Meta分析及生物统计模型在PAHs致人群健康损害危险度评价中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃类化合物(polycyclic aromatic hydrocarbons,PAHs)是一类重要的环境化学污染物(environmental chemical pollutants,ECPs),研究表明其对人体健康具有多种危害,如导致DNA的损伤,甚至肿瘤的发生。但是以当前的经济技术条件,我们不可能实现PAHs的零排放,PAHs污染现象会长期存在,如何正确地评估PAHs暴露的危险度对我们采取相应的防治措施意义重大。本研究通过Meta分析对现有文献进行评价并利用神经网络、多因子降维等一系列生物统计模型与方法,对中国北方某钢铁厂职业人群现况调查资料、南方某医院和社区为基础的人群病例-对照研究的资料进行分析,探讨了中国职业和非职业人群的PAHs暴露的危险度以及危险度评价的多种模型与方法的应用价值。
     第一部分Meta分析方法学及其在PAHs危险度评价中的应用研究
     目的通过对Meta分析方法学的研究,阐明如何应用Meta回归、亚组分析去识别与处理Meta分析资料的异质性;以及如何正确地选用Egger’s test、Begg’s test方法对发表偏倚进行检验和判断。并在方法学研究的基础上,对肺癌与中国人群CYP1A1(cytochrome p4501A1)与GSTM1(glutathione S-transferase M1)多态性的关系进行Meta分析,以寻找基因多态性改变肺癌易感性的证据。
     资料与方法1.资料一:利用女性被动吸烟与肺癌关系的文献数据为例建立Meta回归模型,筛选出异质性的影响因素,根据该因素做亚组分析,观察异质性的变化。2.资料二:对28篇胃癌与白介素文献资料采用随机和倾向性缺失手段各产生11份新样本,然后行Egger’s test、Begg’s test、漏斗图等检验其发表偏倚,比较结果的差异,并同时做异质性和样本含量的正态性检验。3.资料三:通过全面收集国内外数据库近20年关于中国人群CYP1A1基因MspI和Exon7多态性和GSTM1基因多态性与肺癌关系的相关研究进行Meta分析并与不同种族的同类研究结果进行比较。
     结果1.资料一:Q=44.71,df=27,P=0.017,认为存在异质性。经Meta回归分析,从潜在异质性的因素中筛选出样本含量、地区为可能的异质性因素(P=0.012,P=0.091)。经亚组分析,异质性明显减小。
     2.资料二:(1)随机缺失时,Egger’s test、Begg’s test的P值均大于0.05;倾向性缺失时,Begg’s test有5项的P值小于0.05,而Egger’s test的P值都大于0.05,漏斗图均欠对称;(2)倾向性缺失下异质性和正态性检验P值几乎都小于0.05。
     3.(1)CYP1A1 MspI,Exon7及GSTM1多态性与肺癌关系,合并效应分别为比值比(odds ratio,OR)=1.35,95%可信区间(confidence interval,CI)=(1.11,1.65),Z=3.01,P=0.003;OR=1.55,95%CI=(1.22,1.97),Z=3.61,P<0.001;OR=1.63,95%CI=(1.40,1.88),Z=6.51,P<0.001。(2)与同类研究比较,高加索人种中上述两基因的多态性改变对肺癌易感性未见显著增加或者增加不及中国人群。
     结论1.Meta回归法对筛选异质性影响因素简便可靠,据此进行的亚组分析能明显降低亚组内异质性。2.(1)随机缺失并不导致发表偏倚;倾向性缺失导致发表偏倚,此时Begg’s test较Egger’s test更容易检出发表偏倚的真实情况;(2)可能影响Egger’s test对发表偏倚的功效的因素有非正态和异质性等。3.CYP1A1与GSTM1基因的多态性可增加中国人群肺癌的易感性,且此改变存在着明显的种族差异。
     第二部分生物统计模型在PAHs致人群健康损害危险度评价中的应用
     目的暴露在PAHs污染环境中的人群,可能造成DNA、染色体或其他损伤甚至有致癌作用。如何通过分子标志物去识别和预测暴露个体的早期健康损伤,评价其剂量-反应关系,以及做基因、环境交互作用的分析,这在环境污染人群健康危害的危险度评价中是具有重要意义的。
     方法资料一收集某钢铁厂330名员工资料,检测每个研究对象早期的健康损伤水平,其损伤程度由下面四个生物标志物去衡量,包括微核频率,热休克蛋白70水平、BPDE-白蛋白加合物和彗星尾矩。采用人工神经网络(artificialneural network,ANN)模型去预测早期健康损伤水平,并用ROC曲线评价。同时采用多重对应分析(multiple correspondence analysis,MCA)焦炉工作业场所暴露、工龄与早期健康损伤间的对应关系。资料二收集500例肺癌患者和517例对照人群的可能影响PAHs代谢的16个基因65个位点多态性资料,以及生活习惯、家族史等6个主要的环境因素,在Hardy-Weinberg平衡基础上,采用多因子降维(multifactor dimensionality reduction,MDR)分析其基因-基因及基因-环境的交互效应,并用logistic回归对交互效应的形式和效应大小进行补充分析。
     结果1.焦炉工资料(1)按对照组P_(95)为划分有无早期健康损伤的界值点,采用多生物标志物联合筛检,330名工人共筛选出55个早期健康损伤阳性者,而按单一标志物筛检,只能检出22~35个早期健康损伤者。(2)为拟合ANN模型选取了工作场所暴露,血中胆固醇水平等六个易测变量,ROC曲线下面积(areaunder ROC curve,AUROC)为0.726±0.037(P<0.001)。(3)在MCA图中,焦炉工工作场所暴露、工龄、早期健康损伤情况间存在明显的对应关系。且各组的早期健康损伤率的趋势检验具有统计学显著性(Z=3.24,P=0.001)。
     2.病例对照资料(1)对照组的单核苷酸多态性的Hardy-Weinberg平衡检验发现其均处于遗传平衡状态(P=0.24-0.97);(2)具有醛脱氢酶2基因rs4646782位点杂合型多态性和多环芳烃受体基因rs2158041位点杂合型多态性以及烟龄较长等交互组合的“高危”人群是非上述组合的“低危”人群的肺癌发病风险的2.637倍(OR=2.637,95%CI=2.047-3.403)。(3)“rs4646782~* rs2158041”基因多态性具有相乘效应,“rs4646782+rs2158041+smoking year”具有相加效应,前者乘积及后者的和每增大一个取值单位,其肺癌发病风险分别增加0.097和0.199倍。
     结论1.上述四生物标志物可联合用于焦炉工早期健康损伤的筛检,且联合筛检效果优于单标志物;ANN模型可用于预测早期健康损伤情况,其预测效果经AUROC证实;MCA法能较好揭示焦炉工暴露与效应间的直观的联系情况,可以用于对剂量-反应关系的辅助判定。
     2.rs4646782,rs2158041,smoking year三因子在肺癌发病风险中具有显著的交互效应,其“高危”相对于“低危”可增加风险1.637倍。本研究结果同时提示MDR分析方法在分析多因子疾病基因-基因、基因-环境交互作用中切实可行,具有很好的应用前景。Logistic回归可用于对交互效应的形式和效应大小的补充分析。
     总之,本研究论述了人体接触PAHs后的早期损伤以及各种环境因素和遗传因素(基因多态性与种族差异)对人群健康损害危险度的影响,初步建立起以循证医学Meta分析方法、生物分子标记物的选取与联合筛检、ANN模型、MCA、MDR等为基础的PAHs暴露对人群健康损害的危险度的综合评价方法和体系。研究结果对进一步探索PAHs对机体的早期损伤甚至导致肺癌的宏、微观危险度及其影响因素的研究提供了生物统计方法和应用模式,并为今后建立PAHs直至其它ECPs的预警体系打下方法学方面的基础。
Polycyclic aromatic hydrocarbons (PAHs) are an important kind of environmentalchemical pollutants (ECPs) which had been reported to have health-hazard ability evento cause DNA damage and lead to carcinogenesis.But at present, we can not absolutelyprohibit PAHs emission, PAHs pollutants will not become extinct soon and evencontinually exist for a long time.How to correctly assess their risks might be anessential and valuable exercise.
