中间相沥青基泡沫炭的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中间相沥青基泡沫炭是以中间相沥青为原料,经过发泡、固化、炭化、石墨化等制备过程所得到的一种新型炭泡沫材料。它所特有的泡孔结构以及其原料结构性质决定了中间相沥青基泡沫炭作为高尖端工程材料的优越性,中间相沥青基泡沫炭的优越性能源于其理想的泡孔结构。发泡工艺和前驱体性质是决定孔径分布、开孔情况的重要因素。本文以热缩聚方法制备中间相沥青,再以自制中间相沥青和日本三菱中间相沥青为前驱体采用自挥发方法制备泡沫炭,经焦化、炭化、石墨化获得最终产品。本文在研究中间相沥青及其泡沫炭制备工艺的基础上,重点考察了原料前躯体和制备方法对中间相沥青基泡沫炭结构和性能的影响,并对泡沫炭微裂纹的控制进行了讨论,力图建立起制备高性能中间相沥青基泡沫炭的方法体系。
     利用不同热缩聚时间在420℃时分别制备了一系列中间相沥青,并以自制的沥青为原料发泡制备了一系列泡沫炭,对中间相沥青基泡沫炭的制备进行了初步研究。研究发现较长时间制备的中间相沥青呈现纤维状结构。以由4小时和5.5小时制备的中间相沥青为原料制备的泡沫炭泡孔结构不均匀,而以6.5小时以上制备中间相沥青为原料制备的泡沫炭孔结构较均匀,结构良好。
     利用较长时间热缩聚可以制备高软化点的中间相沥青,本文提出了一种较简单的低压制备中间相沥青基泡沫炭的方法。通过对所制备的泡沫炭物理特点、表面形貌和微晶参数的研究,发现可以在0.5-2MPa的压力范围内制备的泡沫炭体积密度范围为0.514-0.624 g/cm3。SEM照片显示由高软化点沥青制备的泡沫炭,炭化和石墨化后显示较小的热收缩。OM照片显示由高软化点沥青制备的泡沫炭无论在节点还是在韧带处都具有较少的微裂纹。XRD数据显示由较高软化点沥青制备的泡沫炭石墨化后具有较小的石墨层间距和较大的微晶尺寸。本文提出的方法可以显示降低制备泡沫炭的压力并降低制备成本。
     利用不同的热缩聚时间制备了两种具有不同中间相含量的沥青,并以此沥青为原料发泡制备泡沫炭,研究发现由100%中间相含量的沥青制备泡沫时可以在较宽的温度范围内成功制备样品。而由非100%中间相含量的沥青制备泡沫炭时,只能在沥青的最大热失重处停留较长时间才可以成功制备泡沫炭。由100%中间相含量的沥青制备的泡沫炭石墨化后具有较好的炭层取向和较大的微晶尺寸。利用具有不同天然石墨含量的中间相沥青成功制备了天然石墨/中间相沥青基泡沫炭复合材料,并对泡沫炭结构和天然石墨的添加量之间的关系进行了研究。研究表明天然石墨的添加可以明显减少泡沫炭的微裂纹,当天然石墨的添加量为30%的时候泡沫炭的比压缩强度从2.0MPa/g.cm3提高到5.84MPa/g.cm3,而且随着天然石墨的添加量的增加石墨微晶的层间距先减小后增大。光学照片显示天然石墨的添加明显减小了泡沫炭光学区域的尺寸。
     从固化方式的角度考察了氧化固化和焦化固化方式对泡沫炭结构及性能的影响并以三菱AR中间相沥青为原料对发泡机理进行了初步研究。利用SEM、XRD、偏光显微镜等测试手段对泡沫炭微观形貌、孔隙分布等结构参数进行了表征分析。研究表明长时间焦化固化方式比氧化固化方式制备的泡沫炭具有更好的分子取向和较少的微裂纹,石墨化后具有较小的层间距(0.3376nm和0.3381nm);泡沫炭的泡孔形状受体积密度的影响,当体积密度较小时在平行重力方向是椭圆形而在垂直重力方向是圆形,并且气泡首先在沥青上表面形成。
Mesophase-pitch was foamed, stabilized, carbonized and graphitized resulting in a novel foam material Mesophase-pitch-based carbon foam. It is an excellent engineering material due to its unique porous structure and carbon material properties. Porosity, foaming process and properties of the pitch precursor are important factors that affect the final properties of the carbon foam. In this work, mesophase-pitch was prepared by traditional pyrocondensation method and then used the as-received pitch and AR mesophase pitch as precursor to prepare carbon foams, the obtained foam was stabilized, carbonized and graphitized. On the base of researching the preparation processes of mesophase pitches and carbon foams, the text studied the effects of the properties of precursors and preparation methods on the properties of the mesophase pitch derived carbon foams. In addition, the controlling of the microcraks of the foams was discussed in detail and tried to give a principle for preparing mesophase pitch derived carbon foams.
     A series of mesophase pitches were prepared by the pyrocondensation under different pyrocondensation time and the as-obtained mesophase pitches were used as precursor to prepare carbon foams. The foaming process was given preliminary study, and experimental results show that the mesphase pitch prepared by long holding time exhibits fibre-like structure. Carbon foams from the mesophase pitches prepared by 4.5h and 5.5h exhibit non-uniform foam structure, and carbon foams prepared from mesophase pitches prepared above 6.5 have good foam structure.
