连续混沌调频雷达的波形设计和信号延迟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续混沌调频信号(Continuous-Chaos Frequency-Modulating Signal, CCFMS)雷达是采用连续混沌信号实现信号调频的一类调频信号雷达。CCFMS雷达发射的信号为混沌信号,具有产生简单、实现代价小、截获概率低、抗干扰性能和电磁兼容能力强等特点。CCFMS可避免离散调频系统设计中的频率跳变、时钟同步和参数调整等问题,实现信号功率谱的平滑设计。与一般的混沌雷达信号不同,CCFMS峰均功率比接近理想值2,可充分利用发射机效率。
     本文利用混沌动力学理论,重点对连续混沌调频雷达系统的波形设计和信号延迟作了详细的探讨,主要的创新和贡献归纳如下:
     (1)连续混沌调频信号的性能分析
     给出了CCFMS的数学表达式,理论推导了CCFMS的自相关函数和均方根带宽。结果表明CCFMS自相关函数的旁瓣抑制性能优异;其均方根带宽与调频指数、混沌信号的均方根成正比。仿真计算了典型混沌产生的CCFMS'性能,进一步证明了CCFMS具有较高的时间峰值旁瓣比、平坦的功率谱形状、近似图钉型的模糊函数和与正弦发射信号相同的峰均功率比。
     分析了CCFMS雷达的抗噪声干扰和频移干扰等有源干扰性能。与线性调频信号雷达相比,具有明显的抗干扰性能优势,信干比改善因子提高约5.5 dB,不会产生距离假目标欺骗干扰
     (2)连续混沌调频雷达的波形设计
     提出了基于连续混沌的非线性耦合产生CCFMS的动力学设计理论。以Colpitts电路为例给出了具体的设计实例,通过吸引子重构和Lyapunov指数计算,阐述了CCFMS的混沌特性。
     给出了频谱精细控制的认知波形的直接设计和迭代设计方法。这种方法可根据目标功率谱特征,产生输出功率谱随外界环境而变化的CCFMS波形,使CCFMS雷达具有主动学习能力。
     (3)混沌滤波及脉冲滤波同步方法研究
     研究了无原驱动信号的混沌滤波同步方法。该方法仅传输滤波信号,利用响应系统变量来恢复滤波丢失的信息。分别讨论了低通滤波和带通滤波的同步性能,仿真结果表明该方法可以在仅传输50~80%有效带宽能量下实现混沌系统同步。
     提出了基于条件Lyapunov指数(CLE)的混沌脉冲同步和脉冲滤波同步方法。该方法根据发展的脉冲同步的CLE计算技术,突破了传统脉冲同步理论的限制,得到的同步区间更为接近实际的同步区域,同时解决了脉冲滤波同步的稳定性判定和同步区间估计问题。仿真结果验证了该方法的正确性和可行性。
     (4)连续混沌调频雷达的信号延迟
     提出了基于滤波同步和脉冲滤波同步的一般混沌信号延迟技术,实现了采用窄带延迟技术对宽带混沌信号的延迟。对基于滤波同步的延迟技术给出了实现同步的滤波器最小带宽,对基于脉冲滤波同步的延迟技术阐述了滤波器带宽与最小采样频率之间的关系。
     根据CCFMS产生原理,研究了CCFMS窄带延迟技术。构建了CCFMS的动力学设计模型的响应系统,探讨了系统同步对延迟性能的影响。这种窄带延迟技术能降低幅度相位不一致性及插入损耗,减小延迟设备代价,仿真结果表明该技术可节省65%的延迟带宽。
Continuous-Chaos Frequency-Modulating Signal (CCFMS) radar, which uses continuous chaotic signal to realize frequency modulation, belongs to categories of frequency-modulating radars. The CCFMS radar transmits chaotic signals and hence has some excellent characteristics such as simple generation, small realization cost, low probability of intercept, good anti-jamming and electromagnetic compatibility. CCFMS has flat power spectrum and can avoid frequency hopping, time clock synchronization and parameters adjusting in discrete frequency modulation design. Compared with traditional chaotic signals, CCFMS provides the peak to average power ratio (PAPR) with ideal value 2, which can take full advantage of the efficiency of transmitter.