     In this research, we carried out a Meta-analysis to appraise the relevant publishedresearches and used several biostatistical models and methods such as the artificialneural network (ANN) model, the multifactor dimensionality reduction (MDR), toanalyze a cross-sectional research in coke-oven workers in a northern steel plant, and acase-control study of a hospital-community based population in South China.Risk ofhealth hazard in Chinese occupational and ordinary population who exposed to PAHspollutants, and the values of Meta-analysis and biostatistical models in the riskassessments were explored and discussed.
     Part one: Meta-analysis method and its application in PANs risk assessment
     Objectives (1)To explore the role and application of Meta-regression andsubgroup analyses to recognize and control the heterogeneity; (2) To explore how tocorrectly choose and judge Egger's test and Begg's test to detect the publication bias inMeta-analysis; and (3) Genetic polymorphisms of cytochrome p4501A1 (CYP1A1) andglutathione S-transferase M1 (GSTM1) genes are thought to have significant effects on the metabolism of environmental carcinogens, but the reported results are not alwaysconsistent.We tried to find evidences of an association between the CYP1A1 variant andGSTM1 null genotypes and increased risk of lung cancer in Chinese populations.
     Methods 1.Meta-regression models were established using database 1 from casecontrolstudies of lung cancer in passive smoking females to search for theheterogeneous factors, and the change of heterogeneity were compared before and aftersubgroup analyses.2.Database 2 included 28 papers about Interleukin polymorphismsand gastric cancer risk, and 11 pieces of random or tendency missing datasets wereobtained.Egger's test, Begg's test and funnel plot et al.were used to diagnose thepublication bias then the differences were compared.Heterogeneity and normaldistribution tests were also offered.3.Through a systematic literature search forpublications between 1989 and 2008, we summarized the data from 54 studies onpolymorphisms of MspI and Exon7 of CYP1A1 and GSTM1 and lung cancer risk inChinese populations.Our results also were compared with other ethic populations.
     Results 1.The heterogeneity of the database 1 was existed in the Meta-analysis(Q=44.71, P=0.017).Sample size and region were selected (P=0.012 and P=0.091,respectively) by Meta-regression.The Q values were lowered after subgroup analyses.
     2.For the database 2, (1) Among random missing, the results of Egger's test andBegg's test are all greater than 0.05; while missing with tendency, P-values of Egger'stest are all greater than 0.05 while Begg's test are less than 0.05 and funnel plotsappeared to be asymmetrical which suggested a potential publication bias; and (2) Theheterogeneity and normal tests are almost significant in missing with tendency.
     3.(1) Compared with the type A, lung cancer risk for the types B and C was 1.35-fold (95% confidence interval [CI]=1.11-1.65) (Z=3.01, P=0.003); (2) The risk forthe Ile/Val and Val/Val of CYP1A1 Exon7 was 1.55-fold (95% CI=1.22-1.97) (Z=3.61, P<0.001), compared with the Ile/Ile genotype; and (3) The risk for the GSTM1null genotype was 1.63-fold (95% CI=1.40-1.88) (Z=6.51, P<0.001), comparedwith the present genotype.(4) Compared with the other ethnic, we found thesusceptivity to lung cancer in Caucasian was not obviously increased or increasedmuch less than the Chinese populations.
     Conclusions 1.Meta-regression method is convenient and reliable to search forthe affected factors of heterogeneity, and subgroup analyses based on that cansignificantly lower the heterogeneity.2.Missing with tendency can lead to publicationbias while random missing not.In missing of tendency, Begg's test is easier todiagnose the publication bias than Egger's test.Abnormal distribution of the samplesize and significant heterogeneity are the possible influencing factors of the power ofEgger's test.3.We found evidence of an association between the CYP1A1 variant andGSTM1 null genotypes and increased risk of lung cancer in Chinese populations.
     Moreover, there is a significant ethnic difference in CYP1A1, GSTM1 polymorphismsand the lung cancer risk.
     Part Two: Application of biostatistical models in PAHs risk assessments
     Objective Populations who exposed to PAHs pollutant can cause health damageand lead to carcinogenesis.Therefore, it is critical to identify biomarkers that predictearly health damage in these exposed individuals in molecular epidemiological studies.It is also valuable to explore the dose-response relationship and gene-gene-environmentinteraction effects in the risk assessment in the PAHs exposure.
     Methods The database 1 included 330 steel-factory workers who were exposedto different levels of PAHs in the workplace and their levels of early health damagewere determined by micronuclei (MN) rate, heat shock protein 70 (Hsp70) level,benzo(α) pyrene diolepoxide-albumin adduct (BPDE-AA), and Olive tail moment(Olive TM).The ANN model was simulated to predict the health damage index, andthe receiver operating characteristic (ROC) curve was used to illustrate the judgmentcriteria and the ANN model.Multiple correspondence analysis (MCA) and trend Chisquarewere also offered to analyze the possible dose-response relationship betweenworkplace, service years and the degree of early health damage in these coke-ovenworkers.
     The database 2 of 16 genes and 65 SNPs (single nucleotide polymorphism, SNP)positions which were possibly affected the PAHs metabolism were collected from acase-control study including 500 lung cancer patients and 517 controls, as well as the 6 main environmental factors.After the tests of the Hardy-Weinberg equilibrium, thegene-gene interactions as well as the gene-environment interactions models weresimulated by the MDR software, and logistic regression was carried out to furtherobserve the form and the effect size of the interaction as a supplement to MDR.
     Results Coke-oven workers data: (1) There were 55 subjects with early healthdamage among 330 workers based on the multi-biomarker criteria using the 95percentile as the cut-off value, while there were 22-35 positive subjects if screening byany single biomarker.(2) Six variables which could be easily detected such asworkplace, cholesterol, were selected to simulate the ANN model.The area underROC (AUROC) was 0.726±0.037 (P<0.001).(3) Corresponding relationship andrelevance were existed among the exposure of workplace, service years and the degreeof early health damage in coke-oven workers.Moreover, the trend test was statisticallysignificant (Z=3.24, P=0.001).
     Case-control study data: (1) The test of Hardy-Weinberg equilibrium to all SNPs inthe control group suggested that it is a Hardy-Weinberg equilibrium population (P=0.24-0.97); (2) With the heterozygous polymorphism of rs4646782 position of thealdehyde dehydrogenase 2 (ALDH2) gene and rs2158041 position of aryl hydrocarbonacceptor (AhR) gene, as well as "long years of smoking" combinations were judged as"high-risk" population, else other combinations were discriminated as the "low-risk"population.The risk of lung cancer in "high-risk" population was 2.637 times (OR=2.637, 95% CI=2.047-3.403) as compared with the "low-risk" combinations.(3) Thecombination of"rs4646782 ~* rs2158041" gene polymorphisms had the multiplicationeffect, and "rs4646782 + rs2158041 + smoking year" has the additive effect; the productor the additive of the interaction terms increased a lung cancer risk of 0.097 or 0.199times as a value of product term was changed, respectively.
     Conclusions 1.(1) MN frequency, Hsp70, BPDE-AA level, and Olive TM couldbe used collectively to do a screening test of early health damage in coke-oven workers.Moreover, the effect of using multi-biomarker was much superior to any singlebiomarker.(2) The ANN model could be used to predict the degree of early healthdamage, and its performance was identified by AUROC which suggested that the determination the effect of multi-biomarker and the cut-off criterion were correctly.(3)MCA can visually reveal the relationships between PAHs exposure and effect; therefore,MCA can be applied as an auxiliary method to determine whether there is a doseresponserelationship in a research.
     2.The three factors including rs4646782, rs2158041 polymorphisms and smokingyear have the remarkable interaction of the lung cancer risk in the southern Chinesepopulation, and the combination of"high-risk" may increase 1.637 times of lung cancerrisk compared with "low-risk'.Moreover, our findings suggest that using the MDRmethod to analyze the multi-factor disease in the gene-gene and gene-environmentinteraction is practical and feasible and has a wide and good application prospect.Thelogistic regression may be used as a supplied method after MDR to analyze the formsand the effect size of interaction.