     A simple method for preparing the meosphase-pitch-based carbon foams at low pressures through prolonging the soaking time in the preparation process of the mesophase pitch was disclosed. The physical properties, morphologies and the crystal structure of the as-obtained foams were investigated. Bulk density of the resultant carbon foams cover a range 0.514-0.624 g/cm3, under the preparation pressure range 0.5-2 MPa. The SEM micrographs revealed that the thermal shrinkage of the graphitized foams derived from the higher softening point mesophase pitch was less than that of the foam from the lower softening point; Optical micrographs showed that higher softening point mesophase pitch derived carbon foams exhibited better orientation and less microcracks in both junctions and ligaments; The XRD results revealed that higher softening point pitch derived graphitized foams exhibited smaller interlayer spacing and larger crystallite size. The properties of the carbon foam can be severely affected by the properties of the precursor, so it is critical to tailor the properties of the pitch precursor so as to obtain high performance and low cost products.
     Two kinds of mesophase pitches were prepared and used as precursor to prepare carbon foams in order to study the effects of mesophase content on the properties of the final products. The experimental results show that carbon foams with cell size uniformity can be prepared from the non-100% mesophase content pitch only under the temperature around the maximum rate of weight loss. The non-100% mesophase content pitch derived foams exhibit more microcracks and worse mesophase domain orientation in the cell walls than that of 100% mesophase content pitch derived foams. After graphitization, the foams from non-100% mesophase content pitch show lower graphitization degree and smaller crystallite sizes. The properties of the carbon foams can be severely affected by the mesophase content, and carbon foams prepared from the non-100% mesophase content pitch give a potential process to prepare foams with properties between insulating and high-thermal-conductivity carbon foams and thus maximizing the potential use of carbon foams. Graphite foams were prepared from the mesophase pitch with addition of natural graphite and the relationship between properties and structure of these foams was investigated in detail. These graphite foams possessed high specific compressive strength and experimental results show that reduced microcracks appeared on the cell walls of foam by adding of natural graphite. The specific compressive strength increased from 2.0 to 5.84 MPa/g.cm3 with the addition of 30 wt% natural graphite, and the inter layer spacing of graphite foams decreased with the increase of the natural graphite content in the pitch. In addition, the optical micrograph shows that the anisotropic domain size of the foam decreased with the addition of natural graphite and it also affects the compressive strength of the foams.
     The effects of different stabilization methods on the structural properties of the carbon foams were also studied; the foaming mechanism of carbon foam prepared using AR mesophase-pitch as precursor was also studied. SEM, XRD, OM, et al were used to detect the bubble shape and the morphology of the as-obtained foams. The results show that the bubble structure and structural properties of carbon foam can be controlled by the softening point of the pitch precursor. Carbon foam prepared by long-time-coking method exhibit better molecular orientation, larger mesophase domain, less microcracks and less interlayer spacing (0.3376nm and 0.3381nm) when the carbon foam were graphitized. The initial foam bubble are not uniformly dispersed in the molten pitch but start to grow at the upper section of the pitch; the cross section bubble shape at gravitational direction is spherical but at the direction perpendicular to gravitational direction is elliptical. Research show that the bulk density is the key factor to determine the bubble shape of the final mesophase-pitch-based carbon foams and the bulk density gradient exist in the as-received carbon foams.
引文
[1] Mehta R, Anderson DP, Hager JW, Graphitic open-celled carbon foams: processing and characterization, Carbon, 2003, 41: 2174-2176
    [2]李凯,栾志强,中间相沥青基泡沫炭,新型炭材料,2004,19:77-78
    [3]成会明,刘敏,苏革,等,泡沫炭概述,炭素技术,2000(3):30-32
    [4] Umenoto K, Saito S, Berbers S, et al, Carbon foam: spanning the phase space between graphite and diamond, Physical Review B, 64: 193409-1-3
    [5]李同起,王成扬,中间相沥青基泡沫炭的制备与结构表征,无机材料学报,2005,20:1438-1444
    [6]冯进华,栾志强,李凯,等,沥青基泡沫炭材料的制备及应用新进展,炭素技术,2006,25:29-34
    [7] Ford W, Method of making cellular retractory thermal insulating material, US patent, No: 3121050, 1964
    [8]李平,中间相沥青基泡沫炭的制备及性能研究,(硕士学位论文),大连;大连理工大学,2005
    [9]安秉学,中间相沥青基泡沫炭的制备及其性能研究,(硕士学位论文),天津;天津大学,2005:9-10
    [10] Klett J, Proceedings of the 1998 43rd International SAMPE Symposium and Exhibition, Part 1 (of 2), Anaheim, California, U.S.A., 1998.
    [11] Klett J, Pitch-Based Carbon Foam and Composites, US Patent 6,261,485, 2001.
    [12] Klett J, Pitch Based Foam with Particulate, US Patent 6,287,375, 2001.
    [13] Imamura T, Yamada Y, Oi S, et al, Orientation behavior of carbonaceous mesophase spherules having a new molecular arrangement in a magnetic field, Carbon, 1978, 16: 481~486
    [14] Lewis, IC, Thermal polymerization of aromatic hydrocarbons. Carbon, 1980, 18(3): 191~196
    [15]日本炭素材料学会,新?炭材料入门(中国金属学会炭素材料专业委员会编译),吉林,1999,13
    [16]大谷杉郎,真田雄三,炭化工学基础(张名大,杨俊英译),中科院沈阳金属研究所,兰州炭素厂研究所,1985,166~167
    [17] Mochida I, Shimizu K, Korai Y, et al, Mesophase pitch catalytically prepared from anthracene with HF/BF3, Carbon, 1992, 30(1): 55~61
    [18] Korai Y, Nakamura M, Mochida I, et al, Mesophase pitches prepared from methylnaphthalene by the aid of HF/BF3, Carbon, 1991, 29(4-5): 561~567
    [19] Wang YG, Korai Y, Mochida I, Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads, Carbon 1999, 37: 1049-1057.
