复杂机械产品装配过程在线质量控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂机械产品是由多种类型零、部件按照一定装配序列、在相应工艺参数作用下,聚合成具有多项技术要求的混联结构装配体。复杂机械产品装配过程属于串、并行相结合的多工序制造过程,在制品向下游工序流转的过程中,以其为载体的各类型质量特征不断传递、累积,形成产品各项质量指标,即最终产品的质量特性是由分布于装配过程各道工序中、具有一定耦合规律的质量特征所共同决定。因此,从全局角度出发,探讨不同类型质量特征间耦合规律,设计优化控制策略,实现装配质量在线优化和误差累积动态补偿,对减少复杂机械产品装配过程质量波动、提高装配质量稳定性有着重要的现实意义。本文从装配质量形成机理出发,将研究对象从装配尺寸推广到转矩、力等非尺寸要素,基于模型驱动研究理念,探讨装配过程中不同类型质量特征变迁、融合规律和相互作用机制,在此基础上,结合上游工序实例化数据,对装配过程在线质量工况信息做出及时响应、调整,实现装配误差累积动态补偿和装配质量主动控制,为提高复杂机械产品装配质量稳定性提供理论依据与技术支持,论文的研究内容和创新点如下:
     1)提出质量控制点和质量属性的概念,构建基于网络流的质量控制点-质量属性相关性模型,在识别影响质量属性的关键质量控制点基础上,实现装配质量特征约束关系的显式表达,为进一步探讨装配质量主动控制和在线优化提供研究基础。
     2)通过建立装配质量控制点公差分配模型,定量表征不同类型质量控制点间的非线性耦合关系,为质量控制点在线优化提供策略支持,该优化策略为不依赖历史样本的模型驱动控制模式,能够适应当前多品种、小批量的柔性制造环境。为了提高求解质量,将混沌机制和双阶段变异策略嵌入多目标粒子群算法用于模型解算,保证了帕累托最优集的多样性。
     3)构建具有自主协调能力的装配质量数据链模型,集成了装配资源、装配工艺、智能控制策略等方面的信息,实现装配过程中在制品质量状态的“可观”、“可控”,能够根据装配质量工况信息做出实时调整,解决装配过程中误差累积动态补偿问题;通过模型动态行为模拟、推演,为系统可达性分析提供依据,并为在线质量控制系统开发奠定基础。
     4)基于统计理论对传统装配模式和本文在线优化策略下产生的装配质量数据序列进行分布性态验证、方差齐次性分析以及均值比对,证明了优化方法能够有效提高复杂机械产品装配质量稳定性;利用模糊关联分析计算样本序列与标准序列之间的平均隶属度和贴近度,进一步佐证了先前论断。
     5)开发面向复杂机械产品装配过程在线质量控制系统,将智能计算、遥感测控、工业数据传输网络等相关技术无缝集成,为提高装配过程质量稳定性提供技术保障。
Complex product, defined as “hybrid structure assembly” with technical requirements, iscomposed of many kinds of parts according to the corresponding process parameters and certainassembly sequence. Complex product assembly process is a serial-parallel-hybrid-multi-stagemanufacturing process.In the process of WIP (Working In Process)flowing to the downstream,product quality attributes are accumulated by the various types of quality characteristics of WIP. Asa result, the quality characteristics of the final product are determined by the coupling qualitycharacteristics in each assembly procedure. Therefore,to realize the online optimization ofassembly quality and dynamic compensation of accumulated errors,from the global perspective, itis significant and pratical to explore the coupling laws in different types of quality characteristicsand design the control optimization strategy for improving the assembly quality stability. Toimprove the assembly quality stability of complex product, from the sight of assembly qualityformation mechanism, the research objects are extended from the assembly sizes to other kinds ofelements such as torque, force. Based on the model-driven philosophy, the integration law and theinteraction mechanism among the different types of the quality characteristics in assembly processare studied, considering the instantiated data of the upstream quality control points, the timelyresponse and adjustment of the on-line quality information are carried out.
     The research contents and innovations of the dissertation are as follows:
     1) The concept of quality control points and quality attributes are proposed.Based on networkflow theory, the Correlation-Model between quality attributes and quality control points isestablished, and the constraint relationships among the assembly quality characteristics areexpressed by this model, Correlation-Model can lay the foundation of future research of theassembly quality active control and online optimization.
     2) The tolerance distribution model of quality control points oriented to assembly quality ispresented to characterize the nonlinear coupling relationships among different types of qualitycontrol points,which provides policy support for online optimization of the quality control points.The optimization strategy is a pattern of model-driven control mode which can well adapt to thesmall-batch flexible manufacturing environment due to being independent of historicalsamples.The chaos theory and two-stage variation strategy are adopted to improve multipleobjective particle swarm optimization (MOPSO). The diversity of pareto optimal set is ensured.