     In summary, in our study, the early health damage as well as some environmentalfactor and the hereditary factors (gene polymorphisms and race and ethnic difference)to the population-based healthy risk influence after the human body exposed to PAHswas discussed.We initially established risk evaluated system and the methods ofenvironment pollutant to the health hazard in Chinese populations based on Metaanalysis,the multi-biomarker, ANN, MCA, and MDR models.
     Our findings also can provide the biostatistical methods and the applicationpattern in the further researches on early health damage even lung cancer and of themacro- and micro- scope risk and damage mechanism exposed to PAHs.The results ofour research might offer a methodology foundation to establish the early precautionsystem of PAHs and even other ECPs.
引文
1. Bowen HJ, Palmer SR, Fielder HM, et al. Community exposures to chemical incidents: development and evaluation of the first environmental public health surveillance system in Europe. J Epidemiol Community Health, 2000,54(11):870-873
    2. Neumann CM, Forman DL, Rothlein JE. Hazard screening of chemical releases and environmental equity analysis of populations proximate to toxic release inventory facilities in Oregon. Environ Health Perspect, 1998,106(4):217-226
    3. Russom CL, Breton RL, Walker JD, et al. An overview of the use of quantitative structure-activity relationships for ranking and prioritizing large chemical inventories for environmental risk assessments. Environ Toxicol Chem, 2003,22(8): 1810-1821
    4. Smith E. Environmental chemicals, respiratory hypersensitization and international chemical safety. Toxicol Lett, 1996,86(2-3):61-63
    5. Kriek E, Van Schooten FJ, Hillebrand MJ, et al. DNA adducts as a measure of lung cancer risk in humans exposed to polycyclic aromatic hydrocarbons. Environ Health Perspect, 1993,99:71-75
    6. Vineis P, Husgafvel-Pursiainen K. Air pollution and cancer: biomarker studies in human populations. Carcinogenesis, 2005,26(ll):1846-1855
    7. Ju JH, Lee IS, Sim WJ, et al. Analysis and evaluation of chlorinated persistent organic compounds and PAHs in sludge in Korea. Chemosphere, 2009,74(3):441- 447
    8. Kang-Sickel JC, Fox DD, Nam TG, et al. S-arylcysteine-keratin adducts as biomarkers of human dermal exposure to aromatic hydrocarbons. Chem Res Toxicol, 2008,21(4):852-858
    9. Lemieux CL, Lambert IB, Lundstedt S, et al. Mutagenic hazards of complex polycyclic aromatic hydrocarbon mixtures in contaminated soil. Environ Toxicol Chem, 2008,27(4):978-990
    10. Lin YC, Lee WJ, Chen SJ, et al. Characterization of PAHs exposure in workplace atmospheres of a sinter plant and health-risk assessment for sintering workers. J Hazard Mater, 2008, 158(2-3): 636-643
    11. Liu G, Niu Z, Van Niekerk D, et al. Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. Rev Environ Contam Toxicol, 2008, 192: 1-28
    12. Boobis AR. Risk assessment of dietary supplements. Novartis Found Symp, 2007, 282: 3-25
    13. Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. Bmj, 1997, 315(7114): 980-988
    14. Hung RJ, Boffetta P, Brockmoller J, et al. CYP1A1 and GSTM1 genetic polymorphisms and lung cancer risk in Caucasian non-smokers: a pooled analysis. Carcinogenesis, 2003, 24(5): 875-882
    15. Ng DP, Tan KW, Zhao B, et al. CYP1A1 polymorphisms and risk of lung cancer in non-smoking Chinese women: influence of environmental tobacco smoke exposure and GSTM1/T1 genetic variation. Cancer Causes Control, 2005, 16(4): 399-405
    16.李元春.中国人群中肺癌与CAK基因多态的相关性研究以及ERCC1基因多态与肿瘤相关性研究的Meta-分析.博士学位论文.上海:复旦大学图书馆,2007.
    17.张博恒,赵耐青.Meta分析中的统计方法.见王吉耀主编.循证医学与临床实践(第二版).北京:科学出版社,2002.89-117
    18. Sacks HS, Reitman D, Pagano D, Kupelnick B. Meta-analysis: an update. Mt Sinai J Med, 1996, 63(3-4): 216-224
    19.周旭毓.Meta分析.见 方积乾,陆盈.主编.现代医学统计学.北京:人民卫生出版社,2002.150-209
    20. Basu A. How to conduct a meta-analysis, http://www.pitt.edu/-superl/lecture/lecl171/index.htm. USA: Supercourse network group, 2009.
    21. Higgins J, Thompson S, Deeks J, et al. Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy, 2002, 7(1): 51-61
    22.魏丽娟,董惠娟.Meta分析中异质性的识别与处理.第二军医大学学报,2006,27(4):449-450
    23.石修权,王增珍.Meta回归与亚组分析在异质性处理中的应用.中华流行病学杂志,2008,29(5):497-501
    24.康德英,王家良,洪旗,等.临床试验Meta分析中的异质性评价研究.华西医学,2000,15(2):143-145
    25. Baujat B, Mahe C, Pignon JP, et al. A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med, 2002, 21(18): 2641-2652
    26. Schmid CH, Stark PC, Berlin JA, et al. Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol, 2004, 57(7): 683-697
    27. Moher D, Altman DG, Schulz KF, et al. Opportunities and challenges for improving the quality of reporting clinical research: CONSORT and beyond. Cmaj, 2004, 171(4): 349-350
    28. Shi H, Li J, Bao WY. Publication bias in medical research. Natl Med J China 2001, 81(14): 892-894
    29. Kamangar F, Cheng C, Abnet CC, et al. Interleukin-1B polymorphisms and gastric cancer risk - a meta-analysis. Cancer Epidemiol Biomarkers Prev, 2006, 15(10): 1920-1928
    30.石修权,王增珍.Egger's test和Begg's test的功效差异比较与原因分析.华中科技大学学报(医学版),2009,38(1):91-93,102
    31. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997, 315(7109): 629-634
    32. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994, 50(4): 1088-1101
    33. Kang DY, Hong Q, Liu GJ, et al. Investigating and dealing with publication bias in meta-analysis. Chinese Journal of Evidence-Based Medicine, 2003, 3(1): 45-49
    34. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 2000, 56(2): 455-463
    35. Rosenthal R. The "file drawer problem" and tolerance for null results. Psychol Bull, 1979, 86: 638-641
    36. Hayashino Y, Noguchi Y, Fukui T. Systematic evaluation and comparison of statistical tests for publication bias. J Epidemiol, 2005, 15(6): 235-243
    37. Peters JL, Sutton AJ, Jones DR, et al. Comparison of two methods to detect publication bias in meta-analysis. Jama, 2006, 295(6): 676-680
    38. Neumann AS, Sturgis EM, Wei Q. Nucleotide excision repair as a marker for susceptibility to tobacco-related cancers: a review of molecular epidemiological studies. Mol Carcinog, 2005, 42(2): 65-92
    39. Li WY, Lai BT, Zhan XP. [The relationship between genetic polymorphism of metabolizing enzymes and the genetic susceptibility to lung cancer]. Zhonghua Liu Xing Bing Xue Za Zhi, 2004, 25(12): 1042-1045
    40. Yang XR, Wacholder S, Xu Z, et al. CYP1A1 and GSTM1 polymorphisms in relation to lung cancer risk in Chinese women. Cancer Lett, 2004, 214(2): 197-204
    41. Mohr LC, Rodgers JK, Silvestri GA. Glutathione S-transferase M1 polymorphism and the risk of lung cancer. Anticancer Res, 2003, 23(3A): 2111-2124
    42. Raimondi S, Paracchini V, Autrup H, et al. Meta- and pooled analysis of GSTT1 and lung cancer: a HuGE-GSEC review. Am J Epidemiol, 2006, 164(11): 1027-1042
    43. Reszka E, Wasowicz W. Significance of genetic polymorphisms in glutathione Stransferase multigene family and lung cancer risk. Int J Occup Med Environ Health, 2001, 14(2): 99-113
    44. Mathijssen RH, van Schaik RH. Genotyping and phenotyping cytochrome P450: perspectives for cancer treatment. Eur J Cancer, 2006, 42(2): 141-148