    [20]李同起,王成扬,刘秀军,等,鳞片石墨对中间相炭微球织构的影响,新型炭材料, 2002, 17(4): 1~6
    [21]李同起,王成扬,郑嘉明,等,非均相成核中间相炭微球的形成过程及其结构演变,新型炭材料,2004,19(4):281~288
    [22] Li TQ, Wang CY, Liu XJ, Application of SEM to detect the structure of mesocarbon microbeads, Journal of Materials Science, 2005, 40: 2055~2057
    [23]王茂章,有机化合物的液相炭化化学,化学通报, 1990, 12: 22~28, 44
    [24] Shui H, Feng Y, Shen B, et al. Kinetics of mesophase transformation of coal tar pitch, Fuel Processing Technology, 1998, 55: 153~160
    [25] WeishauptováZ, Medek J, Effect of processing technology on mesophase structure, Fuel, 1991, 70: 235~242
    [26] Shui H, Feng Y, Shen B, et al. Kinetics of mesophase transformation of coal tar pitch, Fuel Processing Technology, 1998, 55: 153~160
    [27] Lewis IC, Chemistry of pitch carbonization, Fuel, 1987, 66(11): 1527~1531
    [28] Mochida I, Korai Y, Ku CH, et al, Chemistry of synthesis, structure, preparation and application for aromatic-derived mesophase pitch, Carbon, 2000, 38: 305~328
    [29] Imamura T, Nakamizo M. Mesophase formation from decacyclene, Carbon, 1979, 17: 507~508
    [30] Mochida I, Shimizuk, Korai Y, et al, Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BF3 , Carbon, 1990,28: 311-319
    [31] Mochida I, You QF, Korai Y, et al, Co-carbonization of ethylene tar pitch and coal tar pitch to form needle coke, Fuel, 1990, 69(6): 672~677
    [32] Mora E, Santamaría R, Blanco C, et al, Mesophase development in petroleum and coal tar pitches and their blends, Journal of Analytical and Applied Pyrolysis, 2003, 68-69: 409~424
    [33]宋怀河,刘朗,钱树安,等,共炭化在中间相沥青调制中的应用,炭素技术,1995(5):33-36
    [34] Taylor GH, Pennock GM, Fitz Gerald JD, et al, Influence of QI on mesophase structure. Carbon, 1993, 31(2): 341~354
    [35]刘秀军,王成扬,李同起,等.,酚醛树脂对均相成核的中间相炭微球生成的作用,炭素技术, 2003, 124(1): 1~4
    [36] WeishauptováZ, Medek J, Effect of processing technology on mesophase structure, Fuel, 1991, 70: 235~242
    [37] Santamaría-Ramírez R, Romero-Palazón E, Gómez-de-Salazar C, et al, Influence of pressure variations on the formation and development of mesophase in a petroleum residue, Carbon, 1999, 37: 445~455
    [38] White JJ, Price RJ, The formation of mesophase microstructure during the pyrolysis of selected coker feedstocks, Carbon, 1974, 12:321~333
    [39] Rahimi P, Gentzis T, Kubo J, et al, Coking propensity of Athabasca bitumen vacuum bottoms in the presence of H-donors formation and dissolution of mesophase from a hydrotreated petroleum stream (H-donor), Fuel Processing Technology, 1999, 60: 157~170
    [40] Rahimi P, Gentzis T, Fairbridge C, Interaction of clay additives with mesophase formed during thermal treatment of solid-free Athabasca bitumen fraction, Energy & Fuels, 1999, 13: 817~825
    [41] Brooks JD, Taylor GH, The formation of graphitizing carbons from the liquid phase, Carbon, 1965, 3: 185~193
    [42] White JJ, Price RJ, The formation of mesophase microstructure during the pyrolysis of selected coker feedstocks, Carbon, 1974, 12:321~333
    [43] Moriyama R, Kumagai H, Hayashi JI, et al, Formation of mesophase spheres from a coal tar pitch upon heating and subsequent cooling observed by an in situ 1H-NMR, Carbon, 2000, 38: 749~758
    [44] Mochida I, Korai Y, Chemical characterization and preparation of the carbonaceous mesophase. Petroleum-Derived Carbons, the 187th National ACS Meeting. New York: ACS, 1986, 29~44
    [45] Nishizawa T, Sakata M, Fused state 13C-NMR study on molecular orientation in a carbonaceous mesophase, Carbon, 1992, 30(2): 147~152
    [46] Fernández JJ, Figuriras A, Granda M, et al, Modification of coal-tar pitch by air-blowing-I. Variation of pitch composition and properties, Carbon, 1995, 33(3): 295~30
    [47]李同起,王成扬,刘秀军,等,亚微米鳞片石墨存在下炭质中间相的形成机理研究,第六届全国新型炭材料学术研讨会论文集,中国科学院山西煤炭化学研究所《新型炭材料》编辑部,昆明, 2003, 30~36
    [48] Mochida I, An KH, Sakanishi K, et al, Preparation of nitrogen-rich pitches from diazanaphthalenes using AlCl3, Carbon, 1996, 34: 601~608
    [49]张丽芳,宋进仁,要立中,等,硼取代聚芳烃中间相的制备,新型炭材料, 1999, 14(3): 45~48
    [50] Crespo JL, Arenillas A, Viňa JA, et al, A study of mesophase formation from a low temperature coal tar pitch using formaldehyde as a promoter for polymerization, Carbon, 2004, 42: 2762~2765
    [51] Yoon SH, Korai Y, Mochida I, Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch, Carbon, 1996, 34(1): 83~88
    [52]李同起,王成扬,炭质中间相形成机理研究,新型炭材料,2005,20:278-285
    [53] Zimmer JE, White JL, Disclination structure in carbonaceous mesophase and graphite, Aerospace report, 1976: 1~5
    [54] Fitzer E, Carbon fibers and their composites, New York: Springer-Verlag, 1985
    [55] Jian KQ, Shim HS, Schwartzman A, et al, Orthogonal carbon nanofibers by template-mediated assembly of discotic mesophase pitch, Advanced materials, 2003, 15:164-167.
