淀粉基生物质材料的制备、特性及结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油短缺带来的能源危机和废弃塑料引起的“白色污染”日趋严重,对天然生物质材料的研究愈来愈引起各国政府和科学家们的重视与关注。淀粉这类来源广泛的天然高分子多糖,则是生物质材料较理想的选择之一。然而由于淀粉自身的多羟基结构和结晶规整排列,以及由此带来的许多特性,限制了直接将淀粉用于加工或代替塑料薄膜和其它用途的制品,特别是农用地膜,难度更大。为此,本文以淀粉为原料,选用不同的增强剂制备全生物降解包装膜、农用地膜和宠物玩具。根据加工材料的需要,选择不同粒度大小的淀粉,并对其进行特殊的物理和化学修饰,使淀粉分子链形态适应其加工性能。主要研究结果如下:
     1.纳米二氧化硅改性淀粉基生物降解包装膜的机理
     通过IR、XPS、XRD及DSC分析技术对纳米二氧化硅改性淀粉基生物降解包装膜的微观结构、原子组成变化、聚集态行为及热特性进行表征和分析,探讨了纳米二氧化硅改性淀粉基生物降解包装膜的机理:纳米二氧化硅不仅同ST和PVA分子间形成氢键,同时还通过化学键作用形成新的C-O-Si键,从而使纳米二氧化硅与ST-PVA分子间形成致密的网络结构,进一步揭示了纳米二氧化硅提高ST-PVA膜性能的本质原因。
     2.纳米二氧化硅改性淀粉基生物降解包装膜的制备技术
     系统的研究了纳米二氧化硅的分散方法以及淀粉的增塑和交联技术。研究结果表明超声波分散方法是分散纳米二氧化硅较理想的分散方法,选用脉冲式(开启3s,停止2s)及超声波振幅为50%的条件下,超声波处理纳米二氧化硅12min,可使纳米二氧化硅均匀的分散在ST-PVA膜中;纳米二氧化硅的最佳添加量为1.5%,可以显著提高ST-PVA膜的耐水性、拉伸强度、断裂伸长率以及在环境中的适应性能;通过正交实验及模糊数学中的综合评价法,确定了三种复合增塑剂水、乙二醇和丙三醇的最佳用量分别为水4%、乙二醇3%和丙三醇9%;乙二醛是淀粉的有效交联剂,乙二醛交联反应的优化条件为乙二醛2.5%、pH为9、反应温度为80℃及交联反应时间为30min;淀粉基生物降解包装膜的力学性能达到国家标准GB/T4456-1996(包装用聚乙烯吹塑薄膜国家标准),并具有很好的环境适应性能和生物降解性能。
     3.微细化淀粉的特性及其在生物降解地膜中的应用
     利用超声波气流粉碎机制备微细化淀粉,并进一步对微细化淀粉进行疏水化改性,以提高与PCL生物降解高分子材料的相容性。研究结果表明淀粉经微细化处理后,粒径明显下降,表面变得不规则,并且随微细化程度的提高,淀粉分子内的氢键断裂程度提高,淀粉分子表面活性提高以及结晶度下降,经进一步研究发现,过细的淀粉易发生聚集现象。结合成本考虑,选择300目的微细化淀粉较适宜;采用双重增塑改性,确定了PCL增塑改性的条件为增塑剂PEG(Mn=6000)用量为6%,淀粉增塑改性的增塑剂的最佳用量为三乙醇胺4%、聚乙二醇(Mn=400)3%及丙三醇2%;经在甜玉米作物进行田间实验结果表明,淀粉基生物降解地膜具有保温、保水及增加农作物产量的作用,且具有较好的生物降解性能,可以替代非降解性的PE地膜。
     4.淀粉的双酯化改性及其在宠物玩具中的应用
     较系统的对磷酸化醋酸化双酯化淀粉的微观结构、热特性及晶体结构特性进行了研究,并通过进一步的增强、增塑及交联制备可食性宠物玩具。研究结果表明淀粉经双酯化后,其透光率提高、冻融稳定性和膨胀度增加,双酯化后的淀粉较原淀粉结晶度下降,而保水性和热稳定性提高;当复合增塑剂水和丙三醇用量各为12%、交联剂多聚磷酸钠用量为2%、增强剂明胶用量为20%时,制备的宠物玩具硬度为14042.55g和弹性为0.936。
     主要创新点:
     1.利用纳米二氧化硅高表面活性的特点,采用超声波分散后用来改性淀粉,从而提高了淀粉基包装膜的性能;发现纳米二氧化硅与ST-PVA间存在氢键及化学键合,探索了纳米二氧化硅提高ST-PVA包装膜的机理。
     2.根据热力学原理,利用机械力作用,降低淀粉颗粒的结晶度和簇聚行为,使淀粉无序化程度和反应活性增加,通过具有高反应活性的双氨基硅烷对微细化淀粉进行疏水化改性,同时对微细化淀粉和增强剂PCL进行双重增塑,利用吹膜法成功的制备了具有良好机械性能和降解性能的全生物降解地膜。
     3.将淀粉进行双酯化改性后用于制备淀粉基宠物玩具,并采用物性测试仪对淀粉玩具的质构特性进行表征。
Recently,natural biomaterials have received increasing attention in many counties and by a number of scientists,especially the topics of energy crisis aggravation and environmental pollution.Starch,as an abundant raw material,has been used in the field of biomaterials,but the application of raw starch in the preparation of starch-based biomaterials such as packaging films and agricultural plastic films is limited because of its multi-hydroxyl and regular crystal structure of native starch gragules.In this paper, full-biodegradable films,agricultural plastic films,and pet toys were prepared by using starch with different sizes,modified starch and intensifiers.The structures of various biomaterials were characterized by Fourier transform infrared spectrometry(FTIR), differential scanning calorimetry(DSC),X-ray photoelectron spectrometry(XPS),X-ray diffraction(XRD),and scanning electron microscopy(SEM).And at on time,the mechanism of starch modification was discussed.