     3) The assembly quality data chain model with the ability of self-coordination isestablished.The assembly resources, assembly process and intelligent control strategies are integrated into this model to achieve the quality state of WIP of "visualization "and" controllability".The dynamic compensation of error accumulation in assembly process is resolved by real-timeadjustment according to the real-time quality information. The simulation of the model dynamicbehavior is the basis of the system reachability analysis and the development of the online qualitycontrol system.
     4) To prove the optimization method can effectively improve the assembly quality stability ofcomplex product, two groups of assembly quality data sequences, which are generated from theoptimization strategy and the traditional assembly mode,respectively, are compared by thestatistical theory including the verification of distribution state, variance homogeneity analysis andaverage contrast. To verify the previous assertion, the average membership grade and closenessdegree between the sample sequence and the standard sequence are calculated by the fuzzyassociation analysis.
     5) To provide technical support for improving the quality stability of the assembly process, theonline quality control system for complex mechanical assembly process is developed, integratedseamlessly with the intelligent computing, telemetry and industrial data transmission networks inthe online quality control system.
引文
[1] Manuel E. Sosa, Steven D. Eppinger, Craig M. Rowles, The Misalignment of ProductArchitecture and Organizational Structure in Complex Product Development [J],MANAGEMENT SCIENCE,2004,50(12):1674–1689
    [2] D.P. Song, C. Hicks, C.F.Earl, Product due date assignment for complex assemblies[J],International Journal of Production Economics,2002,76(3):243–256
    [3] David M. Sharman,Ali A. Yassine, Characterizing complex product architectures[J], SystemsEngineering,2004,9(7):35-60
    [4] Yutong Zhu,Jiangyun Wang, Agent Based Simulation Framework for Complex Product[C]//Asia Simulation Conference-7th International Conference on System Simulation andScientific Computing,2008:13-17
    [5] Zhang Zaifang, Chu Xuening, A Selection Model for Multiple Design Schemes of ComplexProduct[C]//fourth international conference on fuzzy systems and knowledgediscovery,2007,3:483-487
    [6] Huaglory Tianfield, Advanced life-cycle model for complex product development viastage-aligned information-substitutive concurrency and detour[J], International Journal ofComputer Integrated Manufacturing,2001,14(3):281-303
    [7] Guoqi Feng, Dongliang Cui, Chengen Wang, et al,Integrated data management in complexproduct collaborative design[J],Computers in Industry,2009,60(1):48-63
    [8]吴俊峰.现代制造环境下的机械产品选配方法及其应用[D].合肥工业大学,2006
    [9] Li Pengzhong, Zhang Weimin, Performance Loss Model Based Forecasting Method ofRobot Assembly Quality[C]//2009International Asia Conference on Informatics in Control,Automation, and Robotics,2009:147-150
    [10] Bo Zhang, Applying Virtual Statistical Modeling for Vehicle Dynamics[J], SAEInternational Journal of Materials and Manufacturing,2010,3(1):38-43
    [11]郑唯唯,过程质量控制智能化体系与方法研究[D].西北工业大学,2006
    [12]赵家黎,基于SOV理论的过程质量控制方法研究[D].天津大学,2006
    [13] Duffuaa S.O, Ben-Daya M, Improving maintenance quality using SPC tools[J],Journal ofQuality in Maintenance Engineering,1995(1):25-33.
    [14] Daudin.J.J, Double sampling X charts[J],Journal of Quality Technology1992(24):78–87.
    [15] Costa, A.F.B, Claro, F.A.E, Double sampling X control chart for a first-order autoregressive moving average process model[J], International Journal of AdvancedManufacturing Technology,2008,39,521–542.
    [16] Reynolds Jr, M.R, Amin, etal, X charts with variable sampling intervals[J]. Technometrics,1988,30:181–192.
    [17] Antonio Fernando Branco Costa, Marcela Aparecida Guerreiro Machado,Variable parameterand double sampling X charts in the presence of correlation: The Markov chain approach [J],International Journal of Production Economics,2011,130(2):224-229
    [18]袁哲俊,徐羽中,马玉林,面向AMT生产环境的EWMA质量控制图[J],哈尔滨工业大学学报,2000,32(1):5-50
    [19] Chun-Cheng Changa, Tian-Hong Panb, David Shan-HillWong, et al, A G&P EWMAalgorithm for high-mix semiconductor manufacturing processes[J], Journal of ProcessControl,2011,21:28–35
    [20] Eugenio K. Epprecht, Bruno F. T, Sim es,etal, A variable sampling interval EWMA chartfor attributes[J], International Journal of Advanced Manufacturing Technology,2010,49(1-4):281-292
    [21] Saddam Akber Abbasi and Arden Miller,Increasing the Sensitivity of Variability EWMAControl Charts[J], Electrical Engineering and Applied Computing,2011,90:431-443.