    [56]姜卉,沥青基中间相炭微球的制备及其结构研究: [硕士学位论文],天津,天津大学,2001
    [57] Bonzom A, Crepaux AP, Montard EJ, Process for Preparing Pitch Foams and Products so Produced, US Patent 4,276,246, 1981.
    [58] Stiller AH, Stansberry PG, Zondlo JW, Method of Making a Carbon Foam Material and Resultant Product, US Patent 5,888,469, 1999.
    [59] Klett J, Method for Extruding Pitch Based Foam, US Patent 6,344,159, 2002.
    [60] Klett J, Pitch Based Carbon Foam and Composites, US Patent 6,387,343, 2002.
    [61] Klett J, Burchell T, Pitch Based Carbon Foam Heat Sink with Phase Change Material, US Patent 6,399,149, 2002.
    [62]闫曦,史景利,宋燕,中间相沥青基泡沫炭的制备及性能,宇航材料工艺,2006(2):56-67
    [63] Cao M, Zhang S, Wang YG, Influence of preparation conditions on the pore structure of carbon foam, New Carbon Materials, 2005, 20: 134-138
    [64] Mukhopadh SM, Mahadev N, Joshi P, et al, Structure investigation of graphitic foam, Jouornal of materials science, 2006, 91: 3415-3420
    [65] Sanchez-Coronado J, Chung DDL, Thermomechanical behavior of a graphite foam, Carbon, 2003, 41: 1175-1180
    [66] Klett JW, Mcmillan AD, Gallego NC, et al, The role of structure on the thermal properties of graphitic foams, Journal of materials science, 2004, 39: 3659-3676
    [67] Barros EB, Demir NS, Filhoags, et al, Roman spectroscopy of graphitic foams, Physical Review B, 2005, 71: 165422-1-5
    [68]张宏波,罗瑞盈,刘冻,等,碳泡沫的结构及其性能,炭素技术,2005,24:21-25
    [69] Yang J, Shen ZM, Hao ZB, Microwave characteristics of sandwich somposites with mesophase pitch carbon foams as core, Carbon, 2004, 42: 1182-1185
    [70] Li K, Cao XL, Roy AK, micromechanics model for three-dimensional open-cell foams using a tetrakaidecahedral unit cell and castigliano’s second therem, Compsite science and technology, 2003, 63: 1769-1781
    [71] Ford W, Method of making cellular retractory thermal insulating material, US patent, No: 3121050, 1964
    [72]张伟,中间相沥青及泡沫炭的制备研究,[硕士学位论文],天津,天津大学,2007.
    [73] Klett JW, Process for making carbon foam, 2000, US patent 6033506
    [74] Wang CY, Inagaki M, Oxidation resistance of pitch-based carbon fibers during heat-treatment in carbon dioxide, Carbon, 1999, 37(1): 158~161
    [75] Matsumoto T, Mochida Isao, Oxygen distribution in oxidatively stabilized mesophase pitch fiber, Carbon, 1993, 31(1): 143~147
    [76]阮湘泉,张和,郑嘉明等,中间相沥青纤维氧化及炭化的研究,碳素技术,1997,2:5-8。
    [77] Liu GZ, Eide DD,纺丝条件对沥青基碳纤维的性能的影响,新型炭材料,1994,(1):63-80。
    [78]王成扬,李明伟,Y型沥青基炭纤维的制备及不熔化处理对其性能的影响,碳素技术,1997,6:1-4。
    [79]凌立成,吴东,陈玉琴等,中间相沥青纤维在不同氧气浓度下氧化稳定化过程的研究,碳素技术,1996,2:12-15。
    [80] Wang MX, Wang CY, Zhang XL, et al, Effects of the stabilization conditions on the structural properties of mesophase pitch based carbon foams, carbon, 2006, 12, 44 (15): 3371~3372
    [81] Wang MX, Wang CY, Zhang W, Reducing the microcracks of mesophase pitch based carbon foams by long-time-coking method, Journal of Materials Science, 2006, 41(18): 6100~6102
    [82] Marsh H, Menendez R, Carbons from pyrolysis of pitches, coals and their blends, Fuel processing technology, 1988, 20:269~296
    [83]吴宇平,戴晓兵,马军旗,等,锂离子电池——应用与实践,北京:化学工业出版社,2004,59~60
    [84] Klett JW, Mcmillan AP, Gallego NC, et al, Effects of heat treatment conditions on the thermal properties of mesophase pitch derived graphitic foams, Carbon, 2004, 42: 1849-1852.
    [85] Kannok, Tsunlya H, Fujiur R, et al, Carbon foam, graphitic foam and production process of these, US Patent: 0136680 A1,2002.