     The main contents,results and conclusions of thesis are as follows:
     1.The mechanism of modified starch-based biodegradable packaging film using nano silicon dioxide(nano-SiO_2)
     The microstructure,atoms constitute aggregation,and thermal properties of a modified starch-based biodegradable packing film with the addition of nano-SiO_2 were characterized and analyzed.The mechanism of modification was also discussed by FTIR, XPS,XRD and DSC:not only extensive intermolecular hydrogen bonds but also C-O-Si bonds were generated among nano-SiO_2 and starch-PVA;therefore,a dense network structure was formatted among the molecules of nano-SiO_2,starch,and PVA.Further results revealed the essential reasons for the improved properties of the ST-PVA film using nano-SiO_2.
     2.The preparation technology for a starch-based biodegradable packing film modified by nano-SiO_2
     The paper systematically studied the dispersion method of nano-SiO_2 and the plasticization and crosslinking technology of starch.The results indicated that ultrasonic dispersion was a good method for dispersing nano-SiO_2.Nano-SiO_2 could homodisperse in ST-PVA films under the condition of pulsing on 3s,pulsing off 2s,and 50%swing intension for 12 min.Since the optimum content of nano-SiO_2 was 1.5%, then the water resistance,tensile strength,breaking elongation,and environmental suitability of ST-PVA films could be obviously improved.The optimal contents of compound plasticizers were determined with water(4%),glycol(3%),and glycerol (9%),respectively by employing orthogonal experiment and comprehensive assessment method in fuzzy mathematics.Glyoxal was an effective crosslink agent to starch.The optimal crosslinking conditions are the following:glyoxal content of 2.5%;pH 9; reaction temperature at 80℃;and reaction time of 30 minutes.The mechanical properties of the starch-based biodegradable packing film reached the Chinese standard of GB/T 4456-1996(the Chinese standard of polythene packing film),and these products had great environment suitability and biodegradability.
     3.The properties of micronized starch and its application in biodegradable film
     To improve the miscibility of starch and PCL,micronized starch was prepared by an ultrasonic airflow pulverator,then it was hydrophobically modified.The results showed that the particle size of starch decreased obviously,and the surface became irregular.With the micronization degree increasing,the hydrogen bonds were fractured within starch molecules,the surface activity of the starch molecules was increased,and crystallinity was decreased.However,further research indicated that excessive micronization would make aggregate starch.Micronized starch of 300mu was suitable considering the production cost.The conditions of double plasticization modification determined that the content of polyethylene glycol(PEG)(Mn=6000) as a PCL plasticizer was 6%according to the weight of PCL,and the optimal content of triethanolamine was 4%,polyglycol (Mn=400) 3%,and glycerol 2%as starch plasticizers according to weight of ST, respectively.The field experiment results of sweet corn crops showed that the starch-based biodegradable films,which could substitute for the non-degradable PE film, had effects on performance in terms of heat retention,water retention,preferable biodegradability,and increased yield.
     4.The diesterified starch and its application in pet toy
     The microstructure,thermal properties,and crystal structure of diesterified starch, namely,the starch of phosphorylation and acetification,were studied systematically.The pet toys were prepared by further treatment in terms of enhancement,plasticization,and crosslinking.The results indicated that the transparency rate was improved,and the freeze-thaw stability and degree of expansion were also increased.The crystallinity of diesterified starch decreased compared with natural starch.However,water retention and the heat-resistant stability of starch were improved when the content of the compound plasticizers of water and glycerol were 12%,respectively,the crosslink agent of polyphosphate was 2%,the intensifiers of glutin were 20%according to the weight of double-esterification starch,and the hardness and elasticity of the pet toy were 14042.55g and 0.936,respectively.
     The creative achievements of this work were as follows:
     1.Starch was modified by nano-SiO_2 with high surface activity which was dispersed by ultrasonic dispersion,and the properties of the starch-based packaging film were improved.Furthermore,it was found that a hydrogen bond and a chemical bond exist among nano-SiO_2 and starch-PVA.
     2.According to thermodynamic principles,the crystallinity and clustering behavior of starch particles were decreased.The disordering and reactivity of starch were increased by mechanical force action.Micronized starch was yielded through the modification of hydrophobicity and double plasticization,and the full-biodegradable films with good mechanical and degradable properties were prepared using the film blowing method.
     3.Starch-based edible pet toy was prepared using diesterified starch,The texture properties of starch pet toy were characterized by a texture analyzer.
引文
1.于九皋,刘泽华.热塑性淀粉材料的表面疏水化反应[J].应用化学,2002,19(11):1068-1071.
    2.于九皋,李新蕊,十一烯酸在淀粉/聚乙烯共混体系中的增容性[J].天津大学学报,1997,30(2):240-244.
    3.马骁飞,于九皋.无机纳米材料增强尿素和甲酰胺混合塑化热塑性淀粉[J].精细化工.2006,1:77-81.
    4.王玉琨,钟浩波,吴金桥.微乳液法制备条件对纳米SiO_2粒子形貌和粒径分布的影响[J].精细化工,2002,19(8):466-468.
