [39] David M. Potts and Lidija Zdravkovic, Finite element analysis in geotechnical engineering (Application & Theory), London, British, 2001
    [40] 姚纬明等,岩体材料包络型复合弹塑性计算模型,岩土工程学报,Vol.21,No.1,1999
    [41] Cheng Zhuchang, Cao Minbao and Zhang Min, Determination of the Load-displacement Characteristics of Single Pile in Soft Soil, Proceeding of the International Conference on Deep Foundation, Vol. 1, 1986
    [42] Valanis, K.C., A Theory of uiscoplasicity without a yield surface, Arch., Vol.23, 1971, p571
    [43] Xikui Li, Large strain constitutive modeling and computation for isotropic, creep-elastoplastic-damage solids, Int. J. Num. Meth. Engng., Vol.38, p846~860, 1995
    [44] Ghaboussi, J. etc., Knowledge-based modeling of material behavior with neural networks, ASCE, 1991, Vol.37, EM1, p132~153
    [45] Duncan, J.M. et al., Stength, Stress-strain and bulk modulus parameters for finite element analysis of stress and movements in soil masses, 1980 Report No.
    
    UCB/GT/80-01, University of California, Berkeley
    [46] 钟万勰,关于广义位移在有限元分析中的应用及其程序实现.机械工程学报,1981(3),p15~30
    [47] 钟万勰、朱建平,薄壁杆件有限元分析中的广义位移方法.大连工学院学报,1981
    [48] 李锡夔、钟万勰,不可压缩村料有限元分析中的广义位移方法,大连工学院学报,Vol,20,No.4,1981(12)
    [49] 钟万勰,计算结构力学微机程序设计,水力电力出版社,1986
    [50] 塑性力学,河海大学教材,1998
    [51] 卓家寿等,复杂空间结构非线性分析的分区混合元程序包,《水工结构工程与岩土工程的现代计算方法及程序》,河海大学出版社,1992
    [52] 钱家欢主编,土力学(第二版).河海大学出版社,1995
    [53] 傅作新,水工结构力学问题的分析与计算.河海大学出版社,1993
    [54] 赵光恒,结构动力学.中国水利水电出版社,1996
    [55] 徐芝纶,弹性力学(上、下).高等教育出版社,1990
    [56] 杨仲侯、胡维俊、吕泰仁合编,结构力学.高等教育出版社,1992
    [57] 钱济成、徐道远、刘丽丽、符晓陵编.材料力学.河海大学出版社,1993
    [58] 沈明荣主编.岩石力学.同济大学出版社,1999
    [59] 赵翔龙编著.Fortran 90 学习教程.北京大学出版社,2000
    [60] 李瓒,夏颂佑,邓德生,洞、桩及其联合结构的工作性态分析.水力发电,1992
    [61] 姚纬明,三峡永久船闸闸室墙及边坡的强度与稳定研究.河海大学博士研究生毕业论文,1999
    [62] 刘晓青、李同春、顾清华,用有限元法求解复杂结构体系的内力.河海大学学报,2000(增刊)
    [63] 魏汝龙、杨守华、王年香,桩基码头和岸坡的相互作用.岩土工程学报,No.3,1992
    [64] 桩基工程手册.中国建筑工业出版社,1995
    [65] 曹汉志,结构的轴向荷载传递及荷载-沉降曲线的数值计算方法.岩土工程
    
    学报,Vol.8,No.3,1986
    [66] 严尉敏、吴伟民,数据结构(c语言版本),清华大学出版社,1997
    [67] 宋二祥,软化材料有限元分析的一种非局部方法,工程力学,1995,Vol.12,NO.4
    [68] 土力学与地基(天津大学),人民交通出版社,1986
    [69] 郑颖人、龚晓南,工程岩土塑性力学基础,中国建筑工业出版社、1989
    [70] 卢廷浩、鲍伏波,接触面薄层单元耦合本构模型,水利学报,2000.2
    [71] 徐斌、王大通、高大钊,群桩沉降验算中接触单元模型应用的若干问题,同济大学学报,1998.4
    [72] 王秀勇、王泉、张亭健,有限元无限元耦合法在桶形基础结构与土壤相互作用分析中的应用,黄渤海海洋,2000.12
    [73] 陈开旭、安关峰、鲁亮,采用有厚度接触单元对桩基沉降的研究,岩土力学,2000.3
    [74] 都浩、刘兴业,群桩基础共同作用的柔度系数计算,天津城市建设学院学报,2000.6
    [75] 曾丁、黄文彬、华云龙,库仑摩擦接触问题的位移—力混合接触单元,中国农业大学学报,1998.3(2),23~28
    [76] 张崇文、赵剑明、张社荣,有限层有限元混合法研究桩土相互作用,天津大学学报,1995.11,Vol.28 No.6
    [77] 门玉明、黄义,土—结构动力相互作用问题的研究现状及展望,力学与实践,2000,Vol.22
    [78] 高文华、杨林德、叶为民,板-土三维等厚接触单元模型及其应用,同济大学学报,
    [79] 田中旭、刘正兴、唐立民,弹性力学的导出方程及其离散格式,上海交通大学学报
    [80] 卜小明,广义协调技术与双参数法,力学进展,1994.8,Vol.24,No.3
    [81] 孙德安、姚仰平、殷宗泽,基于SMP准则的双屈服面弹塑性模型的三维化,岩土工程学报
    [82] 麦家煊、薛继乐、王津龙,三维接触单元在堆石坝面板应力位移分析中的
    
    应用研究,水力发电学报
    [83] 朱俊高、殷宗泽,土体本构模型参数的优化确定,河海大学学报,1996,3,Vol.24,No.2
    [84] 殷宗泽,土体本构模型剖析,岩土工程学报
    [85] 殷宗泽、朱泓、许国华,土与结构材料接触面的变形及其数学模拟,岩土工程学报,1994.4,Vol.16,No.3
    [86] Borja R.I., Hsieh H.S. and Kavazanjian E., "Double-yield-surface model Ⅱ: implementation and verification", J. Geotech. Engrg., ASCE, 116(9), p1402~1421
    [87] W.F.Chan," Limit Analysis and Soil Plasticity",Elsevier, Amsterdam, 1975.McGrawHill, London
    [88] Girijavallabhan, C.V. & Reese, L.C., J. of Mech. and Found. Div., ASCE, Vol.94, No. SM6, 1968, p473~469
    [89] Poulos, H.G. and Davis, E.H., Pile Foundation Analysis and Design, John Wiley & Sons, New York, 1980
    [90] Duncan, J.M., & Chang, C.Y., Nonlinear Analysis of Stress and Strain in Soils, J. of Soil Mech. and Found. Div., ASCE, Vol.96, SM5, 1970, p1629~1653
    [91] Wolf J.P., Dynamical soil-structure interaction, Prentice-Hall. Inc. 1985
    [92] Chen, W.F. & Mizuno, E., Nonlinear analysis in soils mechanics-theory and Implement, (Newyork) Elsevier, 1990
    [93] Hardin, B.O. & Drenvich, V.P., J. of Mech. and Found. Div., ASCE, Vol.98, No. SM6, 1972, p603~624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700