     This dissertation mainly discusses the waveform design and signal delay of CCFMS radar with chaotic dynamics theory. Main results are concluded as follows:
     (1) Performance analyses of CCFMS
     The mathematical expression of CCFMS is given. The auto-correlation function and root-mean-square (RMS) bandwidth of CCFMS are derived in theory. The results show that autocorrelation function of CCFMS has excellent sidelobe suppression performance. Its RMS bandwidth is proportional to frequency modulation index and RMS of chaotic signal. The performance of CCFMS is further confirmed with typical chaos. It is found that CCFMS has high time peak to sidelobe ratio, flat power spectrum, almost thumbtack ambiguity function and PAPR equal to that of sinusoidal signal.
     The performance of CCFMS radar against noise and frequency shift jamming is analyzed. Compared with LFMS radar, CCFMS radar has obvious anti-jamming advantages with signal-to-interference ratio improvement factor increased by about 5.5 dB, and does not generates false range targets.
     (2) Waveform design of CCFMS radar
     Dynamical design theory of CCFMS is proposed, in which CCFMS is generated by nonlinearly coupling continuous chaotic signals with a sinusoidal oscillator. A concrete design implementation is given by taking Colpitts circuits as an example. CCFMS is confirmed to be chaotic by attractor reconstruction and Lyapunov exponents.
     Direct and iterative designs of CCFMS cognitive waveform with fine spectrum control are given. Depending on the target power spectrum characteristics, this method can generate CCFMS waveforms, whose output-power spectrum varies with the external environment, hence the CCFMS radar has active learning ability.
     (3) Studies on filtered synchronization and impulsive filtered synchronization methods of chaotic systems
     Filtered synchronization method of chaotic systems without original drive signal is studied. This method only transmits the filtered signal, and restores lost information by filtering using response system variables. Low pass and Band pass filtered synchronization performances are discussed respectively. Simulation results show the method can transmit only 50~80% efficient bandwidth energy to achieve synchronization of chaotic systems.
     Conditional Lyapunov exponent (CLE) based impulse synchronization and impulsive filtered synchronization methods of chaotic systems are proposed. Based on the developed CLE calculation of impulsive synchronization, the method breaks through the restrictions in traditional impulsive synchronization theory and the obtained synchronization interval is closer to the actual synchronization interval. Meanwhile the proposed method can determine synchronization stability and estimate synchronization interval of impulsive filtered synchronization. The simulation results confirm correctness and feasibility of the method.
     (4) Signal delay of CCFMS radar
     Filtered synchronization and impulsive filtered synchronization based on signal delay technique of the general chaotic signal are proposed to realize broadband chaotic signal delay using narrowband delay techniques. Filtered synchronization based delay technique gives the smallest filter bandwidth to realize synchronization and impulsive synchronization based delay technique gives the relationship between filter bandwidth and the smallest sampling frequency.
     Based on generation principle of CCFMS, narrowband delay of CCFMS is studied. Response system of dynamical model of CCFMS is constructed, and synchronization impact on delay performance is discussed. This narrowband delay technique can reduce amplitude-phase uniformity, the insert loss and the cost of delay equipment. Simulation results show this technique can save the delay bandwidth by 65%.
引文
[1]Poincare H. Science and Hypothesis. Science Press.1952.
    [2]Lorenz E N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences.1963, 20(2):130-141.
    [3]Ruell D, Takens F. On the nature of turbulence. Communications in Mathematical Physics.1971,20(3):167-192.
    [4]Li T Y, York J A. Period three implies chaos. American Mathematical Monthly.1975, 82(10):985-992.
    [5]May R M. Biological Populations with nonoverlapping generations:stable poins, stable cycles, and chaos. Science.1974,186(4164):645-647.
    [6]Feigenbaum M J. Quantitative universality for a class of nonlinear transformations. Journal of statical physics.1978,19(1):25-52.
    [7]Mandelbrot B B. Fractal aspects of the interation of z→Az(1-z) for complex A and z. Annals New York Academy of Sciences.1980,357:249-259.
    [8]Genfen Y, Mandelbrot B B, Aharony A. Critical phenomena on fractal lattices. Physics Review Letters.1980,45:855-858.
    [9]Grassberger P. Information content and predictability of lumped and distributed dynamical systems. Physica Scripta.1989,40:346-353.