    5.王星,吕家珑,耿会立等.微生物对生物降解膜降解过程影响的研究[J].西北农林科技大学学报,2002,30(4):47-50.
    6.王静,宾鸿赞.产品生命周期评价及其指标体系的建立[J].机械设计与制造工程.2001,30(2):1-2.
    7.卢会敏,徐翔民,李小红等.尼龙66/纳米SiO_2复合材料的形态和力学性能[J].塑料工业,2006,4(34):48-50
    8.叶斯奕.淀粉粒度对可生物降解聚乙烯膜性能的影响[J].中国塑料,2000,14(5):82-86.
    9.申琴宇,吴磊.全球石油资源:稀缺还是充足[J].中国石油大学学报(社会科学版),2006,22(3):1-7.
    10.石璞,晋刚,昊宏武等.纳米SiO_2增强增韧聚丙烯的研究[J].中国塑料,2002,16(1):37-40.
    11.任东.塑料的生物降解性及其检测方法[J].塑料工业,1994,(2):65-67.
    12.伍强贤.防水性淀粉和大豆分离蛋白塑料的研究[D].武汉大学博士学位论文,2001.4.
    13.刘福来,郑水林,李杨.超细SiO_2的制备与应用[J].中国非金属矿工业导刊,2003,6(4):33-35.
    14.孙文兵,王世敏.聚醋酸乙烯酯/纳米二氧化硅复合乳液的制备和性能[J].中国胶粘剂,2004,14(1):1-4.
    15.孙立新,蒋展鹏,师绍琪.ATP法测定有机物好氧生物降解性的研究[J].环境科学,1996,17(1):1-4.
    16.宇恒星,黄南薰,王朝生等.聚乳酸的热降解模型研究[J].东华大学学报(自然科学版),2002,28(6):31.
    17.江祥明,许力,常青.用生化需氧量法研究塑料的生物降解性[J].兰州铁道学院学报,1999,18(1):115-119.
    18.羊海棠,杨瑞成,冯辉霞等.纳米二氧化硅粒子增韧聚丙烯的研究[J].甘肃工 业大学学报.2003,29(2):34-36.
    19.邬润德,童筱莉,费正新.聚氨酯/纳米SiO2原位复合互贯网络材料研[J].机械工程材料,2005,4(29):27-30
    20.何小维,罗志刚.淀粉基生物降解塑料的研究进展[J].食品研究与开发,2005,26(5):196-200.
    21.吴金桥,王玉琨.纳米材料的液相制备技术及其进展[J].西安石油学院学报(自然科学版),2002,17(3):31-34.
    22.吴俊,谢笔钧,熊汉国等.超微淀粉基薄膜环境降解特性研究[J].环境污染与防治,2002,24(5):274-276.
    23.张力田.变性淀粉[M].广州:华南理工大学出版社,1992.
    24.张立德,张彪.一种尺寸可控纳米二氧化硅的制备方法[P].CN1117022,1996-02-21.
    25.张克从,张乐惠.晶体生长[M].科学出版社,198l,137-161.
    26.张启卫,章永化,陈守明等.聚甲基丙烯酸甲酯/二氧化硅杂化材料制备与性能[J].应用化学,2002,9(19):874-877
    27.张咏春,田明,张立群等.二氧化硅制备、改性、应用进展[J].现代化工,1998,4:11-13.
    28.张树春.LCA与环境决策[J].云南环境科学,1999,18(4):23-24.
    29.张洪祥,郑玉彬.双组份降解地膜微生物降解性能试验[J].塑料工业,2000,28(6):33-34.
    30.张倩,汪济奎,程树军.纳米二氧化硅改性CPE的研究[J].功能高分子学报,2002,15(3):271-275
    31.张捷,于九皋.多糖类生物降解材料的研究进展[J].中国塑料,1995,9(6):17-21.
    32.李宗军,温玉英,王燕.生物降解塑料的降解性试验[J].湖南农业大学学报,1997,23(3):272-274.
    33.李莹,于建,郭朝霞.纳米SiO_2粒子表面官能团对尼龙6原位聚合的影响[J].高分子学报,2003,2:235-240.
    34.李道平.降解塑料发展动向及反应性双螺杆挤出机的开发和应用[J].化工环保,1995,15(6):329-332.
    35.汪国忠,张立德,何国良.一种粒度可控非晶纳米二氧化硅的制作方法[P].CN 1145331,1997-03-19.
    36.沈雨生,柏柳青.聚乙烯是否能生物降解[J].塑料,1998,27(1):31-33.(未引)
    37.邱威扬,王飞镝,邱贤华等.淀粉塑料现状及发展前景[J].高分子通报,2000, 12(4):81.
    38.邱威扬,邱贤华,王飞镝.淀粉塑料-降解塑料研究与应用[M].北京:化学工业出版社,2002.
    39.陆光华,赵元慧,汤洁.有机化学品的生物降解性及构效关系[J].化学通报,2002,2:113-117.
    40.陈庆春,王廷吉,周萍华等.硅灰石合成高比表面积二氧化硅的工艺研究[J].化工矿物与加工,2000,8:1-3.
    41.陈建新,梅海军,张景香等.超细颗粒的制备与应用[J].无机盐工业,2001.33(1):26-27.
    42.陈玲,胡飞,李晓玺等.微细化马铃著淀粉生物降解性能研究[J].食品工业科技,2001,22(3):16-18.
    43.陈崧哲,于九皋.淀粉在挤出过程中的性质变化[J].高分子通报,1999,(1),72-77.