    [22] Tsung F, Li Y, Jin M, Statistical process control for multistage manufacturing and serviceoperations: A review and some extensions[J], International Journal of Services Operationsand Informatics,2008:191-204
    [23] Wafik Hachicha, Ahmed Ghorbel, A survey of control-chart pattern-recognition literaturebased on a new conceptual classification scheme[J], Computers&Industrial Engineering,2012,63(1):204-222
    [24]孙静,杨穆尔,二元自相关过程的残差T2控制图[J],清华大学学报,2006,46(3):403-406
    [25] R.B.Crosier, Multivariate generalizations of cumulative sum quality control schemes [J],Technometrics,1988,30:291-303
    [26] C.A.Lowry, W.H.Woodall, A Multivariate Exponentially Weighted Moving AverageControl Chart [J],Technometrics,1992,34(1):46-53
    [27] Zantek PF, Wright GP, Plante RD, A self-starting procedure for monitoring process qualityin multistage manufacturing systems[J], IIE Transactions,2006,38(4):293-308.
    [28] J.René Villalobos, Luis Mu oz, Marco A. Gutierrez, Using fixed and adaptive multivariateSPC charts for online SMD assembly monitoring[J], International Journal of ProductionEconomics,2005,95(1):109-121
    [29] Guh. R. S, Shiue. Y. R, An effective application of decision tree learning for on-linedetection of mean shifts in multivariate control charts [J], Computers and IndustrialEngineering,2008,55(2),475–493.
    [30]房纪涛,面向质量目标的统计过程控制方法与应用研究[D].上海交通大学,2010
    [31] Keens G E,Luner,J.J, SPC in Low Volume Manufacturing:A Case Study[J].Journal ofQuailty Technology,1991,23(4):287-295
    [32]余忠华,吴昭同,面向小批量制造过程的质量控制方法研究[J],机械工程学报,2001,37(8):60-64
    [33]陈春良,石文华,吕会强等,基于贝叶斯法的变速箱集中项修过程能力分析[J],兵工学报,2012,33(7):864-869
    [34]李明慧,卢鹄,尺寸公差的工艺能力指数评价方法[J],南京航空航天大学学报,2012,44(S):42-47
    [35] V.E. Kane, Process capability indices[J], Journal of Quality Technology,1986,18(1):41-52
    [36] L.K. Chan, S.W. Cheng, F.A. Spiring, A new measure of process capability: Cpm[J], Journalof Quality Technology.1988,20(3):162-175
    [37] W.L. Pearn, S. Kotz, N.L. Johnson, Distributional and inferential properties of processcapability indices[J], Journal of Quality Technology,1992,24(4):216-231
    [38] K. Va nnman, A uniTed approach to capability indices[J],Statistica Sinica,1995,5(2):805-820
    [39]孙静,张公绪,两种Cp的诊断理论[J],中国质量,2000,4:22-28
    [40] Wang FK, Chen JC, Capability index using principal components analysis[J], QualityEngineering,1998,11:21–27.
    [41] F.K. Wang, T.C.T. Du, Using principal component analysis in process performance formultivariate data[J], Omega,2000,28(2):185-194
    [42]朱慧明,韩玉启,多元质量特性的贝叶斯过程能力指数[J],哈尔滨工业大学学报,2005,37(4):498-500
    [43]朱慧明,韩玉启,吴正刚,基于随机参数的贝叶斯过程能力指数评价模型[J],湖南大学学报,2004,31(6):105-109
    [44] Chien-Wei Wu, Assessing process capability based on Bayesian approach with subsamples[J],European Journal of Operational Research,2008,184(1):207-228
    [45] Bi-Min Hsu, Ming-Hung Shu, Fuzzy inference to assess manufacturing process capabilitywith imprecise data[J], European Journal of Operational Research,2008,186(2):652-670
    [46]孙林,杨世元,吴德会,基于隶属度模糊最小二乘支持向量机的工序能力预测[J],中国机械工程,2008,19(13):1561-1564
    [47]贾新章,宋军建,蒲建斌,非正态分布工艺参数工序能力指数分析[J],西安电子科技大学学报,2004,31(1):13-15
    [48]王立岩,唐加福,宫俊,多元过程能力指数的研究综述[J],控制理论与应用,2009,26(10):1118-1125
    [49] Chan Laikow, Cui Hengjian, Li Guoying, et al, Projection pursuit approach to multivariatestatistical process control [J], Advances in Mathematics,2001,30(3):193-202
    [50]何曙光,齐二石,何桢,基于投影变换的多元统计过程控制与诊断模型[J],天津大学学报,2008,41(12):1512-1517
    [51] Jackson. J. E, Quality control of methods for several related variables[J], Technometrics,1959,1(4):359–377.