    [10]Ott E, Grebogi C, Yorke J A. Controlling chaos. Physical Review Letters.1990, 64(11):1196-1199.
    [11]Rul'kov, Volkovskii A R. Mutual synchronization of chaotic self-oscillators with dissipative coupling. International Journal of Bifurcation and Chaos.1992, 2(3):669-676.
    [12]Boccaletti B, Kurths J, Osipov G, Valladares D L, Zhou C S. The synchronization of chaotic systems. Physics Reports.2002,366:1-101.
    [13]Pecora L M, Carrol T L. Synchronization in chaos systems. Physics Review Letters. 1990,64(8):821-824.
    [14]Kocarey L, Prlitz U. Encode message using chaotic synchronization. Physical Review E. 1996,53(5):4351-4361.
    [15]Andrievskii B R, Fradkov A L. Control of chaos:methods and applications. Ⅰ. Methods. Automation and Remote Control.2003,64(5):673-713.
    [16]Andrievskii B R, Fradkov A L. Control of chaos:methods and applications. Ⅱ. Applications. Automation and Remote Control.2004,65(4):505-533.
    [17]Chen G R, Yu X H. Chaos control:theory and applications. Springer.2003.
    [18]Scholl E, Schuster H G. Handbook of chaos control.2nd ed. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.2008.
    [19]Liu G S, Gu H, Zhu X, Su W M. The present and the future of random signal radars. IEEE AES Syst. Mag.1997,35-40.
    [20]Liu G S, Gu H, Su W M. Development of random signal radars. IEEE Trans. arc Aero, grad'ELec. Systems,1999 35(3):770-777.
    [21]Liu G S, Gu H, Su W M, Sun H B, Zhang J H. Random signal radar-a winner in both the military and civilian operating environments. IEEE Tran. on Aero. and Electron. Syst.2003,39(2):489-498.
    [22]Garmatyuk D S, Narayanan R M. ECCM capabilities of an ultra-wideband bandlmited random noise imaging radar. IEEE Tran. on Aero and Electron. Syst.2002,138(4): 1243-1255.
    [23]Lukin K A. Millimeter wave noise radar technology. Third International Kharkov Symposium onPhysics and Engineering of Millimeter and Submillimeter Waves.1998, 1:94-97.
    [24]Lukin K A. Radar Design Using Noise/Random Waveforms.2006 International Radar Symposium.2006,1-4.
    [25]Lukin K A, Mogyla A A, Alexandrov Y A, Zemlyaniy O V, Lukina T, Shiyan Y. W-band noise radar sensor for car collision warning systems. The Fourth International Kharkov Symposium on Physics and Engineering of Millimeter and Sub-Millimeter Waves.2001, 2:870-872.
    [26]Lukin K A. Noise radar with correlation receiver as the basis of car collision avoidance system.25th European Microwave Conference.1995,1:506-507.
    [27]Narayanan R M, Dawood M. Doppler estimation using a coherent ultrawide-band random noise radar. IEEE Transactions on Antennas and Propagation.2000, 48(6):868-878.
    [28]Narayanan R M, Dawood M. Receiver operating characteristics for the coherent UWB random noise radar. IEEE Transactions on Antennas and Propagation.2001, 37(2):586-594.
    [29]Bell D C. Narayanan R M. Theoretical aspects of radar imaging using stochastic waveforms. IEEE Transactions on Acoustics, Speech, and Signal Processing.2001, 49(2):394-400.
    [30]Xu Y, Narayanan R M, Xu X J, Curtis J O. Polarimetric processing of coherent random noise radar data for buried object detection. IEEE Transactions on Geoscience and Remote Sensing.2001,39(3):467-468.
    [31]Xu X J, Narayanan R M. FOPEN SAR imaging using UWB step-frequency and random noise waveforms. IEEE Transactions on Aerospace and Electronic Systems.2001, 37(4):1287-1300.
    [32]Xu X J, Narayanan R M. Range sidelobe suppression technique for coherent ultra wide-band random noise radar imaging. IEEE Transactions on Antennas and Propagation.2001,49(12):1386-1342.
    [33]Garmatyuk D S, Narayanan R M. Ultra-wideband continuous-wave random noise arc-SAR. IEEE Transactions on Geoscience and Remote Sensing.2002, 40(12):2543-2552.