    44.周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003,5-8.
    45.林巧佳,杨桂娣,刘景宏.纳米二氧化硅改性脲醛树脂的应用及机理研究[J].福建林学院学报.2005,25(2):97-102.
    46.侯贵华,罗驹华,陈景文.用稻壳灰为硅源合成有序介孔二氧化硅材料的研究[J].材料科学与工程学报,2006,4(13):528-530.
    47.段先健,王跃林,杨本意等.一种高分散纳米二氧化硅的制备方法[P].CN 1422805,2003-06-11.
    48.段梦林,段铁玲.日本生物降解性塑料的开发动向和进展[J].淀粉与淀粉糖,1996,(3):1-4.
    49.胡飞,陈玲,李琳等.微细化马铃薯淀粉流变学特性的研究(一)[J].中国粮油学报,2003,2(18):61-63.
    50.夏宇正,李敬玮,石淑先等.聚丙烯酸酯/纳米二氧化硅复合乳液的制备[J].涂料工业,2003,3(33):19-21
    51.席德立,彭小燕.LCA中清单分析数据的获得[J].环境科学,1997,18(5):84-87.
    52.徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002,88.
    53.翁云,陈家琪,刘山生.降解PE膜、发泡PS餐盒评价方法的研究[J].中国塑料,1999,13(2):78-83.
    54.贾宏,郭借,郭奋等.用超重力法制备纳米二氧化硅[J].材料研究学报,2001,15(1):120-124.
    55.郭朝霞,李莹,于建.聚芳酯树枝状分子接枝改性纳米二氧化硅[J].高等学校 化学学报,2003,24(6):1139-1141.
    56.钱家盛,陈晓明,何平笙.PMMA/nano-SiO_2纳米复合材料的制备和表征[J].应用化学,2003,20(1):1200-1203.
    57.高建平,于九皋,王为.完全生物可降解热塑性淀粉复合材料[J].高分子材料科学与工程,1999,15(3):93-95.
    58.高建平,于九皋,王为等.生物可降解热塑性淀粉的开发[J].化工进展,1997,(6):53-56.
    59.梁兴泉,贾德民,张惠林.淀粉存在下聚乙烯光降解特性研究.广西大学学报,1999,(12):284-286.
    60.廖正品.中国塑料行业考察团赴美考察报告[J].中国塑料,1994,8(1):1-7.
    61.熊汉国,李建林,刘有明等.淀粉的塑化机理及其在生物降解餐具上的应用研究[J].食品科学,2001,22(10):37-39.
    62.熊汉国,蔡明耀,胡雪峰等.淀粉的塑化及其生物降解餐具性能研究[J].中国粮油学报,2002,17(2):55-58.
    63.蔡长庚.纳米二氧化硅的应用前景[J].印刷电路信息,2000,3:14-15.
    64.霍玉秋,翟玉春.醇盐水解沉淀法制备二氧化硅纳米粉.纳米材料与结构,2003,9:26-28.
    65.戴长华,刘然克.塑料的降解机理及可降解塑料的开发[J].现代塑料加工与应用,1999,11(3):40-45.
    66.戴李宗,周善康,李万利等.淀粉基可环境降解塑料研究Ⅰ—淀粉的物理改性和填充PE塑料的相态结构[J].厦门大学学报(自然科学版),2000,39(3):359-364.
    67.Abdul H P S,Chow W C.The Effect of Anhydride Modification of Sago Starch on the Tensile and Water Absorption Properties of Sago-Filled Linear Low-Density Polyethylene(LLDPE)[J].Polym.Plast.Technol.Eng,2001,40(3):249-263.
    68.Ahmad S,Bohidar H B,Ahmad Sharif,et al.Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes[J].Polymer,2006,47(10):3583-3590
    69.Anon M P.New film resins are biodegradable and compostable[J].Plast Technol,1997,43(6):16.
    70.Arriagada F J,Osseo-Asare K.Synthesis of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion:Effects of the Water/Surfactant Molar Ratio and Ammonia Concentration[J].Journal Colloid and Interface Science,1999.211:210-220.
    71.Austin L G.Experimental for grinding studies on starch in laboratory mills[J]. Powder Technology, 1992, 5: 261-264.
    72. Bandyopadhyay A, Bhowmick A K, Sarkar M D. Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique: synthesis, characterization and properties. Polymer, 2005, 46(10): 3343-3354.
    73. Bartholome C, Beyou E, Bourgeat-Lami E, et al. Viscoelastic properties and morphological characterization of silica/polystyrene nanocomposites synthesized by nitroxide-mediated polymerization.Polymer, 2005, 46(23): 9965-9973.
    74. Bloembergen S, Narayan R. Biodegradable moldable products and films comprising blends of starch ester and polyesters[P]. US: 5 462 983,1995.
    75. Boryniec S, Slusarczyk C, Zakowska Z. Biodegradation of the Films of Polyethylene Modified with Starch[J]. Polymer, 2004,49(6): 424-431.
    76. Casadonte D J, Sweet J D. Sonochemical production of intermetallic coatings in heterogeneous media[J]. Ultrasonics, 1994, 32(6): 477-480
    77. Chan C M, Wu J H, Li J X, et al. Polypropylene/calcium carbonate nanocomposites [J]. Polymer, 2002, 43(10): 2981-2992.
    78. Chandra R, Rustgi R. Biodegradation of Maleated Linear Low-Density Polyethylene and Starch Blends[J]. Polym Degrad Stab, 1997, 56 (2): 185-202.