    45. Seow AL, Ng DP, Tan KW, et al. CYP1A1 polymorphism, environmental exposures and lung cancer risk among non-smoking Chinese women in Singapore. AACR Meeting Abstracts, 2004. 1221
    46. Le Marchand L, Guo C, Benhamou S, et al. Pooled analysis of the CYP1A1 exon 7 polymorphism and lung cancer (United States). Cancer Causes Control, 2003, 14(4): 339-346
    47.常福厚,扈廷茂,王光.CYP1A1和GSTM1基因多态性与内蒙古人群肺癌易感性的关系.中国肺癌杂志,2006,9(5):413-417
    48.李代蓉,周清华,郭占林,等.CYP1A1多态性与肺癌遗传易感性的关系.中华肿瘤防治杂志,2006,13(23):1765-1768
    49. Houlston RS. CYP1A1 polymorphisms and lung cancer risk: a meta-analysis. Pharmacogenetics, 2000, 10(2): 105-114
    50. Ye Z, Song H, Higgins JP, et al. Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med, 2006, 3(4): e91
    51. Vineis P, Veglia F, Benhamou S, et al. CYP1A1 T3801 C polymorphism and lung cancer: a pooled analysis of 2451 cases and 3358 controls. Int J Cancer, 2003, 104(5): 650-657
    52. Shi X, Zhou S, Wang Z, et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer, 2008, 59(2): 155-163
    53. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials, 1996, 17(1): 1-12
    54. Hu Z, Ma H, Chen F, et al. XRCC1 polymorphisms and cancer risk: a metaanalysis of 38 case-control studies. Cancer Epidemiol Biomarkers Prev, 2005, 14(7): 1810-1818
    55. Hu Y, Gao Y, Zhang Q. Genetic polymorphisms of CYP1A1, 2D6 and GSTM1 related with susceptibility to lung cancer [in Chinese]. Tumor, 1998, 18(4): 269-271
    56. Song N, Tan W, Tang H, et al. Impact of cytochrome P4501A1 gene mutations on the risk of development of lung cancer in a Chinese population [in Chinese]. Chine J Cancer, 1999, 18(5): 495-498
    57. Song N, Tan W, Xing D, et al. CYP 1A1 polymorphism and risk of lung cancer in relation to tobacco smoking: a case-control study in China. Carcinogenesis, 2001, 22(1): 11-16
    58. Yin L, Pu Y, Liu TY, et al. Genetic polymorphisms of NAD(P)H quinone oxidoreductase, CYP1A1 and microsomal epoxide hydrolase and lung cancer risk in Nanjing, China. Lung Cancer, 2001, 33(2-3): 133-141
    59. Zhou X, Shi Y, Zhou Y. The relationship between CYP1A1 genetic polymorphism and susceptibility to lung cancer [in Chinese]. J Environ Occup Med, 2002, 19(6): 355-357, 387
    60. Cai X, Chert S, Wang B, et al. Genetic polymorphisms of CYP1A1 Msp1 susceptibility of lung cancer of Guangdong population [in Chinese]. Jiangsu J Prev Med, 2003, 14(2): 1-2
    61. Wang J, Deng Y, Li L, et al. Association of GSTM1, CYP1A1 and CYP2E1 genetic polymorphisms with susceptibility to lung adenocarcinoma: a case-control study in Chinese population. Cancer Sci, 2003, 94(5): 448-452
    62. Gu Y, Zhang S, Lai B, et al. Relationship between genetic polymorphism of metabolizing enzymes and lung cancer susceptibility [in Chinese]. Chin J Lung Cancer, 2004, 7(2): 112-117
    63. Chen S, Ye W, Chen Q. Relationship between CYP1A1 polymorphism, serum selenium and lung cancer [in Chinese]. Chin J Public Health, 2004, 20(7): 796-797
    64. Dong C, Yang Q, Jiang B, et al. Study on the relationship between polymorphisms of CYP1A1 gene and susceptibility of lung cancer in Sichuan population [in Chinese]. Chin J Lung Cancer, 2004, 7(1): 38-42
    65. Liang G, Pu Y, Yin L. Studies of the genes related to lung cancer susceptibility in Nanjing Han population, China [in Chinese]. Hereditas (Beijing), 2004, 26(5): 584-588
    66. Li Y, Tang X, Ma X. Cytochrome P24501A1 polymorphisms and susceptibility to lung cancer: a case-control study on Chinese population in Henan [in Chinese]. Henan Med Res, 2005, 14(3): 227-229
    67. Qian B, Han H, Gu F, et al. Case-control study genetic polymorphism in CYP1A1 and GSTM1 and smoking and susceptibility to lung cancer [in Chinese]. Chin J Clin Oncology, 2006, 33(9): 500-502
    68. Wang D, Chen S, Wang B, et al. A case control study on relationship between lung cancer and genetic polymorphism of CYP1A1, CYP2E1 and GSTM1 in Han nationality, in Guangzhou area [in Chinese]. Bulletin of Chin Cancer, 2006, 15(9): 579-582
    69.夏觅真,薛绍礼,金永堂,等.肺癌患者与非肺癌人群CYP1A1基因MspI位点 多态性.现代医药卫生,2007,23(21):3164-3165
    70.刘群,刘杰,宋宝,等.CYPIA1、GSTM1基因多态性与肺癌遗传易感性的关系.山东医药,2008,48(9):32-34
    71. Chen S, Xu L, Ma G, et al. Identification of genetic polymorphism of CYP1A1 and GSTM1 and lung cancer patients by using allele-specific PCR and multiplex differential PCR [in Chinese]. Carcinogenesis Teratogenesis and Mutagenesis, 1999, 11(3): 119-121
    72. Hu Y, Zhang Q. Genetic polymorphisms of CYP1A1 and susceptibility of lung cancer [in Chinese]. Chin J Med Gene, 1999, 16(1): 26-28
    73. Xue K, Xu L, Chen S, et al. the relationship between polymorphisms of the CYP1A1 and GSTM1 genes and the susceptibility to lung carcinoma in Chinese population [in Chinese]. Carcinogenesis Teratogenesis and Mutagenesis, 1999, 11(6): 326
    74. London S J, Yuan JM, Coetzee GA, et al. CYP1A1 I462V genetic polymorphism and lung cancer risk in a cohort of men in Shanghai, China. Cancer Epidemiol Biomarkers Prev, 2000, 9(9): 987-991
    75. Xue K, Xu L, Chen S, et al. Polymorphisms o fthe CYP1A1 and GSTM1 genes and their combined effects on individual susceptibility to lung cancer in a Chinese population [in Chinese]. Chin J Med Gene, 2001, 18(2): 125-127
    76. Zhang L, Wang X, Shi Y. Susceptibility to lung cancer is associated with genetic polymorphism of cytochrome P450 (CYP1A1) [in Chinese]. Acta Academic Med Xuzhou, 2001, 21 (1): 8-10
    77. Zhang L, Wang X, Hao X, et al. Relationship between susceptibility to lung cancer and genetic polymorphism in CYP1A1, GSTM1 [in Chinese]. Chin J Clin Oncology, 2002, 29(8): 536-540
    78. Gao J, Ren C, Zhang Q. CYP2D6 and GSTM1 genetic polymorphism and lung cancer susceptibility [in Chinese]. Chin J Oncology, 1998, 20(3): 185-186
    79. Lan Q, He X, Costa DJ, et al. Indoor coal combustion emissions, GSTM1 and GSTT1 genotypes, and lung cancer risk: a case-control study in Xuan Wei, China. Cancer Epidemiol Biomarkers Prev, 2000, 9(6): 605-608
    80. Chen S, Xue K, Xu L, et al. Polymorphisms of the CYP1A1 and GSTM1 genes in relation to individual susceptibility to lung carcinoma in Chinese population. Mutat Res, 2001, 458(1-2): 41-47
    81. Chan Y, Wang X, Wang X, et al. A study of genetic polymorphism of GSTM1 gene in normal population and lung cancer population in Yunnan [in Chinese]. Acta of Yunan Normal University, 2002, 22(4): 52-54
    82. Chan-Yeung M, Tan-Un KC, Ip MS, et al. Lung cancer susceptibility and polymorphisms of glutathione-S-transferase genes in Hong Kong. Lung Cancer, 2004, 45(2): 155-160
    83. Luo C, Chen Q, Cao W, et al. Combined analysis of polymorhpism of GSTM1 and mutagenes and p53 gene in the patients with lung cancer [in Chinese]. Chin J Clin Oncology, 2004, 31(21): 1218-1220
    84. Li D, Zhou Q, Yuan T, et al. Study on the association between genetic polymorphism of CYP2E1, GSTM1 and susceptibility of lung cancer [in Chinese]. Chin J Lung Cancer, 2005, 8(1): 14-19
    85. Li Y, Tang X, Ma X, et al. Glutathione S-transferase M1 polymorphisms and susceptibility to lung cancer [in Chinese]. J Med Drug Forum, 2005, 26(16): 10-12
    86. Wang N, Zhuang D, Wu Y. Research on relationship between GSTMI gene deletion and lung cancer genetic susceptibility [in Chinese]. Acta of Henan University of Sci Tech (Medical Volme), 2005, 23(1): 7-8.