    [52] Manabu Kano, Shinji Hasebe, Iori Hashimoto, et al, A new multivariate statistical processmonitoring method using principal component analysis[J], Computers&ChemicalEngineering,2001,25(7-8):1103-1113
    [53] Jackson.J.E, Mudholkar.G.S, Control procedures forresiduals associated with principalcomponent analysis [J], Techno-metrics,1979,21,341–349.
    [54] Hu S J, Stream of Variation Theory for Automotive Body Assembly [J], Annals of theCIRP,1997,46(1):1-6.
    [55] Mantripragada. R., and Whitney. D. E,The Datum Flow Chain: A Systematic Approach toAssembly Design and Modeling[J], Res. Eng. Des.,1998,10(3):150–165.
    [56]赵家黎、郭伟、牛占文等,基于误差流理论的多工位装配过程质量稳定性[J],机械工程学报,2006,42(11):88-93
    [57] Jin J, Shi J, State space modeling of sheet metal assembly for dimensional control [J],ASME Transactions, Journal of Manufacturing Science and Engineering,1999,121:756-762
    [58] Ding.Y, Ceglarek.D,Shi. J, Design Evaluation of Multi-Station Manufacturing Processes byUsing State Space Approach [J], ASME J. Mech.Des.2002,124(4):408–418.
    [59] Jaime Camelio, S.Jack Hu, Dariusz Ceglarek, Modeling Variation Propagation ofMulti-Station Assembly Systems With Compliant Parts [J],Journal of Mechanical Design,2003,125(4):673-681
    [60] Mantripragada.R., Whitney. D. E, Modeling and Controlling Variation Propagation inMechanical Assemblies Using State Transition Models[J], IEEE Trans. Rob. Autom.,1999,115(1):124–140.
    [61] Huang.W. Methodologies for Modeling and Analysis of Stream-of-Variation (SOVA) inCompliant and Rigid Assembly [D], University of Wisconsin-Madison,2004.
    [62] Jian Liu, Jionghua Jin, Member, State Space Modeling for3-D Variation Propagation inRigid-Body Multistage Assembly Processes[J], IEEE Transactions on Automation Scienceand Engineering,, April2010,7(2):274-290,
    [63] Huang, Wenzhen, Jijun Lin, Michelle Bezdecny,et al,Stream-of-Variation Modeling—Part I:A Generic Three-Dimensional Variation Model for Rigid-Body Assembly in Single StationAssembly Processes[J], Journal of Manufacturing Science and Engineering, Transactions ofthe ASME,2007,129(4):821-831
    [64]田兆青、来新民、林忠钦,多工位薄板装配偏差流传递的状态空间模型[J],机械工程学报,2007,43(2):202-209
    [65]何博侠、张志胜、戴敏等,机械装配过程的偏差传递建模理论[J],机械工程学报,2008,44(12):62-68
    [66]熊和金,徐中华,灰色控制[M],第一版,北京:国防工业出版社,2005
    [67]刘思峰,党耀国,方志耕等,灰色系统理论及其应用[M],第三版,北京:科学技术出版社,2004
    [68]杨建刚,人工神经网络实用教程[M].杭州:浙江大学出版社,2001.
    [69]贲可荣,张彦铎,人工智能[M],北京:清华大学出版社,2006
    [70]吴广顺,凌雷,王玉果,机器人柔顺装配的BP神经网络系统[J],计量学报,2007,28(2):146-149
    [71]辛民,解丽静,王西彬等,基于人工神经网络的铣削加工变形预测模型[J],兵工学报,2010,31(8):1130-1133
    [72] MOODY J, DARKEN C, Fast learning in networks of locally tuned processing units [J],Neural Computation,1989,1(1):281-294.
    [73] Wang.T. Y, Chen. L. H, Mean shifts detection and classification inmultivariate process: Aneural-fuzzy approach [J], Journal of Intelligent Manufacturing,2002,13(3),211–221
    [74] Zorriassatine.F, Tannock.J.D.T, Brien.C.O, Using novelty detection toidentify abnormalitiescaused by mean shifts in bivariate processes [J], Computers and Industrial Engineering,2003,44(3),385–408.