    79. Che J F, Luan B Y, Yang X J, et al. Craft polymerization onto nano-sized SiO_2 surface and its application to the modification of PBT[J]. Materials Letters, 2005, 59(13): 1603-1609
    80. Chiellini E, Cinelli P, Chiellini F, et al. Environmentally degradable bio-based polymeric blends and composites [J]. Macromol. Biosci., 2004, 4(3): 218-231.
    81. Chiellini E, Corti A, Solaro R. Biodegradation of Poly (vinyl alcohol) based blown films under different environmental conditions[J]. Polym. Degrad. Stab. 1999, 64: 305-312.
    82. Chiellini E. Biodegradation of Poly(vinyl alcohol)based materials[J]. Prog. Polym. Sci., 2003,28: 963-1014.
    83. Corti A, Solaro R, Chiellini E. Biodegradation of Poly (vinyl alcohol) in selected mixed microbial culture and relevant culture filtrate[J]. Polym. Degrad.Stab. 2002, 75: 447-458.
    84. Delton L M. The rule of starch in biodegradation thermoplastic material[J]. Starch, 1999,(86): 141-145.
    85. Esteves Ana Catarina C, Barros-Timmons Ana M, Martins J A, et al. Crystallization behaviour of new poly(tetramethylene terephthalamide) nanocomposites containing SiO_2 fillers with distinct morphologies[J]. Composites Part B: Engineering, 2005, 36(1): 51-59
    86. Fukae R, Fuji T, Takeo M, et al. Biodegradation of Poly (vinyl alcohol) with high isotacticity[J]. Polym.J., 1994,26:1381-1386.
    87. Funke U, Bergthaller W, Lindhauer M G. Processing and characterization of biodegra-deable products based on starch[J].Polymer Degradation and Stability, 1998, (59): 293-296.
    88. Gaylord N G, Macromol J. Compatibilizing Agents: Structure and function in polyblends[J]. Sci. Chem., 1989, A26 (8): 1211-1229.
    89. Ge J F. Biodegradable Polymer Materials and Applications[M]. Beijing: Chemical Industry Press, 2002.
    90. Gend B, Ingo D, Albrecht D, et al. Esterified starch Composition[P].US: 5 587 412, 1996.
    91. Genskens G. Degradation and Stabilities of Polymers[M]. London, Applied Science, 1993.
    92. Gonzalez F J R, Ramsay B A, Favis B D. High Performance LDPE/Thermoplastic Starch Blends: a Sustainable Alternative to Pure Polyethylene[J]. Polymer, 2003, 44 (5): 1517-1526.
    93. Griffin GJ L.International Patent Application PCT/GB8800386(1988).
    94. Griffin GJ L[P].EP: 1489050, 1973.
    95. Gun'ko V M, Turov V V, Bogatyrev V M, et al. Unusual properties of water at hydrophilic/hydrophobic interfaces[J]. Advances in Colloid and Interface Science, 2005,118:125-172
    96. Haschke H, Tomka I, Keilbach A. Systematic investigations on the biological degradability of packing material. Part 2. On the biodegradability of poly(vinyl alcohol)-based films[J]. Monatsh.Chem. 1998, 129: 365-386.
    97. Huang S J, Ho L H. Similarities and Differences Between Biodegradation and Nonenzymatic Dgradation[M]. Amsterdam: Elsevier Science, 1994.
    98. Huang Y Q, Jiang S L, Wu L B, et al. Characterization of LLDPE/nano-SiO_2 composites by solid-state dynamic mechanical spectroscopy [J]. Polymer Testing, 2004,23:9-15
    99. Ikeda Y, Kohjiya S. In situ formed silica particles in rubber vulcanizate by the sol-gel method[J]. Polymer, 1997, 38(17): 4417-4423.
    100.Ishigaki T, Kawagoshi Y, Ike M, et al. Biodegradation of a polyvinyl alcohol-starch blend plastic film[J]. World J.Microbiol.Biotechnol., 1999,15:321-327.
    101.Jane J. Preparation and properties of small-particle corn starch[J]. Cereal Chemistry, 1992,3:280-283.
    102.Jiang L Q,Gao L.Effect of Tiron adsorption on the colloidal stability of nano-sized alumina suspension[J].Materials chemistry and Physics,2003,80(29):157-161.
    103.Kang S,Hong S I,Choe C R,et al.Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process [J].Polymer,2001,42(3):879-887
    104.Kaplan D L,Mager J M,Greenberger M R.Degradation methods and degradation kinetics of polymer film[J].Polymer Degradation and Stability,1994,45(2):165-172.
    105.Klemchuck P P.Polymer Stablization and Degradation[M].American Chemical Society,Washinton D.C.1985.
    106.Lacourse N L,Paul A A.Biodegradable shaped products and the method of preparation thereof[P].EP:376 201,1990.
    107.Leaversuch R D.Biodegrddablepolymers offer favored rates of degradation[J].Modern Plastics,1996,73(1):95-96.
    108.Lee J A,Kim M N.Isolation of new and potent Poly(vinyl alcohol) degrading strains and their degradation activity[J].Polym.Degrad.Stab.,2003,81:303-308.
    109.Lei W,Deng Y H,Zhou M,et al.Mechanical properties of nano SiO_2 filled gypsum particleboard[J].Transactions of Nonferrous Metals Society of China,2006,16(1):361-364
    110.Liu B L,Zeng X C.Yang J H.Influencing factors on Biodegradation of Poly(vinyl alcohol)[J].Vinylon Communication,1998,18(4):12-16.