    [34]Dawood M, Narayanan R M. Multipath and ground clutter analysis for a UWB noise radar. IEEE Transactions on Aerospace and Electronic Systems.2002,38(3):838-853.
    [35]Dawood M, Narayanan R M. Ambiguity function of an ultrawideband random noise radar.2000 IEEE Antennas and Propagation Society International Symposium.2000, 4:2142-2145.
    [36]Dawood M, Narayanan R M. Generalised wideband ambiguity function of a coherent ultrawideband random noise radar.2003,150(5):379-386.
    [37]Narayanan R M, Zhou W, Wagner K H, Kim S. Acoustooptic correlation processing in random noise radar. IEEE Geoscience and Remote Sensing Letters.2004, 1(3):166-170.
    [38]Dawood M, Narayanan R M. Specular multipath analysis for a coherent ultrawideband random noise radar.2002 IEEE Antennas and Propagation Society International Symposium.2002,3:368-371.
    [39]Li Z X, Narayanan R M. Doppler visibility of coherent ultrawideband random noise radar systems. IEEE Transactions on Aerospace and Electronic Systems.2006, 42(3):904-906.
    [40]Garmatyuk D S. Narayanan R M. ECCM capabilities of an ultrawideband bandlimited random noise imaging radar. IEEE Transactions on Aerospace and Electronic Systems. 2002,38(4):1243-1255.
    [41]Narayanan R M, Xu X. Henning, J.A. Radar penetration imaging using ultra-wideband (UWB) random noise waveforms. IEE Proceedings of Radar, Sonar and Navigation. 2004,151(3):143-148.
    [42]Xu X J, Narayanan R M. Impact of different correlation receiving techniques on the imaging performance of UWB random noise radar. Proceedings.2003 IEEE International Geoscience and Remote Sensing Symposium.2003,7:4525-4527.
    [43]Narayanan R M, Ponnappan S K, Reichenbach S E. Effects of uncorrelated and correlated noise on image information content. IEEE 2001 International Geoscience and Remote Sensing Symposium.2001,4:1898-1900.
    [44]Zhang Y, Narayanan R M, Xu X J. Theoretical and simulation analysis of random noise monopulse radar.2002. IEEE Antennas and Propagation Society International Symposium.2002,4:386-389.
    [45]Xu X J, Narayanan R M. A comparative study of UWB FOPEN radar imaging using step-frequency and random noise waveforms.2000 IEEE Antennas and Propagation Society International Symposium.2000,4:1956-1959.
    [46]Xu X J, Narayanan R M. Imaging performance analysis of a FOPEN UWB random noise radar.2001 IEEE Antennas and Propagation Society International Symposium. 2001,4:273-276.
    [47]Xu Y, Narayanan R M. FOPEN SAR imaging using UWB step-frequency and random-noise waveforms. IEEE Transactions on Aerospace and Electronic Systems. 2001,37(4):1287-1300.
    [48]Bell D C, Narayanan R M. ISAR turntable experiments using a coherent ultrawideband random noise radar.1999 IEEE Antennas and Propagation Society International Symposium.1999,3:1768-1771.
    [49]Garmatyuk D, Narayanan R M. Ultrawideband noise synthetic aperture radar:theory and experiment.1999,3:1764-1767.
    [50]Xu Y, Hoffmeyer P D, Narayanan R M. Curtis, J.O. Signal processing aspects of polarimetric random noise radar data for shallow subsurface imaging.1996 International Geoscience and Remote Sensing Symposium.1996,4:2030-2032.
    [51]Narayanan R M, Xu Y, Rhoades D W. Simulation of a polarimetric random noise/spread spectrum radar for subsurface probing applications.1994 International Geoscience and Remote Sensing Symposium.1994,4:2494-2498
    [52]Hoffmeyer P D, Xu Y, Narayanan R M, Curtis J O. Backscatter characteristics of buried targets measured using an ultrawideband polarimetric random noise radar.1996 International Geoscience and Remote Sensing Symposium.1996,4:2281-2284.
    [53]Narayanan R M, Kumru C. Implementation of fully polarimetric random noise radar. IEEE Antennas and Wireless Propagation Letters.2005,4:125-128.