    87. Ye W, Chen S, Chen Q. Interaction between serum selenium level and polymorphism of GSTM1 in lung cancer [in Chinese]. Acta Nutrimenta Sinica, 2005, 27(1): 17-20
    88. Zeng M, Chen S, Xie C, et al. Case control study on relationship between lung cancer and its susceptibility marker [in Chinese]. Chin J Public Health, 2005, 21(7): 771-774
    89. Wang Q, Lu Q, Zen H, et al. The relationship betwween CYP2C9 and GSTM1 genetic polimorphism and lung cancer susceptibility [in Chinese]. Cancer Res on Prev and Treatment, 2006, 33(1): 8-10
    90.雷放鸣,李双飞,周卫东,等.GSTM1基因多态性与肺癌易感性的病例对照研究.现代预防医学,2007,34(4):724-726
    91. Hayashi S, Watanabe J, Nakachi K, et al. Genetic linkage of lung cancer- associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J Biochem, 1991,110(3):407-411
    92.Lan Q, He X, Debra C, et al. Judy M. Glutathione S-transferase GSTM1 and GSTT1 genotypes and susceptibility to lung cancer [in Chinese]. J Hygiene Res, 1999,28(1):9-11
    93.Bartsch H, Nair U, Risch A, et al. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers. Cancer Epidemiol Biomarkers Prev, 2000,9(l):3-28
    94.Perera FP, Mooney LA, Stampfer M, et al. Associations between carcinogen-DNA damage, glutathione S-transferase genotypes, and risk of lung cancer in the prospective Physicians' Health Cohort Study. Carcinogenesis, 2002,23(10):1641- 1646
    95.Houlston RS. Glutathione S-transferase Ml status and lung cancer risk: a metaanalysis. Cancer Epidemiol Biomarkers Prev, 1999,8(8):675-682
    96.Nebert DW, Petersen DD, Puga A. Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin. Pharmacogenetics, 1991,1 (2):68-78
    97.Cote ML, Chen W, Smith DW, et al. Meta- and Pooled Analysis of GSTP1 Polymorphism and Lung Cancer: A HuGE-GSEC Review. Am J Epidemiol, 2009,169(7):802-814
    98.Lo YL, Jou YS, Hsiao CF, et al. A polymorphism in the APE1 gene promoter is associated with lung cancer risk. Cancer Epidemiol Biomarkers Prev, 2009,18(1):223-229
    1.赵启宇,阚海东,Haber L,等.危险度评价最新进展.中国药理学与毒理学杂志,2004,18(2):152-160
    2. Hawthorne SB, Miller D J, Kreitinger JP. Measurement of total polycyclic aromatic hydrocarbon concentrations in sediments and toxic units used for estimating risk to benthic invertebrates at manufactured gas plant sites. Environ Toxicol Chem, 2006, 25(1): 287-296
    3. Hofelt CS, Honeycutt M, McCoy JT, et al. Development of a metabolism factor for polycyclic aromatic hydrocarbons for use in multipathway risk assessments of hazardous waste combustion facilities. Regul Toxicol Pharmacol, 2001, 33(1): 60-65
    4. Carlon C, Critto A, Marcomini A, et al. Risk based characterisation of contaminated industrial site using multivariate and geostatistical tools. Environ Pollut, 2001, 111(3): 417-427
    5. Dor F, Empereur-Bissonnet P, Zmirou D, et al. Validation of multimedia models assessing exposure to PAHs--the SOLEX study. Risk Anal 2003, 23(5): 1047-1057.
    6. Hecht SS. Tobacco smoke carcinogens and breast cancer. Environ Mol Mutagen, 2002, 39(2-3): 119-126
    7. Schneider K, Roller M, Kalberlah F, et al. Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol, 2002, 22(1): 73-83
    8.王红.焦炉工人代谢酶AKRIC3和核苷酸切除修复酶ERCC1、XPC基因多态性与DNA损伤水平的关系.博士学位论文.武汉:华中科技大学图书馆,2006.
    9. Kellen E, Zeegers M, Paulussen A, et al. Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk on bladder cancer? The Belgian case control study on bladder cancer risk. Cancer Lett, 2007, 245(1-2): 51-60
    10. Liu AL, Lu WQ, Wang ZZ, et al. Elevated levels of urinary 8-hydroxy-2-deoxyguanosine, lymphocytic micronuclei, and serum glutathione S-transferase in workers exposed to coke oven emissions. Environ Health Perspect, 2006, 114(5): 673-677
    11. Petry T, Schmid P, Schlatter C. Airborne exposure to polycyclic aromatic hydrocarbons (PAHs) and urinary excretion of 1-hydroxypyrene of carbon anode plant workers. Ann Occup Hyg, 1996, 40(3): 345-357
    12. Tsai PJ, Shieh HY, Lee WJ, et al. Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. Sci Total Environ, 2001, 278(1-3): 137-150
    13. Leng S, Cheng J, Pan Z, et al. Associations between XRCC1 and ERCC2 polymorphisms and DNA damage in peripheral blood lymphocyte among coke oven workers. Biomarkers, 2004, 9(4-5): 395-406
    14.周素华.以生物标志物为基础的BaP致肺癌危险度评价初探.硕士学位论文.武汉:华中科技大学图书馆,2006.