    111.Liu M Z,Liu Z M,Ding S L,et al.Graft Copolymerization of Oleic Acid onto Low-Density Polyethylene in the Molten State[J].J Appl Polym Sci,2003,90(12):3299-3304.
    112.Liu W,Wang Y J,Sun Z.Effects of Polyethylene-Grafted Maleic Anhydride (PE-g-MA) on Thermal Properties,Morphology,and Tensile Properties of Low-Density Polyethylene(LDPE) and Corn Starch Blends[J].J Appl Polym Sci,2003,88(13):2904-2911.
    113.Loercks J R,Pommeranz W E,Schmidth E,et al.Biodegradable polymeric mixtures based on thermoplastic starch[P].US:6 235 815,2001.
    114.Loercks J R.Properties and applications of compostable starch-based plastic material[J].Polym Degradation Stability,1998,59:245-249.
    115.Lyman W J,Reachl B F.Handbook of Chemical Property Estimation Methods[M].New York:MC Cam-Hill Press,1982.
    116.Maddever W J,et al.Polymer Stabilization and Dgradation[M].American Chemistry Society, Washington D C, 1988.
    117.Martinez J R, Palomares-Sanchez S, Ortega-Zarzosa G, et al. Rietveld refinement of amorphous SiO_2 prepared via sol-gel method[J]. Materials Letters, 2006, 60: 3526-3529
    118.Matzinos P, Bikiaris D, Kokkou S, et al. Processing and Characterization of LDPE/Starch Products[J]. J Appl Polym Sci, 2001, 79(14): 2548-2557.
    119.Mori T, Sakimoto M, Kagi T, et al. Isolation and characterization of a strain of Bacillus megaterium that degrades Poly(vinyl alcohol) [J]. Biosci.Biotechnol. Biochem. 1996,60:330-332.
    120.Mori T, Sakimoto M, Kagi T, et al. Secondary alcohol dehydrogenase from a vinyl alcohol oligomer-degrading geotrichum fermentans; stabilization with Triton X-100 and activity towards Polymers with Polymerization degrees less than 20[J]. World J. Microbiol. Biotechnol., 1998,14: 349-356.
    121.Morita M, Watanabe Y. A secondary alcohol oxidase:a component of a polyvinyl alcohol degrading enzyme preparation[J].Agric Biol. Chem. 1977,41:1535-1537.
    122.Narayan Ramani, Dubois Philippe, Krishnan Mohan. Polysaccharides grafted with aliphatic polyesters derived from cyclic esters[P].US:5 540 929,1996.
    123.0tey F H, Mark A M, Mehltretter C L, et al. Starchbased film for degradable agricultural mulch[J]. Ind. Engng. Chem. Prod. Res. Dev., 1974,13:90-92.
    124.Park E S, Yoon J S. Synthesis of Polyethylene-Graft-Poly (Styrene-co-Maleic Anhydride) and Its Compatibilizing Effects on Polyethylene/Starch Blends[J]. J Appl Polym Sci., 2003, 88 (10): 2434-2438.
    125.Peansky J S, Long J M, Wool R P. Journal of Polymer Science: Part B[J]. Polymer Physics, 1991,29:565-579.
    126.Petersen K, Vaeggemose P N, Grtee B, et al. Potential of biogases materials for food package[J]. Trends in Food Science &Technology, 1999, (10):52-68.
    127.Porter J J, Snider E H. Thirty day biodegradability of textile chemicals and dyes[J]. Book Pap, Natl Tech Conf AATCC.1974. 427-436.
    128.Qi D M, Bao Y Z, Weng Z X, et al. Preparation of acrylate polymer/silica nanocomposite particles with high silica encapsulation efficiency via miniemulsion polymerization[J]. Polymer, 2006,47(13): 4622-4629
    
    129.Raghavan D. Characterization of biodegradable plastics[J].Polym-Plast Technol.Eng.
    130.Raj B, Sankar K U. Low Density Polyethylene/Starch Blend Films for Food Packaging Applications[J]. Adv Polym Technol, 2004,23(1): 32-45.
    131.Rong M Z, Zhang M Q, Zheng Y X, et al. Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites[J].Polymer,2001,42(1):167-183
    132.Rong M.Z,Zhang M.Q,Zheng Y X,et al.Improvement of tensile properties of nano-SiO_2/PP composites in relation to percolation mechanism[J].Polymer,2001,42(7):3301-3304
    133.Sagar D A,Merril W E.Properties of fatty acid esters of starch[J].Journal of Applied Science,1995,58:1647-1652.
    134.Sallaja R R N,Chanda M J.Use of Poly(ethylene-co-vinyl alcohol) as Compati-Bilizer in LDPE/Thermoplastic Tapica Starch Blends[J].Appl.Polym Sci,2002,86:3126-3134.
    135.Sailaja R R N,Chanda M.Use of Maleic Anhydride-Grafted Polyethylene as Compatibilizer for HDPE-Tapioca Starch Blends:Effects on Mechanical Properties[J].J Appl Polym Sci,2001,80(6):863-872.
    136.Sakai K,Fukuda M,Hasui Y,et al.Purification and characterization of an esterase involved in Poly(vinyl alcohol) degradation by Pseudomonas Vesicularis PD[J].Biosci.Biotechnol.Biochem.1998,62:2000-2007.
    137.Sakazawa C,Shimao M,Taniguchi Y,et al.Symbiotic utilization of Poly(vinyl alcohol)by mixed cultures[J].Appl.Environ.Microbiol.1981,41:261-267.