    [54]Lai C P, Ruan Q, Narayanan R M. Hilbert-Huang Transform (HHT) Analysis of Human Activities Using Through-Wall Noise Radar.2007 International Symposium on Signals, Systems and Electronics.2007,115-118.
    [55]Surender S C, Narayanan R M. Covert Netted Wireless Noise Radar Sensor: OFDMA-Based Communication Architecture.2006 Military Communications Conference.2006,1-7.
    [56]Axelsson S R J. Area Target Response of Triangularly Frequency-Modulated Continuous-Wave Radars。 IEEE Transactions on Aerospace and Electronic Systems. 1978,14(2):266-277.
    [57]Axelsson S R J. Noise Radar for range/Doppler processing and digital beamforming using low-bit ADC. IEEE Transactions on Geoscience and Remote Sensing.2003, 41(12):2703-2720.
    [58]Axelsson S R J. Noise radar using random phase and frequency modulation. IEEE Transactions on Geoscience and Remote Sensing.2004,42(11):2370-2384.
    [59]Axelsson S R J. Beam characteristics of three-dimensional SAR in curved or random paths. IEEE Transactions on Geoscience and Remote Sensing.2004,42(10):2324-2334.
    [60]Axelsson S R J. Random Noise Radar/Sodar With Ultrawideband Waveforms. IEEE Transactions on Geoscience and Remote Sensing.2007,45(5):1099-1114.
    [61]Axelsson S R J. Analysis of Random Step Frequency Radar and Comparison With Experiments. IEEE Transactions on Geoscience and Remote Sensing.2007, 45(4):890-904.
    [62]Axelsson S R J. Noise radar using random phase and frequency modulation.2003 IEEE International Geoscience and Remote Sensing Symposium.2003,7:4226-4231.
    [63]Axelsson S R J. On the performance of curved SAR-mapping.2001 IEEE International Geoscience and Remote Sensing Symposium.2001,4:1594-1597.
    [64]Axelsson S R J. On the theory of noise Doppler radar.2000 IEEE International Geoscience and Remote Sensing Symposium.2000,2:856-860.
    [65]Axelsson S R J. Frequency modulated Doppler radar for scatterometry and surface profiling.1993 IEEE International Geoscience and Remote Sensing Symposium.1993, 4:1367-1640.
    [66]Sobhy M I, Shehata A R. Chaotic radar systems.2000 IEEE MTT-S International Microwave Symposium Digest.2000,3:1701-1704.
    [67]Carroll T L. Optimizing chaos-based signals for complex radar targets. Chaos,2007,17: 033103.
    [68]Shen Y, Shang W H, Liu G S. Ambiguity function of chaotic phase modulated radar signals. Signal Processing Proceedings,1998. ICSP'98.1998 Fourth International Conference on,1998,2:1574~1577
    [69]Haykin S. Chaotic signal processing:New Research direction and novel application. IEEE Workshop on SSAP.1992,1-4.
    [70]Nan H, Haykin S. Chaotic modeling of sea clutter. Electronics Letters 22nd.1992, 28(22):2076-2077.
    [71]Leung H, Lo T. Chaotic radar signal processing over the sea. IEEE Journal of Oceanic Engineering.1993,18(3):287-295.
    [72]Chen J, Titus K Y, Leung H, Litva J. The use of fractals for modeling EM waves scattering from rough sea surface. IEEE Transactions on Geosicence and Remote Sensing.1996,34(2):75-79.
    [73]George A, Leung H. Chaotic CFAR detectors for detection of land and sea point targets. IEEE International Radar Conference.2000,404-409.
    [74]Leung H, Dubsh N, Nan X. Detection of small objects in clutter using a GA-RBF neural network. IEEE Transactions on Aerospace and Electronic System.2002,38:98-118.
    [75]Hara Y, Hara T, Seo T, Yanagisawa H. Development of a chaotic signal radar system for vehicular collision-avoidance. Proceedings of Radar Conference.2002,227-232.
    [76]Bauer A. Chaotic signals for CW-ranging systems. A baseband system model fordistance and bearing estimation. Proceedings of the ISCAS'98.1998,3:275-278.
    [77]Lin F Y, Liu J M. Ambiguity functions of laser-based chaotic radar. IEEE Journal of Quantum Electronics.2004,40(12):1732-1738.