    15. Zethelius B, Berglund L, Sundstrom J, et al. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N Engl J Med, 2008, 358(20): 2107-2116
    16. Wang H, Chen W, Zheng H, et al. Association between plasma BPDE-Alb adduct concentrations and DNA damage of peripheral blood lymphocytes among coke oven workers. Occup Environ Med, 2007, 64(11): 753-758
    17. Wang H, Yang XB, Liu AL, et al. Significant positive correlation of plasma BPDE-albumin adducts to urinary 1-hydroxypyrene in coke oven workers. Biomed Environ Sci, 2007, 20(3): 179-183
    18. Yang X, Zheng J, Bai Y, et al. Using lymphocyte and plasma Hsp70 as biomarkers for assessing coke oven exposure among steel workers. Environ Health Perspect, 2007, 115(11): 1573-1577
    19. Chen Y, Bai Y, Yuan J, et al. Association of polymorphisms in AhR, CYP1A1, GSTM1, and GSTT1 genes with levels of DNA damage in peripheral blood lymphocytes among coke-oven workers. Cancer Epidemiol Biomarkers Prev, 2006, 15(9): 1703-1707
    20. Cunha I, Garcia LM, Guilhermino L. Sea-urchin (Paracentrotus lividus) glutathione S-transferases and cholinesterase activities as biomarkers of environmental contamination. J Environ Monit, 2005,7(4):288-294
    21. Shen J, Gammon MD, Terry MB, et al. Polymorphisms in XRCC1 modify the association between polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, dietary antioxidants, and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 2005,14(2):336-342
    22. Terry MB, Gammon MD, Zhang FF, et al. Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk. Cancer Epidemiol Biomarkers Prev, 2004,13(12):2053-2058
    23. Arnould JP, Kubiak R, Belowski J, et al. Detection of benzo[a]pyrene-DNA adducts in leukocytes of coke oven workers. Pathol Biol (Paris), 2000,48(6):548-553
    24. Binkova B, Lenicek J, Benes I, et al. Genotoxicity of coke-oven and urban air particulate matter in in vitro acellular assays coupled with 32P-postlabeling and HPLC analysis of DNA adducts. Mutat Res, 1998,414(1-3):77-94
    25. Xiao C, Wu T, Ren A, et al. Basal and inducible levels of Hsp70 in patients with acute heat illness induced during training. Cell Stress Chaperones, 2003,8(1):86-92
    26. Al Zabadi H, Ferrari L, Laurent AM, et al. Biomonitoring of complex occupational exposures to carcinogens: the case of sewage workers in Paris. BMC Cancer, 2008,8:67
    27. Pavanello S, Clonfero E. Biological indicators of genotoxic risk and metabolic polymorphisms. Mutat Res, 2000,463(3):285-308
    28. Siwinska E, Mielzynska D, Kapka L. Association between urinary 1-hydroxypyrene and genotoxic effects in coke oven workers. Occup Environ Med,2004,61(3):e10
    29. Endo K, Uno S, Seki T, et al. Inhibition of aryl hydrocarbon receptor transactivation and DNA adduct formation by CYP1 isoform-selective metabolic deactivation of benzo[a]pyrene. Toxicol Appl Pharmacol, 2008,230(2):135-143
    30. de Waard PW, de Kok TM, Maas LM, et al. Influence of TCDD and natural Ah receptor agonists on benzo[a] pyrene-DNA adduct formation in the Caco-2 human colon cell line. Mutagenesis, 2008, 23(1): 67-73
    31. Hu Y, Li G, Xue X, et al. PAH-DNA adducts in a Chinese population: relationship to PAH exposure, smoking and polymorphisms of metabolic and DNA repair genes. Biomarkers, 2008, 13(1): 27-40
    32.易东.常用统计预测方法.见 孙振球 主编.医学统计学(研究生教材,第二版).北京:人民卫生出版社,2005.477-492
    33. Boulle A, Chandramohan D, Weller P. A case study of using artificial neural networks for classifying cause of death from verbal autopsy. Int J Epidemiol, 2001, 30(3): 515-520
    34. Tangri N, Ansell D, Naimark D. Predicting technique survival in peritoneal dialysis patients: comparing artificial neural networks and logistic regression. Nephrol Dial Transplant, 2008, 23: 2972-2981
    35. Hanai T, Yatabe Y, Nakayama Y, et al. Prognostic models in patients with non-small-cell lung cancer using artificial neural networks in comparison with logistic regression. Cancer Sci, 2003, 94(5): 473-477
    36. Markey MK, Tourassi GD, Margolis M, et al. Impact of missing data in evaluating artificial neural networks trained on complete data. Comput Biol Med, 2006, 36(5): 516-525
    37. Mjalli FS, Al-Asheh S, Alfadala HE. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J Environ Manage, 2007, 83(3): 329-338
    38. Black J, Benke G, Smith K, et al. Artificial neural networks and job-specific modules to assess occupational exposure. Ann Occup Hyg, 2004, 48(7): 595-600
    39. Xiao G, Ni MJ, Chi Y, et al. Gasification characteristics of MSW and an ANN prediction model. Waste Manag, 2009, 29(1): 240-244
    40. Yetilmezsoy K, Demirel S. Artificial neural network (ANN) approach for modeling of Pb(Ⅱ) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J Hazard Mater, 2008, 153(3): 1288-1300
    41. Dimopoulos IF, Tsiros IX, Serelis K, et al. Combining neural network models to predict spatial patterns of airborne pollutant accumulation in soils around an industrial point emission source. J Air Waste Manag Assoc, 2004, 54(12): 1506-1515
    42. Greenacre M, Pardo R. Subset correspondence analysis visualizing relationships among a selected set of response categories from a questionnaire survey. Sociological Methods & Research, 2006, 35(2): 193-218
    43.李克均,冯丽云,时松和,等.多重对应分析及其在工作满意度研究中的应用.中国卫生统计,2007,24(1):19-21
    44. Blasius J, Thiessen V. Assessing data quality and construct comparability in cross-national surveys. European Sociological Review, 2006, 22(3): 229-242
    45. Costa JC, Almeida RM, Infantosi AF, et al. A heuristic index for selecting similar categories in multiple correspondence analysis applied to living donor kidney transplantation. Comput Methods Programs Biomed, 2008, 90(3): 217-229
    46. Salgueiro AR, Pereira HG, Rico MT, et al. Application of correspondence analysis in the assessment of mine tailings dam breakage risk in the Mediterranean region. Risk Anal, 2008, 28(1): 13-23
    47.肖经纬,李斌,王海华.危险度评价在职业卫生工作中的研究进展.实用预防医学,2006,13(4):1087-1089
    48.陈国元,刘卫东,刘四海,等.3种不同职业人群亚健康现状及其预防对策.中国临床实用医学,2007,1(1):50-53
    49. Ambrogi F, Biganzoli E, Boracchi P. Multiple correspondence analysis in S-PLUS. Comput Methods Programs Biomed, 2005, 79(2): 161-167
    50.张文彤,主编.SPSS统计分析教程(高级篇).北京:希望电子出版社.2002.402-412
    51. Guinot C, Latreille J, Morizot F, et al. Assessment of sun reactive skin type with multiple correspondence analysis, hierarchical and tree-structured classification methods. Int J Cosmet Sci, 2002, 24(4): 207-216
    52. Manuguerra M, Matullo G, Veglia F, et al. Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions. Carcinogenesis, 2007, 28(2): 414-422
    53.沈洪兵.基因多态性与疾病易感性的分子流行病学研究问题与对策.中华流行病学杂志,2004,25(9):766-768
    54. Qian J, Jing J, Jin G, et al. Association between polymorphisms in the GSTA4 gene and risk of lung cancer: A case-control study in a Southeastern Chinese population. Mol Carcinog, 2009, 48(3): 253-259
    55. Wu W, Liu H, Lei R, et al. Genetic variants in GTF2H1 and risk of lung cancer: a case-control analysis in a Chinese population. Lung Cancer, 2009, 63(2): 180-186
    56.耿直,胡永华.交互作用的统计推断.中华流行病学杂志,2002,23(3):221-224
    57. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet, 2001, 69(1): 138-147
    58. Moore JH. Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev Mol Diagn, 2004, 4(6): 795-803
    59. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics, 2003, 19(3): 376-382
    60.唐迅,李娜,胡永华.应用多因子降维法分析基因-基因交互作用.中华流行病学杂志,2006,27(5):437-441
    61. Moore JH, Williams SM. New strategies for identifying gene-gene interactions in hypertension. Ann Med, 2002, 34(2): 88-95
    62. Cho YM, Ritchie MD, Moore JH, et al. Multifactor-dimensionality reduction shows a two-locus interaction associated with Type 2 diabetes mellitus. Diabetologia, 2004, 47(3): 549-554
    63. Chang JS, Wrensch MR, Hansen HM, et al. Nucleotide excision repair genes and risk of lung cancer among San Francisco Bay Area Latinos and African Americans. Int J Cancer, 2008, 123(9): 2095-2104
    64. Hu Z, Wang H, Shao M, et al. Genetic variants in MGMT and risk of lung cancer in Southeastern Chinese: a haplotype-based analysis. Hum Mutat, 2007, 28(5): 431-440
    65. Bin P, Leng S, Cheng J, et al. Association of aryl hydrocarbon receptor gene polymorphisms and urinary 1-hydroxypyrene in polycyclic aromatic hydrocarbon-exposed workers. Cancer Epidemiol Biomarkers Prev, 2008, 17(7): 1702-1708
    66. Chen D, Tian T, Wang H, et al. Association of human aryl hydrocarbon receptor gene polymorphisms with risk of lung cancer among cigarette smokers in a Chinese population. Pharmacogenet Genomics, 2009, 19(1): 25-34
    67. Lee CH, Lee JM, Wu DC, et al. Carcinogenetic impact of ADH1B and ALDH2 genes on squamous cell carcinoma risk of the esophagus with regard to the consumption of alcohol, tobacco and betel quid. Int J Cancer, 2008, 122(6): 1347-1356
    68. Eom SY, Zhang YW, Kim SH, et al. Influence of NQO1, ALDH2, and CYP2E1 genetic polymorphisms, smoking, and alcohol drinking on the risk of lung cancer in Koreans. Cancer Causes Control, 2009, 20(2): 137-145
    69.唐迅,李娜,陈大方,等.多因子降维法分析基因一基因交互作用的应用进展.中华流行病学杂志,2007,28(9):918-921
    70. Williams SM, Ritchie MD, Phillips JA, 3rd, et al. Multilocus analysis of hypertension: a hierarchical approach. Hum Hered, 2004, 57(1): 28-38
    71. Xu J, Lowey J, Wiklund F, et al. The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prey, 2005, 14(11 Pt 1): 2563-2568
    72. Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol, 2003, 24(2): 150-157
    73. Motsinger AA, Ritchie MD. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum Genomics, 2006, 2(5): 318-328
    74. Velez DR, White BC, Motsinger AA, et al. A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol, 2007, 31(4): 306-315
    75. Bush WS, Dudek SM, Ritchie MD. Parallel multifactor dimensionality reduction: a tool for the large-scale analysis of gene-gene interactions. Bioinformatics, 2006, 22(17): 2173-2174
    76. Edwards TL, Lewis K, Velez DR, et al. Exploring the performance of Multifactor Dimensionality Reduction in large scale SNP studies and in the presence of genetic heterogeneity among epistatic disease models. Hum Hered, 2009, 67(3): 183-192
    77. Coffey CS, Hebert PR, Ritchie MD, et al. An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction: the importance of model validation. BMC Bioinformatics, 2004, 5: 49
    78.邱丽.复杂性疾病中基因-基因,基因-环境交互作用的统计学分析方法.硕士学位论文(综述部分).武汉:华中科技大学图书馆,2008.