    138.Scott C,Ishida H,Maurer F H J.Infrared analysis and izod impact testing of multicomponent polymer composites:polyethylene/EPDM/filler systems[J].Journal of Material Science,1987,(22) 3963.
    139.Scott G.,Gilead D.Degradable Polymers Principles and Application[M].By Chapman Hall,London,1995,Chepter12:217-245.
    140.Shegon L,Fanta E.Development Starch-based Plastics[J].Starch,1993,45(2):276-280.
    141.Shimao M,Taniguchi Y,Shikata S,et al.Production of polyvinyl alcohol oxidase by a symbiotic mixed culture[J].Appl.Environ.Microbiol.1982,44:28-32.
    142.Sumita M,Ookuma T,Miyasaka K.Effect of ultrafine particles on the elastic properties of oriented low-density polyethylene composites[J].Journal of Applied Polymer Science 1982,(27):3059.
    143.Sun X S,Paul S,Hua W.High strength plastic from reactive blending of starch and polylactic acids[P].US:6 211 325,2001.
    144.Tamaki S,Hisamatsu M,Colin D M.Structural change of maize starch granules by ball-mill treatment[J].Starch,1998,(50):342-348.
    145.Tetsuya I,Naoko Y,Yoshio I.Influence of tacticity and molecular weight of Poly(vinyl alcohol)on crystallization and biodegradation of Poly(3-hydroxybutyric acid)/Poly(vinyl alcohol)blend films. Polym. Degrad.Stab., 1999,66: 263-270.
    146.Thakore I M, Desai S, et al. Studies on Biodegradability, Morphology and Thermo-Mechanical Properties of LDPE/Modifided Starch Blends[J]. European Polymer Journal, 2001,37: 151-160
    147.Thiebaud S, Aburto J, Alric I, et al. Properties of fatty-acid esters of starch and their blends with LDPE[J]. Journal of Applied Polymer Science, 1997, 65 (4): 705-721.
    148.Wang S J, Yu J G, Yu J L. Influence of Maleic Anhydride on the Compatibility of Thermal Plasticized Starch and Linear Low-Density Polyethylene[J]. J Appl Polym Sci, 2004, 93(2): 686-695.
    149. Wang Y J, Liu W, Sun Z. Effects of Glycerol and PE-g-MA on Morphology, Thermal and Tensile Properties of LDPE and Rice Starch Blends[J]. J Appl Polym Sci, 2004, 92 (1): 344-350.
    150.Watanabe Y, Morita M, Hamada N, et al. Formation of hydrogen peroxide by a polyvinyl alcohol degrading enzyme[J]. Agric Biol.Chem.1975, 39:2447-2448.
    151.Wu C. A Novel Method of Studying Polymer Biodegradation[J]. Polymer, 1998, 39(8): 4429-4431.
    152.Wu J H, Zhang C F. Application of ultrasound to powder material preparing[J]. Nonferrous Metals, 2001, 8(3): 46-49
    153.Yang Y, Lan J, Li X C. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy[J]. Materials Science and Engineering A, 2004,380: 378-383
    154.Yoo S I, Lee T Y, Yoon J S, et al. Interfacial Adhesion Reaction of Polyethylene and Starch Blends Using Maleated Polyethylene Reactive Compatibilizer[J]. J Appl Polym Sci, 2002, 83 (4) : 767-776.
    155.Zhang X H, Xu W J, Xia X N, et al. Toughening of cycloaliphatic epoxy resin by nanosize silicon dioxide[J]. Materials Letters 2006,60: 3319-3323
    156.Zhang X, Du G. C, Chen J. Developments in study of Poly(vinyl alcohol) degrading enzyme[J]. Journal of Chinese Biotechnol. 2003,23(2): 69-73.
    157.Zhang Y W, Tang M, Jin X, et al. Polymeric adsorption behavior of nanoparticulate yttria stabilized zirconia and the depositon of as-formed suspensions on dense-Al_2O_3 substrates[J]. Solid State Sci, 2003, 5(3): 435-440.
    158.Zou W J, Peng J, Yang Y, Zhang L Q, et al. Effect of nano-SiO_2 on the performance of poly(MMA/BA/MAA)/EP[J]. Materials Letters, 2006: 1-5
    1.陈强,吕伟娇,张文清等.醛交联剂对壳聚糖复合膜性能的影响[J].华东理工大学学报,2005,31(3):398-402.
    2.吉媛媛,魏文珑,左英英等.淀粉—聚乙烯醇塑料薄膜的研究[J].精细化工, 1994,11(2):52-53.
    3.刘宏生,谢丰魏,陈玲等.PVA与淀粉薄膜的研究进展与应用[J].中国塑料,2005,19(8):7-10.
    4.宋钧,于梁,周山涛.甜椒果实呼吸和乙烯释放规律的研究[J].园艺学报,1989,16(8):211-216.
    5.谢笔钧.食品化学[M].北京:科学出版社,2004:104.
    6.熊汉国,李建林,刘友明等.淀粉的塑化机理及其在生物降解餐具上的应用研究[J].食品科学,2001,22(10):37-39.
    7.许建军.食品高聚物分析中DSC的应用[J].山西食品工业,2001,3:13-16.
    8.张立德,牟季美.纳米材料科学[M].沈阳:辽宁出版社,1994,11.
    9.赵黔榕,刘应隆,毕韵梅.Starch/PVA降解塑料的X-ray分析与力学性能研究[J].昆明理工大学学报,1999,24(3):72-74.