    [86] Sihn S, Roy AK, Modeling and prediction of bulk properties of the open-cell carbon foam, Journal of the mechanics and physics of solids, 2004, 52: 167-191.
    [87] Fathollahi B, Zimmer J, Microstructure of mesophase-pitch-based carbon foams, Carbon, 2007, doi:10.1016/j.carbon.2007.08.033.
    [88] Mukhopadhyay SM, Mahadev N, Joshi P, et al, Structral investigation of graphitic foam, Journal of applied physics, 2002,91:3415-3420.
    [89] Gallego NC, Burchell TD, Klett J, Irradiation effects on graphite foam, Carbon, 2006, 44:618-628.
    [90] Klett J, Hardy R, Romine E, et al, High-thermal-conductivity mesophase pitch derived carbon foams: effects of the precursor on structure and properties, Carbon, 2000, 38: 953-973
    [91] Kelly BT, Burchell TD, Structure-related property changes in polycrystalline graphite under neutron irradiation, Carbon, 1994, 32: 499-505.
    [92] Engle GB, Irradiation behavior of nuclear graphites at elevated temperatures, Carbon, 1970, 9: 539-554.
    [93] Bruneton E, Tallaron C, Naulin NG, et al, Evolution of the structure and mechanical behaviour of carbon foam at very high temperatures, Carbon, 2002, 40:1919-1927.
    [94] Kanno K, Tsuruya H, Fujiura R, et al, Carbon foam, graphite foam and production process of these, US Patent 6898336, 2004.
    [95] Stller AH, Plucinshi J, Yocum A, Methods of making a carbon foam, US Patent 6544491, 2003.
    [96]安秉学,李同起,王成扬,发泡条件对中间相沥青基泡沫炭形成的影响,炭素技术,2005,6:1-4
    [97]李同起,王成扬,中间相沥青基泡沫炭的制备与结构表征,无机材料学报,2005,20:1438-1444
    [98] Luo X, Chung DDL, Vibration damping using flexible graphite, Carbon, 2000, 38: 1510-1512.
    [99]沈增民,戈敏,迟伟东,等,中间相沥青基炭泡沫体的制备、结构和性能,新型炭材料,2006,21(3):193-201
    [100] Guo MC, Heuzey MC, Carreau PJ, Cell structure and dynamic properties of injection moided polypropylene foams, Polymer engineering and science, 2007,10:1070-1081.
    [101] Eksiloglu A, Gencay N, Yardin MF, et al, Mesophase AR pitch derived carbon foam: effects of temperature pressure and pressure release time, Journal of materials science, 2006, 41: 2743-2748
    [102] Caies D, Faber KT, Thermal properties of pitch derived graphite foam, Carbon 2004, 40: 1131-1150
    [103] Ge M, Shen ZM, Chi WD, et al, Anisotropy of mesophase pitch-derived carbon foams, Carbon, 2007, 45: 141-145.
    [104] Klett JW, High-thermal conductivity mesophase pitch-derived carbon foam, International SAMPE symposium and exhibition (proceedings), 1998, 43:745-755.
    [105] Yang J,Shen ZM, Microwave characteristics of sandwich composites with mesophase pitch carbon foams as core, Carbon,2004,42:1882-1885.
    [106] Bennett B, Alderson, Stiller A, et al, Method of making carbon foam at low pressure, US patent, 2004, No. 6797251 B1.
    [107] Chen C, Kenne EB, Stiller AH, et al, Carbon foam derived from various precursors, Carbon, 44: 1535-1543
    [108] Adams PM, Katzman HA, Rellick GS, Aligned graphitic carbon foams from mesophase, Carbon, 1998, 36: 159-168
    [109] Klett JW, Mcmillan AP, Gallego NC, et al, Effects of heat treatment conditions on the thermal properties of mesophase pitch derived graphitic foams, Carbon, 2004, 42: 1849-1852
    [110] Calvo M, Carcia R, Arenillas A, et al, Carbon foams from coals, A preliminary study, Fuel, 2005, 84: 2184-2189.
    [111]李平,中间相沥青基泡沫炭的制备及性能研究,[硕士学位论文],大连:大连理工大学,2005.
    [112] Fang Z, Cao XM, Li C, et al, Investigation of carbon foam as microwave absorber: Numberical prediction and experimental validation, Carbon, 2006, 44: 2031-2033
    [113] Timothy J, Bunning, Hong G, et al, Polyurethane-Infiltrated carbon foams: A coupling of thermal and mechanical properties, Journal of applied polymer science, 2003, 87:2348-2355.
    [114] Glicksman LR, Marge AL, Moren JD, Developments in radiative heat transfer, Carbon, 1992: 203-207
    [115] Stiller AH, Stansberry PG, Iondlo JW, Method of making a carbon foam material and resultant product, 2000, US Patent: 5888469
    [116] Yang J, Shen ZM, Xue RS, Study of mesophase pitch based graphitic foam used as anodic materials in lithium ion rechargeable batteries, Journal of materials science, 2005, 40:1285-1287
    [117] Umenoto K, Saito S, Berbers S, et al, Carbon foam: spanning the phase space between graphite and diamond, Physical Review B, 64: 193409-1-3
    [118] Yoon SH, Korai Y, Mochida I, Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch, Carbon, 1996, 34(1): 83-88
    [119] Qu J, Blau PJ, Klett JW, et al, Sliding friction and wear characteristics of novel graphitic foam materials, Tribology letters, 2004, 17:879-885
    [120] Coursey JS, Kim J, Boudreaux PJ, Performance of graphite foam evaporator for use in thermal management, Journal of electronic packing, 2005, 20: 127-134
    [121] Yu QJ, Straatman AG, Thompson BE, Carbon foam finned tubes in air-water heat exchangers, Applied thermal engineering, 2006, 26: 131-143.