    79. McKinney BA, Reif DM, Ritchie MD, et al. Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics, 2006, 5(2): 77-88
    80. Moore JH, Ritchie MD. STUDENTJAMA. The challenges of whole-genome approaches to common diseases. Jama, 2004, 291(13): 1642-1643
    81. Mechanic LE, Luke BT, Goodman JE, et al. Polymorphism Interaction Analysis (PIA): a method for investigating complex gene-gene interactions. BMC Bioinformatics, 2008, 9: 146
    1. Matanoski G, Fishbein L, Redmond C, et al. Contribution of organic particulates to respiratory cancer. Environ Health Perspect, 1986, 70: 37-49
    2. Hoseyni MS. Risk assessment for aflatoxin: Ⅲ. Modeling the relative risk of hepatocellular carcinoma. Risk Anal, 1992, 12(1): 123-128
    3. Baudouin C, Charveron M, Tarroux R, et al. Environmental pollutants and skin cancer. Cell Biol Toxicol, 2002, 18(5): 341-348
    4. Sirven JI, Wingerchuk DM, Drazkowski JF, et al. Seizure prophylaxis in patients with brain tumors: a meta-analysis. Mayo Clin Proc, 2004, 79(12): 1489-1494
    5. Gay HA, Allison RR, Downie GH, et al. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization. Phys Med Biol, 2007, 52(11): 2987-2999
    6. Calabrese EJ, Baldwin LA. The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci, 2001, 62(2): 330-338
    7. Perrio M J, Wilton LV, Shakir SA. A modified prescription-event monitoring study to assess the introduction of Flixotide Evohaler into general practice in England: an example of pharmacovigilance planning and risk monitoring. Pharmacoepidemiol Drug Saf, 2007, 16(9): 969-978
    8. McClellan RO. Human health risk assessment: a historical overview and alternative paths forward. Inhal Toxicol, 1999, 11(6-7): 477-518
    9. Hearne FT, Grose F, Pifer JW, et al. Methylene chloride mortality study: doseresponse characterization and animal model comparison. J Occup Med,1987, 29(3): 217-228
    10.赵启宇,阚海东,HaberL,等.危险度评价最新进展.中国药理学与毒理学杂志,2004,18(2):152-160
    11. Tsai JW, Liao CM. A dose-based modeling approach for accumulation and toxicity of arsenic in tilapia Oreochromis mossambicus. Environ Toxicol, 2006, 21(1): 8-21
    12. Sand S, von Rosen D, Eriksson P, et al. Dose-response modeling and benchmark calculations from spontaneous behavior data on mice neonatally exposed to 2, 2', 4, 4', 5-pentabromodiphenyl ether. Toxicol Sci, 2004, 81(2): 491-501
    13. Lubin JH, Tomasek L, Edling C, et al. Estimating lung cancer mortality from residential radon using data for low exposures of miners. Radiat Res,1997,147(2):126-134
    14. Haseman JK. Using the NTP database to assess the value of rodent carcinogenicity studies for determining human cancer risk. Drug Metab Rev,2000,32(2):169-186
    15. IPCS. Assessing human health risks of chemicals: derivation of guidance values for health-based exposure limits. Geneva: Environmental Health Criteria, World Health Organization, International Program on Chemical Safety, 1994. 170
    16. Filipsson AF, Sand S, Nilsson J, et al. The benchmark dose method-review of available models, and recommendations for application in health risk assessment.Crit Rev Toxicol, 2003,33(5):505-542
    17. Slob W, Moerbeek M, Rauniomaa E, et al. A statistical evaluation of toxicity study designs for the estimation of the benchmark dose in continuous endpoints.Toxicol Sci, 2005,84(l):167-185
    18. Kuljus K, von Rosen D, Sand S, et al. Comparing experimental designs for benchmark dose calculations for continuous endpoints. Risk Anal,2006,26(4): 1031-1043
    19. Thomas RS, Allen BC, Nong A, et al. A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure.Toxicol Sci, 2007,98(1):240-248
    20. Hertzberg RC, Miller M. A statistical model for species extrapolation using categorical response data. Toxicol Ind Health,1985,1(4):43-57
    21. Kaiser JC, Heidenreich WF, Monchaux G, et al. Lung tumour risk in radon-exposed rats from different experiments: comparative analysis with biologically based models. Radiat Environ Biophys, 2004,43(3): 189-201
    22. Bois FY. Statistical analysis of Clewell et al. PBPK model of trichloroethylene kinetics. Environ Health Perspect, 2000,108 Suppl 2:307-316
    23. Edler L, Poirier K, Dourson M, et al. Mathematical modelling and quantitative.methods. Food Chem Toxicol, 2002,40(2-3):283-326
    24. Stiteler WM, Knauf LA, Hertzberg RC, et al. A statistical test of compatibility of data sets to a common dose-response model. Regul Toxicol Pharmacol, 1993,18(3):392-402
    25. Freni SC, Razzaghi M, Moore GE. Reproducibility of the dose-response curve of steroid-induced cleft palate in mice. Risk Anal,1994,14(6): 1073-1077
    26. Calabrese EJ. Historical blunders: how toxicology got the dose-response relationship half right. Cell Mol Biol (Noisy-le-grand), 2005,51 (7):643-654
    27. Tsougos I, Mavroidis P, Rajala J, et al. Evaluation of dose-response models and parameters predicting radiation induced pneumonitis using clinical data from breast cancer radiotherapy. Phys Med Biol, 2005,50(15):3535-3554
    28. Vieira V, Aschengrau A, Ozonoff D. Impact of tetrachloroethylene-contaminated drinking water on the risk of breast cancer: using a dose model to assess exposure in a case-control study. Environ Health, 2005,4(1):3
    29. Ronckers CM, Sigurdson AJ, Stovall M, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers.Radiat Res, 2006,166(4):618-628
    30. Streffer C, Bolt H, Follesdal D, et al. Low dose exposures in the environment:dose-effect relations and risk evaluation. 1st ed. Berlin: Springer, 2004.213-256
    31. Burgoon LD, Zacharewski TR. Automated quantitative dose-response modeling and point of departure determination for large toxicogenomic and high-throughput screening data sets. Toxicol Sci, 2008,104(2):412-418
    32. Royston P, Sauerbrei W. Stability of multivariable fractional polynomial models with selection of variables and transformations: a bootstrap investigation. Stat Med, 2003,22(4):639-659
    33. Chiang KC, Liao CM. Heavy incense burning in temples promotes exposure risk from airborne PMs and carcinogenic PAHs. Sci Total Environ, 2006,372(1):64-75
    34. Gray MN, Aylward LL, Keenan RE. Relative cancer potencies of selected dioxin-like compounds on a body-burden basis: comparison to current toxic equivalency factors (TEFs). J Toxicol Environ Health, 2006,69(10):907-917
    35. 王怀记,王增珍.Hill模型及其在环境危险度评价中的应用.中国卫生统计,2006,23(4):372-374