    [78]Lin F Y, Liu J M. Chaotic radar using nonlinear laser dynamics. IEEE Journal of Quantum Electronics.2004,40(6):815-820.
    [79]Myneni K, Pethel S D, Corron N J, Barr T A, Reed B R. Comments on "Chaotic Radar Using Nonlinear Laser Dynamics". IEEE Journal of Quantum Electronics.2004, 40(11):1629-1629.
    [80]Venkatasubramanian V, Leung H. A novel chaos-based UWB sensor for enhancing homeland security. Sensors, and C3I Technologies for Homeland Security and Homeland Defense IV, Proceedings of SPIE.2005,5778:972-980.
    [81]Venkatasubramanian V, Leung H. A novel chaos-based High-Resolution Imaging Technique and Its Application to Through-the-wall Imaging. IEEE Signal Processing Letters.2005,12(7):528-531.
    [82]Liu Z, Zhu X H, Hu W, Jiang F. Principles of chaotic signal radar. Int. J. Bifur. Chaos, 2007,17(5):1735-1739.
    [83]Peyton Z. P. Radar principles. NewYork:John Wiley & Sons Inc.1998.271-273.
    [84]Setti G, Rovatti R. Statistical Modeling of Discrete-Time Chaotic Process Basic Finite-Dimensional Tools and Applications. Proc. IEEE,2002,90(5):662-690.
    [85]Setti G, Rovatti R, Callegari S. Spectral Properties of Chaos-Based FM Signals:Theory and Simulation Results. IEEE Trans on Circuits and Systems.2003,50(1):3-15.
    [86]Setti G, Rovatti R, Callegari S. Chaos-Based FM Signals:Application and Implementation Issues. IEEE Trans on Circuits and Systems.2003,50(8):1 141-1147.
    [87]Flores B C, Solis E, Thomas G. Chaotic signals for wideband radar imaging. Proc. SPIE Int. Soc. Opt. Eng.2002,4727:100-111.
    [88]Flores B C, Solis E, Thomas G. Assessment of chaos-based FM signals for range-Doppler imaging. IEEE Proc. Radar Sonar Navig.2003,150(4):3-15.
    [89]Ashtari A, Thomas G, Flores B C, Kinsner W. Sufficient Condition for Chaotic Maps to Show Chaotic Behavior after Frequency Modulation. under review, IEEE Transactions on Aerospace and Electronic Systems,2007.
    [90]Ashtari A, Thomas G. Radar signal design using chaotic signals.2007 Wavefrom Diversity & Design.2007,353-357.
    [91]Filiol N M, Plett C, Riley T, Copeland M A. An interpolated frequency-hopping spread-spectrum transceiver. IEEE Trans. Circuits Syst., I:Fundam. Theory Appl.1998, 45:3-12.
    [92]Volkovskii A R, Tsimring L S. Synchronization and communication using chaotic frequency modulation. Int. J. Circuit Theory Appl.1999,27:569-576.
    [93]丁凯,杨汝良.混沌调频雷达成像仿真.电子与信息学报,2006,28(2):354-357.
    [94]刘诗华,王德石.基于DDS的混沌调频雷达SAR成像.数学、力学、物理学、高新技术研究进展,2008,12:116-121.
    [95]杨瑛,邓鹏飞,刘春泉.混沌噪声调频信号对UWB-SAR/ISAR成像的干扰.电讯技术,2008,48(9):75-78.
    [96]徐浩彭,刘春泉.利用Bernoulli混沌调频信号干扰LFM信号.航天电子对抗,2007,24(3):35-36.
    [97]江涛.OFDM无线通信系统中峰均功率比的研究.华中科技大学.博士论文.2004.
    [98]Haykin S. Adaptive radar:evolution to cognitive radar. IEEE International Symposium on Phased Array Systems and Technology.2003,613.
    [99]Haykin S. Cognitive radar:a way of future. Signal Processing Magazine.2006, 23(1):30-40.
    [100]Haykin S. Cognitive radar networks.1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.2005,1-3.
    [101]Haykin S. Cognitive Dynamic Systems. EEE International Conference on Acoustics, Speech and Signal Processing.2007,4(IV):1369-1372.
    [102]Chen Y F, Gunawan E, Low K S, et al. Non-Invasive Respiration Rate Estimation using Ultra-Wideband Distributed Cognitive Radar System.28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. EMBS'06.2006, 920-923.