    [75]蒋敏兰,汪晓东,基于BBSRIA的测量系统动态精度损失分解与溯源[J].农业机械学报,2008,39(10),183–186.
    [76] Abbas Khosravi, Saeid Nahavandi, Doug Creighton, A prediction interval-based approachto determine optimal structures of neural network metamodels[J], Expert Systems withApplications,2010,37(3):2377-2387
    [77]刘纯国,隋振,李明哲,板类件多点闭环成形的模糊控制方法[J],塑性工程学报,2003,10,(5):2-4
    [78]侯世旺,同淑荣,基于模糊数的不确定质量控制图及选型[J],计算机集成制造系统,2012,18(2):415-421
    [79]曹衍龙,杨将新,吴昭同等,基于模糊质量损失的公差稳健设计方法的研究[J],浙江大学学报,2004,38(1):1-4
    [80]杨兆军,李雪,韩愈等,微细钻孔的模糊神经网络在线监测[J],吉林大学学报,2007,37(6):1336-1340
    [81]陈溟,张为锋,张雅清,现代数学建模方法研究[M],吉林大学出版社,长春市,2011
    [82] VAGIN V N, KLIMOV E E, LEBEDEVA J F,On a formal approach to modelingmechanical assembly arrangement in CAD/CAM[J],Computers and Artifical Intelligence,1984,3(3):273-278
    [83]谢龙,付宜利,马玉林,考虑工具操作空间的装配序列生成方法[J],机械工程学报,2005,41(10):215-220
    [84] CHO D Y,CHO H S, Inference on robotic assembly precedence constraints using a partcontact level graph[J].Robotic,1993,11(2):173-183
    [85]于嘉鹏,王成恩,张闻雷,复杂产品装配关系矩阵自动生成方法[J],计算机集成制造系统,2010,16(2):249-255
    [86] DINIG, SANTOCHI.M, Automated sequencing and subassembly detection in assemblyplanning [J],CIRP Annals-Manufacturing Technology,1992,41(1):1-4.
    [87] HUANG Y M,HUANG C T, Disassembly matrix for disassembly processes of products[J],International Journal of Production Research,2002,40(2):255-273
    [88] YU J C, LI Y M, Structure representation for concurrent analysis of product assembly anddisassembly [J], Expert Systems with Applications,2006,31(4):705-714
    [89]杨培林,陈晓南,庞宣明,装配体中的联接关系及子装配生成方法的研究[J],西安交通大学学报,2004,38(11):1136-1139
    [90]舒启林,郝永平,王德俊,集成化的装配顺序自动生成算法[J],东北大学学报,2002,23(7):652-655
    [91] SUDARSAN R, A model for capturing product assembly in formation [J], Journal of Com-puting and Informati on Sciencein Engineering,2006,3(6):11-22.
    [92] ZHA.X.F, Analysis and evaluation for STEP-based electromechanical assemblies [J],Transactions of the ASME,2006,9(6):276-288.
    [93]王成恩,于宏,张闻雷等,面向对象的航空发动机装配模型[J],计算机集成制造系统,2010,16(5):942-948
    [94]王波,唐晓青,耿如军,机械产品装配关系建模[J],北京航空航天大学学报,2010,36(1):71-76
    [95]李清、陈禹六著,企业与信息系统建模与分析[M],北京:高等教育出版社,2007
    [96]吴哲辉著,Petri网导论[M],北京:机械工业出版社,2006
    [97]赵福民,王治森,高锷等,Agent技术在智能制造系统中的应用研究[J],机械工程学报,2002,38(7):140-144
    [98]高世一,赵明扬,邹媛媛等,基于多智能体的制造系统生产控制建模研究[J],计算集成制造系统,2007,13(6):1066-1069
    [99]刘维来,刘志刚,张平等,基于AGENT的G网及其在柔性装配系统建模中的应用[J],系统仿真学报,2006,18(2):282-285
    [100] LM Liao, CJ Huang, JH Huang, Applying multi-agent approach to mixed-model assemblyline balancing[C]//IEEE6th International Conference on Management of Innovation andTechnology,2012:684-688.