    36. Kodell RL, Lin KK, Thorn BT, et al. Bioassays of shortened duration for drugs:statistical implications. Toxicol Sci, 2000,55(2):415-432
    37. Zandvliet AS, Huitema AD, Copalu W, et al. CYP2C9 and CYP2C19 polymorphic forms are related to increased indisulam exposure and higher risk of severe hematologic toxicity. Clin Cancer Res, 2007;13(10):2970-2976
    38. Dankovic DA, Smith RJ, Stayner LT, et al. Time-to-tumour risk assessment for 1,3-butadiene based on exposure of mice to low doses by inhalation. IARC Sci Publ, 1993(127):335-344
    39. Wang Y, Liu M. Quantitative method of health risk assessment for occupational exposure to benzene based on dose-response models. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2008,26(2):77-80
    40. International Programme on Chemical Safety. Principles for modelling dose-response for the risk assessment of chemicals. Environmental Health Criteria.Geneva: WHO, 2004:50-73
    41. Crowther CS, Batchelder WH, Hu X. A measurement-theoretic analysis of the fuzzy logic model of perception. Psychol Rev,1995,102(2):396-408
    42. Loesche WJ, Taylor G,Giordano J, et al. A logistic regression model for the decision to perform access surgery. J Clin Periodontol, 1997,24(3): 171-179
    43. Borah BJ. A mixed logit model of health care provider choice: analysis of NSS data for rural India. Health Econ, 2006,15(9):915-932
    44. Wu X, Lin J, Etzel CJ, et al. Interplay between mutagen sensitivity and epidemiological factors in modulatinglung cancer risk. Int J Cancer,2007,120(12):2687-2695
    45. De Iorio M, Verzilli CJ. A spatial probit model for fine-scale mapping of disease genes. Genet Epidemiol, 2007,31(3):252-260
    46. Gajewski BJ, Hart S, Bergquist-Beringer S, et al. Inter-rater reliability of pressure ulcer staging: ordinal probit Bayesian hierarchical model that allows for uncertain rater response. Stat Med, 2007,26(25):4602-4618
    47. Sosa-Rubi SG,Galarraga O,Harris JE. Heterogeneous impact of the "Seguro Popular" program on the utilization of obstetrical services in Mexico, 2001-2006:A multinomial probit model with a discrete endogenous variable. J Health Econ,2009,28(1):20-34
    48. Thombs BD, Ziegelstein RC, Parakh K, et al. Probit structural equation regression model: general depressive symptoms predicted post-myocardial infarction mortality after controlling for somatic symptoms of depression. J Clin Epidemiol, 2008, 61(8): 832-839
    49. Das SK, Zhou S, Zhang J, et al. Predicting lung radiotherapy-induced pneumonitis using a model combining parametric Lyman probit with nonparametric decision trees. Int J Radiat Oncol Biol Phys, 2007, 68(4): 1212-1221
    50. Pracht EE, Tepas J J, 3rd, Celso BG, et al. Survival advantage associated with treatment of injury at designated trauma centers: a bivariate probit model with instrumental variables. Med Care Res Rev, 2007, 64(1): 83-97
    51. Tokarskaya ZB, Okladnikova ND, Belyaeva ZD, et al. The influence of radiation and nonradiation factors on the lung cancer incidence among the workers of the nuclear enterprise Mayak. Health Phys 1995,, 69(3): 356-366
    52. Little MP, Muirhead CR. Derivation of low-dose extrapolation factors from analysis of curvature in the cancer incidence dose response in Japanese atomic bomb survivors. Int J Radiat Biol, 2000, 76(7): 939-953
    53.邱小霞,周素华,王增珍.GAMMA模型在危险度评价中应用.中国公共卫生,2006,22(2):255-256
    54. Sielken RL, Stevenson DE. Another flaw in the linearized multistage model upper bounds on human cancer potency. Regul Toxicol Pharmacol, 1994, 19(1): 106-114
    55. Clarke G, Collins RA, Leavitt BR, et al. A one-hit model of cell death in inherited neuronal degenerations. Nature, 2000, 406(6792): 195-199
    56. Pottier CJ. Statistical properties of a two-stage model of carcinogenesis. Environ Health Perspect, 1987, 76: 125-131
    57. Moolgavkar SH, Luebeck G. Two-event model for carcinogenesis: biological, mathematical, and statistical considerations. Risk Anal, 1990, 10(2): 323-341
    58. Bijwaard H, Brugmans MJ, Leenhouts HP. A consistent two-mutation model of lung cancer for different data sets of radon-exposed rats. Radiat Environ Biophys, 2001, 40(4): 269-277
    59. Kojo K, Pukkala E, Auvinen A. Breast cancer risk among Finnish cabin attendants: a nested case-control study. Occup Environ Med, 2005, 62(7): 488-493
    60. Otani T, Iwasaki M, Sasazuki S, et al. Plasma folate and risk of colorectal cancer in a nested case-control study: the Japan Public Health Center-based prospective study. Cancer Causes Control, 2008, 19(1): 67-74
    61.任宁,王增珍.Rai & Van Ryzin巢式模型在发育毒性研究中的应用.医学信息, 2006,19(1):1-3
    62.周素华,王增珍.化学致畸物危险度评价中Nested logistic模型及其应用.毒理学杂志,2006,20(2):125-126
    63. Catalano PJ, Scharfstein DO, Ryan LM, et al. Statistical model for fetal death, fetal weight, and malformation in developmental toxicity studies. Teratology, 1993, 47(4): 281-290
    64. Little MP. Threshold and other departures from linear-quadratic curvature in the non-cancer mortality dose-response curve in the Japanese atomic bomb survivors. Radiat Environ Biophys, 2004, 43(2): 67-75
    65. Hunt DL, Rai SN. A new threshold dose-response model including random effects for data from developmental toxicity studies. J Appl Toxicol, 2005, 25(5): 435-439
    66. Salanti G, Ulm K. A non-parametric framework for estimating threshold limit values. BMC Med Res Methodol, 2005, 5: 36
    67. Wraith D, Mengersen K. A Bayesian approach to assess interaction between known risk factors: the risk of lung cancer from exposure to asbestos and smoking. Stat Methods Med Res, 2008, 17(2): 171-189
    68. Ivanov J, Borger MA, David TE, et al. Predictive accuracy study: comparing a statistical model to clinicians' estimates of outcomes after coronary bypass surgery. Ann Thorac Surg, 2000, 70(1): 162-168
    69. Burnham KP, Anderson DR. Model Selection and Multimodel Inference. Second Edition. New York: Springer. 2002.
    70. Falk Filipsson A, Victorin K. Comparison of available benchmark dose softwares and models using trichloroethylene as a model substance. Regul Toxicol Pharmacol, 2003, 37(3): 343-355
    71. Fitzgerald DJ, Robinson NI, Pester BA. Application of benzo(a)pyrene and coal tar tumor dose-response data to a modified benchmark dose method of guideline development. Environ Health Perspect, 2004, 112(14): 1341-1346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700