    10.Okada A,Usuki A.The chemistry of polymer clay hybrids[J].Mater Sci &Eng,1995,3(2):117-125.
    11.Burnside S D,Giannelis E P.Synthesis and properties of new poly(dimethysilxane)nanoeomposites[J].Chemistry of materials,1995,7(9):1597-1600.
    12.Dollimore D.thermal analysis[J].Anal.Chem.1994.66.17-25.
    13.Harwalkar V,Cris Y.Thermal Analysis of Foods[M].Elsevier Publisher Ltd,1992.
    14.Jegal J,Lee K H.Nanofiltration membranes based on poly(vinyl alcohol) and ionic polymers[J].Journal of Applied Polymer Science,1999,72(13):1755-1762.
    15.KerDAe E N.Tire irmers comprising a solid rubber and a complex of a reactive rubber and layered silicate clay[P].USP5565183,1997-09-09.
    16.Miller G L.Use of Dinitrosalicylic acid reagent for determination of reducing sugar[J].Anal Chem,1959,31,420-428.
    17.Moon G Y,Pal R,Huang R Y M,Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol[J].Journal of Membrane Science,1999,156(1):17-27.
    18.Pretseh E,Bvhlmann P,Affolter C.Structure Determimation of Organic Compounds Tables of Spectral Data.Germany:Spdnger-Vedag GmbH&Co.KG,2000:245-312.
    19.Shin H,Ueda M.Fixation of chitosan on cross-linked cellulose fabrics with poly-carboxylic acids[J].Sen-Igakkaishi,1999,55(1):1-6.
    20.Vaia R A,Giannelis E P.Lattic model of polymer melt intercalation in organically-modified layered silicates[J].Maeromoleeules,1997,30(25):8000-8009.
    1.刘清.我国农膜土壤污染的现状、原因及治理措施[J].环境污染与防治,1993,15(4):21.
    2.吉媛媛,魏文珑,左英英等.淀粉—聚乙烯醇塑料薄膜的研究[J].精细化工,1994,11(2):52-53.
    3.安琼.塑料对农田生态系的污染及其防治[J].农村生态环境,1996,12(2):44-47.
    4.李树棠.晶体x射线衍射学基础[M].北京:冶金工业出版社,1990,116-128.
    5.李秋洪.论农田“白色污染”的防治技术[J].农业环境与发展,1997,(2):17-19.
    6.周维祥.塑料测试技术[M].北京:化学工业出版社,1997,374-381.
    7.林大仪.土壤学[M].北京:中国林业出版社,2002,97-101.
    8.谢季坚,刘承平.农业科学中的模糊数学方法[M].武汉:华中理工大学出版社,2000,190-215.
    9.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000,39-99.
    10.Bhattacharya M.Processing of Starch-based Plastics[J].Journal of Applied Manufracturing Systems,1996-1997(8):25-30.
    11.Harwalkar V,Cds Y.Thermal Analysis of Foods[J].Elsevier Publisher Ltd,1992:86-93.
    12.Shibanuma K,Takeda Y,Hizukuri S.Molecular Structures of some Wheat Starches[J].Carbohydrate Polymers,1994,25(2):111-116.
    1.王晓燕,童群义.原料和制备方法对醋酸酯淀粉糊化特性的影响[J].食品工业 科技,2005,(11):62-65.
    2.田龙,刘亚伟,徐竞.玉米淀粉磷酸酯糊特性研究[J].粮食加工,2005,(3):38-41.
    3.任露泉.试验优化设计与分析[M].北京:高等教育出版社,2003,250-258.
    4.阮桂海.SAS统计分析实用大全[M].北京:清华大学出版社,2003,484-491.
    5.何少华.试验设计与数据处理[M].长沙:国防科技大学出版社,2002,43-61.
    6.张友松.变性淀粉生产与应用手册[M].北京:中国轻工业出版社,1999,665-668.
    7.张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001,324-326.
    8.张薇,朱瑛.面制品科学化评价的研究[J].粮油食品科技,2004,12(5):37-39.
    9.肖华西,吴卫国.低取代度醋酸酯淀粉的特性及其合成工艺[J].现代食品科技,2006,22(3):156-157.
    10.陈克复,卢晓江,金醇哲等.食品流变学及其测量[M].北京:轻工业出版社,1989,114-139.
    11.秦新芝.淀粉磷酸酯取代度的测定[J].淀粉与淀粉糖,1994,(4):35-36.
    12.屠康,赵艺泽,洪莹等.利用质构仪对不同类型干酪质地品质的研究[J].中国乳品工业,2004,32(12):16-18.
    13.熊汉国,蔡明耀,胡雪峰等.淀粉的塑化及其生物降解餐具性能研究[J].中国粮油学报,2002,17(2):55-58.
    14.潘秀娟,屠康.质构仪质地多面分析(TPA)方法对苹果采后质地变化的检测[J].农业工程学报,2005,2l(3):166-170.
    15.颜晓青,倪春锋.磷酸酯淀粉的性能分析[J].纺织科技进展,2005(6):51-52.
    16.Douglas C.Montgomery.Design and analysis of experiments[M].Second Edition,1984,84-98.
    17.Harwalkar V,Cris Y.Thermal Analysis of Foods[M].Elsevier Publisher Ltd,1992,259-272.
    18.Ren L.Experimental study on bionic non-smooth surface soil eletro-osmosis[J].International Agricultural Engineer Journal,1999,8(3),142-156.
    19.Taguchi G.systems of experimental design(2Vols)[M].UNIPUB,New York,1987,103-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700