    [101] Santa-Eulalia, Luis Antonio, Agent-based simulations for advanced supply chain planningand scheduling: The FAMASS methodological framework for requirements analysis [J]International Journal of Computer Integrated Manufacturing,2012,25(10):963-980,
    [102]蔡自兴,徐光祐,人工智能及其应用[M],第四版,北京:清华大学出版社,2010
    [103] Andries. P. Engelbrecht著,谭营等译《计算智能导论》[M],第2版,北京:清华大学出版社,2010
    [104] Andries. P. Engelbrecht著,谭营等译《计算群体智能基础》[M],北京:清华大学出版社,2009
    [105]周雅兰,现代智能优化方法研究与应用[D],中山大学,2008
    [106]钟一文,智能优化方法及其应用研究[D],浙江大学,2005
    [107]胡宝清,模糊理论基础[M],武汉:武汉大学出版社,2010
    [108]王佩,张定华,陈冰等,基于模糊综合评价与灰色关联分析法的多工艺方案评价[J],航空动力学报,2012,27(9):2075-2085
    [109]付强,赵小勇,投影寻踪模型原理及其应用[M],北京:科学出版社,2006
    [110]阳富强,吴超,李孜军,硫化矿石自燃倾向性综合判定的物元模型及其应用[J],中南大学学报,2011,42(11):3459-3464
    [111]李正军,现场总线及其应用技术[M],北京:机械工业出版社,2005
    [112] Kojima.M, Ikeda.T, Oshima, et al, Fieldbus and intelligent devices for oil production plants
    [C]//International Conference on off shore Mechanics and Arctic Engineering,1997,1:333—339
    [113]杨育红,LON网络控制技术及应用[M],西安:西安电子科技大学出版社,1999
    [114]方晓柯,现场总线网络技术的研究[D],东北大学,2005
    [115]阮晓青,周义仓主编,数学建模引论[M],北京:高等教育出版社,2005
    [116] D LIU and P JIANG, The complexity analysis of a machining error propgation network andits application[J],IEMECHE.2009.223(1):623-639
    [117] Jian Liu, Jionghua Jin, Jianjun Shi, State Space Modeling for3-D Variation Propagation inRigid-Body Multistage Assembly Processes[J], TRANSACTIONS ON AUTOMATIONSCIENCE AND ENGINEERING,2010,7(2):274-290
    [118]沈梅,并行环境下产品概念设计技术、装配建模技术研究[D],西北工业大学,2000
    [119]冯毅雄,谭建荣,伊国栋等,基于符号的装配建模方法研究[J],计算机辅助设计与图形学报,2003,15(6):673-678
    [120]张开富,李原,邵毅等,一种集成装配过程信息的装配建模方法[J],西北工业大学学报,2005,23(2):222-226
    [121]侯伟伟,刘检华,宁汝新等,基于层次链的产品装配过程建模方法[J],计算机集成制造系统,2009,15(8):1522-1527
    [122]伊国栋,谭建荣,张树有等,基于配合面偶的装配约束建模[J],浙江大学学报,2006,40(6):921-926
    [123] Young-Hyun Han, Sebti Foufou, Shaw C.Feng, et al, A model for capturing productassembly information [J]. Journal of Computing andInformation Science in Engineering,2006,6(1):11-21.
    [124] Yi Zhang, Zongbin Li, Liping Zhao, Automatic Generation Method of AssemblyTolerancein Large-scale Assembly Design[C]//2009World Congress on Computer Scienceand Information Engineering,2009:840-845
    [125]方水良,杨维学,李金华,自下而上产品设计中的自适应装配建模[J],计算机集成制造系统,2008,14(11):2150-2154
    [126] C.-G.Yin, Y.-S.Ma, Parametric feature constraint modeling and mapping in productdevelopment[J], Advanced Engineering Informatics, August2012,26(3):539-552
    [127]张书亭,自顶向下协同产品设计框架和方法研究[D],浙江大学2009
    [128] LI Gui-dong, ZHOU Lai-shui, AN Lu-ling, et al.An A system for supporting rapid assemblymodeling of mechanical products via components with typical assembly features[J],International Journal of Advanced Manufacturing Technology,2010,46(6-8):785-800
    [129] Huang W, Lin J, Kong Z,et al, Stream-of-variation (SOVA) Modeling Ⅱ: a Generic3DVariation Model for Rigid Body Assembly in Multi Station Assembly Processes [J]. ASMETransactions,Journal of Manufacturing Science and Engineering,2007,129(4):832-842.
    [130] Xie Kang, Wells Lee, Camelio Jaime A, et al, Variation Propagation Analysis on CompliantAssemblies Considering Contact Interaction [J],ASME Transactions,Journal of Manufactu-ring Science and Engineering,2007,129(1):934-942.
    [131]胡洁,熊光楞,基于变动几何约束网络的公差设计研究[J],机械工程学报,2003,39(5):20-26。
    [132] Christopher C Yang, V N Achutha Naikan,Optimum design of component tolerances ofassemblies using constraint networks [J], Int J Production Economics (S0925-5273),2003,84(2):149-163.