    [122] Klett JW, Trammell M, Parametric investigation of a graphitic foam evaporator in a thermosyphon with fluorineat and a silicon CMOS chip, IEEE transactions on device and materials reliability, 2004, 41: 626-637
    [123] Yao J, Wang GX, Ahn JH, et al, Electrochemical studies of graphitized mesocarbon microbeads as an anode in lithium-ion cells, Journal of Power Sources, 2003, 114(2): 292~297
    [124] Lee SB, Pyun SI, Mechanism of lithium transport through a composite heat-treated at 800-1200°C, Electrochimica Acta, 2002, 48(4): 419~430
    [125] Umeda M, Dokko K, Fujita Y, et al, Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon, Electrochimica Acta, 2002, 47(6): 885~890
    [126] YJ Kim, Horie Y, Matsuzawa Y, et al, Structural features necessary to obtain a high specific capacitance in electric double layer capacitors, Carbon, 2003, 42(12-13): 2423~32
    [127] Endo M, Kim YJ, Maeda T, et al, Morphological effect on the electrochemical behavior of electric double-layer capacitors, Journal of Materials Research, 2001, 16(12): 3402~3410
    [128] Mehta R, Anderson DP, Hager JW, Graphitic open-celled carbon foams: processing and characterization, Carbon, 2003, 41: 2174~2176
    [129]闫修瑾,张元歧,针状焦的技术进展,炭素科技, 2002, 12(2): 38~41
    [130] Gong QM, Huang QZ, Huang BY, et al, Mesophase formation of coal-tar pitches used for impregnant of C/C composites, Transactions of Nonferrous Metals Society of China (English Edition), 2001, 11(4): 483~487
    [131]张家棣,碳材料工程基础,北京:冶金工业出版社,1992,94-95
    [132] Beauharnois ME, Edie DD, Thies MC, Carbon fibers from mixtures of AR and supercritically extracted mesophases, Carbon, 2001,39:2101-2111.
    [133] Edie DD, The effects of processing on the structure and properties of carbon fibers, Carbon, 1998, 36:345-362.
    [134] Dauche FM, High performance carbon fibers from mesophase pitches produced by supercritical extraction, Clemson, SC: Clemson University, 1997, Ph,D thesis.
    [135] Tzeng SS, Diefendorf RJ. Transverse thermal expansion of carbon fibers. In: Extended abstracts, 21st biennial conference on carbon, SUNY Buffalo: American carbon society, 1993, p: 12-13.
    [136] Shen ZM, Xue RS, Preparation of activated mesocarbon microbeads with high mesopore content, Fuel Processing Technology, 2003, 84(1-3): 95~103
    [137] Ishii C, Kaneko K, Surface and physical properties of microporous carbon spheres, Progress in Organic Coatings, 1997, 31(1-2): 147~152
    [138] Wang CY, Inagaki M, Oxidation resistance of pitch-based carbon fibers during heat-treatment in carbon dioxide, Carbon, 1999, 37(1): 158~161
    [139] Matsumoto T, Mochida Isao, Oxygen distribution in oxidatively stabilized mesophase pitch fiber, Carbon, 1993, 31(1): 143~147
    [140] Inagaki M, Textures in Carbon Materials, New Carbon Materials, 1999, 14(2): 1~13
    [141]张伟,王成扬,王妹先,张晓林,石油系中间相沥青基泡沫炭的制备与结构性能研究,炭素技术,2006。
    [142] Matsumoto T, Mochida Isao, Oxygen distribution in oxidatively stabilized mesophase pitch fiber, Carbon, 1993, 31(1): 143~147
    [143] Gallego NC, Edie DD, Structure-property relationships for high thermal conductivity carbon fibers, Composites Part A (Applied Science and Manufacturing), 2001, 32A(8): 1031~1038
    [144] Wang CY, Li MW, Wu YL, et al, Preparation and microstructure of hollow mesophase pitch-based carbon fibers, Carbon, 1998, 36(12) : 1749~1754
    [145] LüYY, Wu D, Zha QF, et al, Skin-core structure in mesophase pitch-based carbon fibers: causes and prevention, Carbon, 1998, 36(12): 1719~1724
    [146]White JL, Sheaffer PM, Oxidation stabilization of the carbonaceous mesophase, Extended Abstracts and Program - Biennial Conference on Carbon, 17th Biennial Conference on Carbon - Extended Abstracts and Program, Lexington, KY, USA, 1985, 161~162
    [147] Klett JW, Process for making carbon foam, 2000, US patent 6033506.
    [148] Franklin RE, Crystallite growth in graphitizing and non-graphitizing carbons, Proceedings of the Royal Society A, 1951, 204:196-218
    [149]吴人洁,现代分析技术——在高聚物中的应用,上海:上海科学技术出版社,1987,140~218
    [150]安秉学,中间相沥青基泡沫炭的制备及其性能研究,[硕士学位论文],天津,天津大学,2005:9-10
    [151] Mehta R, Anderson DP, Hager JW, Graphitic open-celled carbon foams: processing and characterization, Carbon, 2003, 41: 2174-2176
    [152] Caluu M, Carcia R, Arenillas A, et al, Carbon foams from coals, Fuel, 2005, 84: 2184-2189
    [153] Klett Jw, Mcmillan AD, Gallego NC, et al, Effects of heat treatment conditions on the thermal properties of mesophase pitch derived graphitic foams, Carbon, 2004, 42: 1849-1852
    [154] Reznek SR, Massey R, Carbon foams and methods of making the same, US Patent 6500401,2002.