    [103]De Maio A, Farina A, Foglia G. Design and experimental validation of knowledge-based constant false alarm rate detectors. Radar, Sonar & Navigation.2007, 1(4):308-316.
    [104]Zhou F, Zhou D Y, Yu G. Target Tracking in Interference Environments Reinforcement Learning and Design for Cognitive Radar Soft Processing. Congress on Image and Signal Processing. CISP'08.2008,4:73-77.
    [105]Ric R, Goodman, Nathan A. Information-theoretic matched waveform in signal dependent interference. IEEE Radar Conference. RADAR'08.2008,1-6.
    [106]Thomas B, Nathan A. Multistatic target classification with adaptive waveforms. IEEE Radar Conference. RADAR'08.2008,1-6.
    [107]Wang B, Wang J K, Li J. ADP-Based Optimal Adaptive Waveform Selection in Cognitive Radar. International Symposium on Intelligent Information Technology Application Workshops. IITAW'08.2008,788-790.
    [108]Zhou X F, Yazdandoost K Y, Zhang H G, et al. Cognospectrum:spectrum adaption and evolution in congnitive ultra wideband radio.2005 IEEE International Conference on Ultra-wideband.2005,713-718.
    [109]Carroll T L. Synchronization chaotic systems using filtered signals. Physical Review E. 1994,50(4):50-57.
    [110]Carroll T L. Using filters for chaotic synchronization for communications. ISCAS'95. 1995,688-691.
    [111]Keith H, Bill Hodgins,雷凌.新一代导向技术.中国安防产品信息.2005,06:50-55.
    [112]杨晓东,江洪敏.雷达距离欺骗干扰技术与SAW延迟线.火控雷达技术.1997,26(3):31-35.
    [113]施文康,刘艾.延迟线型声表面波传感器的研究.传感技术学报.1999,12(4):337-340.
    [114]廖先炳.光纤延迟线信号处理.半导体光电.1991,12(3):211-226.
    [115]Grimes G,刘群.光纤延迟线信号处理.1992,2:61-64.
    [116]Muhammad Dawood. Ultrawideband coherent random noise radar:theory and experiments.2001
    [117]Macrotto F R. Snap-back repellers imply chaos in Rn. Journal of Mathmatical Analysis Applications.1978,63:199-223.
    [118]Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. New York: Springer-Verlag.1990.
    [119]Devaney R L. An introduction to chaotic dynamical systems. New York: Addison-Wesley,1989.
    [120]Kaplan J L, Yorke E D, Yorke J A. The Lyapunov dimension of strange attactors. Journal of Differential Equations.1983,49:185-207.
    [121]Eckmann J P, Ruelle D. Ergodic theory of chaos. Rev. of Modern Phy. July 1985,57(3), Part Ⅰ:617-654.
    [122]Cuomo K M, Oppeneim A V. Circuit implenmention of synchronizae chaos with application to communications. Phy. Rev. Letters. July,1993,71(1):65-68.
    [123]Dedieu H, Kennedy M P, Hasle M. Chaos shit keying:Modulation and demodulation of a chaotic carrier using self-synchronizing Chua/s circles. IEEE Trans. Circuits syst. 1993, CAS-40(10):634-639.
    [124]Demitriev A S, Panas A I, Starkov S O. Experiments on RF band communication using chaos. Int. J. of Bifuration and Chaos.1997,7(11):2511-2527.
    [125]Wu C W, Chua L O. A unified framework for synchronization and control of dynamical systems. Int. J. of Bifuration and Chaos.1994,4(4):979-998.
    [126]Kocarev L, Parlitz U. General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett.1995,74(25):5028-5031.
    [127]Sparrow C T. Chaos in three-dimensional single loop feedback system with a piecewise linear feedback function. J. Math. Anal. Appl.1981,83:175-291.
    [128]Wu C W, Chua L O. A simple way to synchronize chaotic systems with applications to secure communization system. Int. J. of Bifuration and Chaos.1993,3(6):1619-1627.
    [129]Yang T, Chua L O. Impulsive control and synchronization of nonlinear dynamical systems and applications to secure communication. Int. J. Bifur. Chaos.1997, 7(3):645-664.