    [133] Prabhaharan G, Asokan P, Rajendran S, Sensitivity-based conceptual design and toleranceallocation using the continuous ants colony algorithm (CACO)[J], International Journal ofAdvanced Manufacturing Technology,2005,25(5-6):516–526
    [134] Hsieh, Kun-Lin, The study of cost-tolerance model by incorporating process capabilityindex into product lifecycle cost [J], International Journal of Advanced ManufacturingTechnology,2006,28(5-6):638-642.
    [135]肖人彬,邹洪富,陶振武,公差设计多目标模型及其粒子群优化算法研究[J],计算机集成制造系统,2006,12(7):976-980。
    [136]肖人彬,陶振武,邹洪富,基于混合群集智能算法的并行公差优化设计[J],计算机集成制造系统,2007,13(4):668-674。
    [137]彭和平,蒋向前,徐振高等,基于多重相关特征质量损失函数的公差优化设计[J],中国机械工程,2008,19(5):590-593。
    [138]匡兵,黄美发,钟艳如,尺寸公差与形位公差混合优化分配[J],计算机集成制造系统,2008,14(2):398-402。
    [139] Siva Kumar M, Kannan SM, Jayabalan V, A new algorithm for optimum toleranceallocation of complex assemblies with alternative processes selection. International Journalof Advanced Manufacturing Technology,2009,40(7-8):819-836
    [140]郑丞,金隼,来新民等,基于非合作博弈的公差分配优化[J],机械工程学报,2009,45(10):159-165。
    [141] Fangcai Wu a, Jean-Yves Dantan b, Alain Etienne b,etal, Improved algorithm for toleranceallocation based on Monte Carlo simulation and discrete optimization[J], Computers&Industrial Engineering,2009,56(4):1402–1413
    [142]曹衍龙,面向制造环境的公差稳健设计方法与技术的研究[D].浙江大学,2003
    [143] Heun-Sik Jeung, Hoo-Gon Choi, Particle swarm optimization in multi-stage operations foroperation sequence and DT allocation[J], Computers and Industrial Engineering,2012,62(2):442-450
    [144] Lin.Zone-Ching,Chang. Dar-Yuan.Cost-tolerance analysis model based on a neuralnetworks method[J], International Journal of Production Research,2002,40(6):1429-1452.
    [145]赵罡,王超,于红亮,基于神经网络和遗传算法的公差优化设计[J],北京航空航天大学学报,2010,36(5):518-523
    [146] Margarita Reyes-Sierra, Coello Coello Carlos A, Multi-Objective Particle SwarmOptimizers A Survey of the State-of-the-Art [J], International Journal of ComputationalIntelligence Research.2006,2(3):287–308
    [147]张晓东,王茜,多目标服务工作流混合粒子群调度算法[J],东南大学学报,2010,40(3):491-495
    [148]张干清,龚宪生,王欢欢等,基于可靠灰色粒子群算法的盾构机行星减速器轮系的多目标优化设计[J],机械工程学报,2010,46(23):135-145
    [149] E.Lorenz, Deterministic non-periodic flows[J].J.Atmosphere Science,1963,20:130-141.
    [150]刘朝,祁荣宾,钱锋,融合交叉变异和混沌的新型混合粒子群算法[J],化工学报,2010,61(11):2861-2867
    [151] R.M.May, Simple mathematical models with very complicated dynamics[J]. Nature,1976,261:459-467.
    [152] Chen G M, Huang X B, Jia J Y, et al. Natural exponential inertia weight strategy in particleswarm optimization[C]//Proc of the6th World Congress on Intelligent Control andAutomation. Dalian,2006:3672-3675
    [153] Praveen K T, Sanghamitra B, Sankar K P, Multi-objective particle swarm optimization withtime variant inertia and acceleration coefficients[J]. Information Sciences,2007,177(22):5033~5049.
    [154]陈民铀,张聪誉,罗辞勇,自适应进化多目标粒子群优化算法[J],控制与决策,2009,24(12):1851-1855
    [155] PARKER R G, AGASHE V, VIJAYAKAR S M. Dynamic response of a planetary gearsystem using a finite element contact mechanics model[J]. Transactions of the ASMEJournal of Mechanical Design,2000,122:304-310.