    [155] Inagaki M, Morishita T, Kuno A, et al, Carbon foams prepared from polyimide using urethane foam template, Carbon,2004,42:497-502.
    [156] Carcia R, Crespo JL, Martin SC, et al, Development of mesophase from a low-temperature coal tar pitch, Engergy&Fuels, 2003, 17: 291-301
    [157] Singer LS, The mesophase and high modulus carbon fibers from pitch, Carbon, 1978, 16(6): 409~415
    [158] Hamaguchi M, Suzuki T, Nishizawa T, et al, Mesophase pitch for high-performance carbon fiber. KOBELCO Technology Review, 1990, 7: 39~42
    [159] Townsend HN, High-modulus, high-performance carbon fiber from pitch precursor, Economic Computation and Economic Cybernetics Studies and Research, 1980, 1: 453~460
    [160] Manlyama B, Spowart JE, Hooper PJ, et al, A new technique for obtaining three-dimentional structures in pitch based carbon foams, Scriptia material, 2006, 54 (9):1709-1713
    [161]吕永根,凌立成,刘朗,等,由中间相炭微球制备高密度各向同性炭,炭素,1998,4:9~14
    [162] Honda H, Mesophase pitch and meso-carbon microbeads, Molecular Crystals and Liquid Crystals, 1983, 94: 97~108
    [163]李宝华,吕永根,凌立成,等,中间相炭微球用作锂离子电池阳极的充放电性能研究.新型炭材料, 1999, 14(4): 28~33
    [164] Chang YC, Sohn HJ, Ku CH, et al, Anodic performances of mesocarbon microbeads (MCMB) prepared from synthetic naphthalene isotropic pitch, Carbon, 1999, 37: 1285~1297
    [165]李崇俊,马伯信,霍肖旭,等,硼在碳/碳复合材料中的状态及其催化石墨化作用,材料工程,1998,12:3~7
    [166] Davydov VA, Rakhmanina AV, Agafonov V, et al., Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures, Carbon, 2004, 42: 261~269
    [167] Miyake M, Satoh J, Izumi T, et al, Application of electric field to pitch containing mesophase spherules, International Symposium of Carbon, Tokyo, 1998, 248~249
    [168] Rahimi P, Gentzis T, Fairbridge C, Interaction of clay additives with mesophase formed during thermal treatment of solid-free Athabasca bitumen fraction, Energy & Fuels, 1999, 13: 817~825
    [169] Fernández JJ, Figuriras A, Granda M, et al, Modification of coal-tar pitch by air-blowing-I. Variation of pitch composition and properties, Carbon, 1995, 33(3): 295~30
    [170] Machnikowski J, Kaczmarska H, Gerus-Piasecka I, et al, Structural modification of coal-tar pitch fractions during mild oxidation-relevance to carbonization behavior, Carbon, 2002, 40: 1937~1947
    [171] Collett GW, Rand B, Thixotropic changes occurring on reheating a coal tar pitch containing mesophase, Carbon, 1978, 16: 477~479
    [172] Méndez A, Santamaría R, Granda M, et al, Influence of granular carbons on the thermal reactivity of pitches, Energy & Fuels, 2004, 18: 22~29
    [173] Jian K, Xianyu H, Eakin J, et al, Orientationally ordered and patterned discotic films and carbon films from liquid crystal precursors, Carbon, 2005, 43: 407~415
    [174] Zhu JJ, Wang X, Guo L, et al, A graphite foam reinforced by graphite particles. Carbon; DOI: 10.1016/j.carbon.2007.08.019.
    [175] Yasmin A, Luo JJ, Daniel IM. Processing of expanded graphite reinforced polymer nanocomposites. Composites science and technology, 2006; 66: 1182-1189.
    [176] Zhao H, Liu L, Wu Y, et al. Investigation of were and corrosion behavior of Cu-graphite composites prepared by electroforming. Composites science and technology, 2007; 67: 1210-1217.
    [177] Cho J, Luo JJ, Daniel IM. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis. Composites science and technology, 2007; 67: 2399-2407.
    [178] Wang Y, Zhong J, Wang Y, et al, A study of the properties of carbon foam reinforced by clay. Carbon 2006; 44: 1560-1564.
    [179] Beechem, T; Lafdi, K, Novel high strength graphitic foams, Carbon, 2006, 44:1548-1559.
    [180] Li, SZ; Song, YZ; Song, Y, et al, Carbon foams with high compressive strength derived from mixtures of mesocarbon microbeads and mesophase pitch, Carbon, 2007, 45:2092-2097.
    [181] Li K, Luan ZQ, Ye PW, Li Y. Primary research on nucleation mechanism of carbon foams. Conference proceedings, Guilin, China: Proceeding of the eighth national symposium on new carbon materials, 2007 .p. 121-125.
    [182]李同起,炭质中间相结构形成及其相关材料的应用研究:[博士学位论文],天津:天津大学,2005.
    [183] Li, CY; Wan, YZ; Wang, J, et al, Antibacterial pitch-based activated carbon fiber supporting silver, Carbon, 1998, 36:61-65.
    [184] Sun, L; Warren, GL; O'Reilly, JY, et al, Mechanical properties of surface-functionalized SWCNT/epoxy composites, Carbon, 2008, 46:320-328.