    [130]Yang T. Impulsive control. IEEE Trans. Automat. Contr.1999,44(5):1081-1083.
    [131]Lorenz E N. The essence of chaos. University of Washington Press.1996.
    [132]R6ssler O E. An equation for Continuous chaos. Physics Letters A.1976, 57(5):397-398.
    [133]Chua L O, Kocarev L, Eckert K, Itoh M. Experimental chaos synchronization in chua's circuit. Int. J. Bifurcation and Chaos.1992,705-708.
    [134]张贤达.现代信号处理.清华大学出版社.2002.
    [135]汪容鑫.随机过程.西安:西安交通大学出版社,1987.
    [136]R. Hilborn, Chaos and Nonlinear Dynamics an Introduction for Scientists and Engineers, Oxford University Press,1994.
    [137]Kennedy M P. Chaos in the Colpitts oscillator. IEEE Transactions on Circuits and Systems.1994,41(11):771~774
    [138]Maggio G M, Feo O D, Kennedy M P. Nonlinear analysis of the Colpitts oscillator and applications to design. IEEE Transactions on Circuits and Systems I-Fundamental Theory and Applications,1999,46(9):1118-113.
    [139]Kennedy M P, Chua L O. Van der Pol and chaos. IEEE Transactions on Circuits and Systems.1986,33(10):974-980.
    [140]Takens F. Detecting strange attractors in fluid turbulence. Berlin:Springger,1981.
    [141]Packard N H, Grutchfield J P, Farmers J D, et al. Geometry from a time series. Phys. Rev. Lett.1980,45:712-716.
    [142]Volkovskii A R, Tsimring L S, Rulkov N F, Langmore I. Spread spectrum communication system with chaotic frequency modulation. Chaos.2005,15:033101.
    [143]Yang T, Chua L O. Impulsive stabilization for control and synchronization of chaotic systems:Theory and Application to secure communication. IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications,1997,44(10):976-988.
    [144]Yang T, Yang L B, Yang C M, "Impulsive synchronization of Lorenz systems," Physics Letters A, vol.226, pp.349-354,1997.
    [145]Itoh M. Experimental study of impulsive synchronization. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems.1999,5:410-413
    [146]Itoh M, Yang T, Chua L O. Conditions for impulsive synchronization of chaotic and hyperchaotic systems. Int J Bifurcation and Chaos.2001,11(2):551-560.
    [147]Liu B, Liu X Z, Chen G R, Wang H Y. Robust impulsive synchronization of uncertain dynamical networks. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications.2005,51(7):1431-1441.
    [148]Lu J G, Hill D J. Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback:An LMI Approach. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications.2007,54(8):710-714.
    [149]Zhong Q S, Yu Y B, Bao J F, He S B. Impulsive Synchronization for T-S Fuzzy Model-based Chaotic Systems.2007 International Conference on Communications, Circuits and Systems.2007,1116-1119.
    [150]Lakashmikantham V, Bainov D D, Simeonov. Theory of impulsive differential equations. Singapore:World Scientific Pub. Co.,1990:131-146.
    [151]陈关荣,吕金虎.Lorenz系统族的动力学分析、控制和同步.北京:科学出版社,2003:218—221.
    [152]Wolf A, Swift J B, Swinney H L et al. Determining Lyapunov exponents from a time series. Physica D,1985,16:285-317.
    [153]Wyk M A, Steeb W H. Chaos in electronics. London:Kluwer Academic Publishers, 1997:52-56.
    [154]Woodward P M. Probability and information theory with application to radar. MaGraw Hill Book Company,1955.
    [155]周猛,涂国,周建明.降低OFDM系统峰均功率比的方法.通信学报.2008,29(4):124-129.
    [156]Mitola J. Congitive radio for flexible mobile multimedia communications. Mobile Multimedia Communications, IEEE International Workshop.1999.
    [157]Mitola J, Maguire G Q. Congitive radios:making software radios more personal. IEEE personal communications.1999,16(4):13-18.
    [158]Mitola J. Congitive radio:an intergrated agent architectur for software defined radio. PhD Dissertation, Royal Inst Technok.2000.
    [159]FCC-03-322:Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. Available:http://hraunfoss.fcc.gov/edocs public/attachmatch/FCC-02-322Al,pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700