    [156]刘佳,李丹,高立群,多目标无功优化的向量评价自适应粒子群算法[J],中国电机工程学报,2008,28(31):22-28
    [157] Coello C, Pultdo G T, Lechuga M S. Handing Multiple objectives with particle swarmoptimization[J].IEEE Trans on Evolutionary Computation.2004.8(3):256-279
    [158] Sierra M R, Coello C A C, Improving PSO-based multi-objective optimization usingcrowding mutation and ε-dominance[C]//Third Int Conf on Evolutionary Multi-criterionOptimization. Guanajuato,2005:505-519.
    [159]陶新民,刘福荣,刘玉等,定向多尺度变异克隆选择优化算法[J],控制与决策,2011,26(2):175-181
    [160] Tripathi P K, Bandyopadhyay S, Pal S K, Multi-objective particle swarm optimization withtime variant inertia and acceleration coefficients[J], INTERNATIONAL SCIENCES,2007,177:5033–5049
    [161] Deb k, Pratap A, Agarwal S.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Trans on Evolutionary Computation,2002,6(2):182-197
    [162]刘丽琴,张学良,谢黎明等,基于动态聚集距离的多目标粒子群优化算法及其应用[J],农业机械学报,2010,41(3):189-194
    [163]徐鸣,沈希,马龙华等,一种多目标粒子群改进算法的研究[J],控制与决策,2009,24(11):1713-1718
    [164]李中凯,谭建荣,冯毅雄等,基于拥挤距离排序的多目标粒子群优化算法及其应用[J],计算机集成制造系统,2008,14(7):1329-1336
    [165]施展,陈庆伟,基于QPSO和拥挤距离排序的多目标量子粒子群优化算法[J],控制与决策,2011,26(4):540-547
    [166] C. A. Coello Coello and M. S. Lechuga, Mopso: A proposal for multiple objective particleswarm optimization[C].//In IEEE Proceedings,World Congress on ComputationalInfelligence,2002:1051-1056.
    [167] J.E.Fieldsend, S.Singh, A multi-objective algorithm based upon particle swarmoptimisation, an efficient data structure and turbulence[C]//In The2002U.K. Workshop onComputotionol Intelligence, U.K,2002:34-44.
    [168] Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particleswarm optimization (MOPSO)[C]//IEEE2003Swarm Intelligence Symposium. USA:IEEE,2003:26-33.
    [169]郑大钟,赵千川,离散事件动态系统[M],北京:清华大学出版社,2001
    [170] Peng Chen, Ping Jun Xia, Yue Dong Lang,et al,Virtual assembly operation modeling basedon colored petri net[J], Key Engineering Materials,2010,431-432:237-240
    [171] Shaukat Ali Shah, Erik L.J. Bohez, Roongrat Pisuchpen,New modeling and performanceevaluation of tool sharing control in FMS using colored Petri nets[J], Assembly Automation,2011,31(2):137-152
    [172] Florent.Peres, Bernard.Berthomieua,Fran ois.Vernadat,On the composition of time Petrinets[J], Discrete Event Dynamic Systems: Theory and Applications,2011,21(3):395-424
    [173] Yongquan Zhang, Kelin Xu, Xudong Hong,Modeling and optimization of hull buildingprocess based on P-TPN[C]//the2009International Joint Conference on ComputationalSciences and Optimization,2009,2:989-992
    [174] Xiuli Meng,Modeling of reconfigurable manufacturing systems based on colored timedobject-oriented Petri nets[J], Journal of Manufacturing Systems,2010,29(2-3):81-90
    [175] Huiran Liu, Zhibin Jiang, Richard Y.K. Fung,Performance modeling, real-time dispatchingand simulation of wafer fabrication systems using timed extended object-oriented Petrinets[J], Computers&Industrial Engineering,2009,56(1):121-137
    [176]陈友玲,张永阳,孙亚南等,基于Petri网的敏捷化生产调度建模方法[J],计算机集成制造系统,2010,16(3):326-329,351
    [177]张杰,李原,张开富等,基于关系对象Petri网的飞机装配系统模型快速构建方法[J],计算机集成制造系统,2010,16(6):598-602
    [178] LU M S, TSENG L K, An integrated object-oriented approach for design and analysis of anagile manufacturing control system[J], INTERNATIONAL JOURNAL OF ADVANCEDMANUFACTURING TECHNOLOG,2009,48(9-12):1107-1122
    [179]吴立辉,张洁,基于多代理的知识有色赋时Petri网的晶圆制造系统建模方法[J],计算机集成制造系统,2009,15(10):1921-1929
    [180] E.W.T. Ngai, D.C.K. Chau, J.K.L. Poon,etal, Implementing an RFID-based manufacturingprocess management system: Lessons learned and success factors[J],Journal of Engineeringand Technology Management,2012,29(1):112-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700