    [185] Kim, M; Yun, CH; Kim, YJ, et al, Changes in pore properties of phenol formaldehyde-based carbon with carbonization and oxidation conditions, Carbon, 40:2003-2012.
    [186] Li TQ, Wang CY, An BX, et al, Preparation of graphitic carbon foam using size restriction method under atmospheric pressure, Carbon, 2005, 43: 2030-2032.
    [187]Wang, MX; Wang, CY; Li, BQ, et al, Preparation of mesophase-pitch-based carbon foams at low pressures, Carbon, 2008, 46: 84-91.
    [188] Rottmair, C; Volek, A; Jung, A, et al, Functional group analysis of oxidative stabilized AR mesophase pitch, Carbon, 2007, 45: 3052-3055.
    [189] Chakrabarti, K; Nambissan, PMG; Mukherjee, CD, et al, Positron annihilation spectroscopic studies of the influence of heat treatment on defect evolution in hybrid MWCNT-polyacrylonitrile-based carbon fibers, Carbon, 2007, 45: 2777-2782.
    [190] Bin, YZ; Chen, QY; Nakamura, Y, et al, Preparation and characterization of carbon films prepared from poly(vinyl alcohol) containing metal oxide and nano fibers with iodine pretreatment, Carbon, 2007, 45:1330-1339.
    [191] Liu, XG; Ji, WY; Zhang, Y, et al, The morphology and electrical resistance of long oriented vapor-grown carbon fibers synthesized from coal pitch, Carbon, 2008, 46: 154-158.
    [192] Loidl, D; Paris, O; Rennhofer, H, et al, Skin-core structure and bimodal Weibull distribution of the strength of carbon fibers, Carbon, 2007, 45: 2801-2805.
    [193] Chen, XQ; Xu, ZH; Li, XD, et al, Structural and mechanical characterization of platelet graphite nanofibers, Carbon, 2007, 45: 416-423.
    [194] Nakatani, M; Shioya, M; Yamashita, J, Axial compressive fracture of carbon fibers, Carbon, 1999, 37: 601-608.
    [195] Pittman, CU; Jiang, W; Yue, ZR, et al, Surface properties of electrochemically oxidized carbon fibers, Carbon, 1999, 37: 1797-1801.
    [196] Suzuki, T; Umehara, H, Pitch-based carbon fiber microstructure and texture and compatibility with aluminum coated using chemical vapor deposition, Carbon, 37: 47-59.
    [197] Baowan, D; Thamwattana, N; Hill, JM, Suction energy and offset configuration for double-walled carbon nanotubes, Communications in nonlinear science and numerical simulations, 2008, 13: 1431-1447.
    [198] Alvaro, M; Aprile, C; Ferrer, B, et al, Functional molecules from single wall carbon nanotubes. Photoinduced solubility of short single wall carbon nanotube residues by covalent anchoring of 2,4,6-triarylpyrylium units, Journal of the American chemical society, 2007, 129: 5647-5655.
    [199] Watts, PCP; Mureau, N; Tang, ZN, et al, The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation, Nanotechnology, 2007, 18:175701.
    [200] Zhang, HW; Wang, JB; Ye, HF, et al, Parametric variational principle and quadratic programming method for van der Waals force simulation of parallel and cross nanotubes, International journal of solids and structures, 2007, 44:2783-2801.
    [201] Pop, E; Mann, DA; Goodson, KE, et al, Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates,Journal of applied physics, 2007, 101:093710.
    [202] Xue, HS; Fan, JR; Hong, RH, et al, Characteristic boiling curve of carbon nanotube nanofluid as determined by the transient calorimeter technique, Applied physics letters, 2007, 90:184107.
    [203] Wang, YL; Wan, YZ; Dong, XH, et al, Preparation and characterization of antibacterial viscose-based activated carbon fiber supporting silver, Carbon, 1998, 36:1567-1571.
    [204] Endo, M; Kim, C; Karaki, T, et al, Structural characterization of milled mesophase pitch-based carbon fibers, Carbon, 1998, 36: 1633-1641.
    [205] Edie, DD, The effect of processing on the structure and properties of carbon fibers, Carbon, 1998, 36: 345-362.
    [206]Menendez, R; Fleurot, O; Blanco, C, et al, Chemical and rheological characterization of air-blown coal-tar pitches, Carbon, 1998, 36: 973-979.
    [207] Martinez-Escandell, M; Torregrosa, P; Marsh, H, et al, Pyrolysis of petroleum residues: I. Yields and product analyses, Carbon, 1999, 37:1567-1582.
    [208]Allaoui, A; Hoa, SV; Pugh, MD, The electronic transport properties and microstructure of carbon nanofiber/epoxy composites, Composites science and technology, 2008, 68: 410-416.
    [209] Tibbetts, GG; Lake, ML; Strong, KL, et al, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Composites science and technology, 2007, 67:1709-1716.
    [210] Finegan, IC; Tibbetts, GG; Gibson, RF, Modeling and characterization of damping in carbon nanofiber/polypropylene composites, , Composites science and technology, 2003, 63:1629-1635.
    [211] Druma AM, Alam MK, druma C, Analysis of the growth and motion of graohitic foam bubbles, Carbon, 2005, 43: 3075-3087
    [212] Ryegory R, Elgafy A, Beechem T, et al, Study of the growth and motion of graphitic foam bubbles, Carbon, 2005,43:3075-3087
    [213] Beechem T, Lafdi K, Elgafy A, Bubble growth mechanism in carbon foams, Carbon, 2005, 43: 1055-1064

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700