低品位热能有机物朗肯动力循环机理研究和实验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机物朗肯循环(Organic Rankine Cycle, ORC)系统可回收利用如工业废热、太阳能热、地热、生物质热等各种类型的中低品位热能用于发电,同时具有效率高、结构简单、环境友好等优点,因此能在节能减排中起到重要的作用。本文对低品位热能利用有机物朗肯循环系统及其关键设备进行了理论分析,并且研制了1kW低品位热能利用有机物朗肯循环实验装置,最大输出电功率达到1.1kW。本文的主要研究内容如下:
     1完成了有机物朗肯循环系统热力模型的分析和计算。给出了用于有机物朗肯循环的有机物工质的干湿性等各种性质,比较了有机物工质与水工质在回收低品位热能上的区别,认为有机物工质具有工质干性、工作压力合适、焓降低等优点。其次,研究了不同工作参数下有机物朗肯循环的热力性能,认为过热温度对提高有机物朗肯循环第一定律效率影响不大,而蒸发压力的影响较大。然后,本文对比研究了再热、回热以及抽气回热对有机物朗肯循环的影响,认为再热可以提高低品位热能利用有机物朗肯循环系统净输出比功。
     2分析研究了低品位热能利用ORC系统不可逆损失最大的设备—蒸发器的稳态与动态特性。蒸发器包括预热、沸腾及过热三个过程,本文以单级逆流型蒸发器为例,采用研究蒸发器的温度分布、熵以及火用效率的方法,给出了蒸发器的性能分析。结果认为,蒸发器不可逆损失包括内部不可逆损失和外部不可逆损失两部分。蒸发压力的增加会使得内部不可逆损失减小,而外部不可逆损失增加,从而使得蒸发器的熵增随蒸发压力的变化存在最小值,而理论分析指出此熵增最小值同时也是蒸发器火用效率的最大值。对蒸发器的动态研究,首先建立了蒸发器的偏微分方程组,对此偏微分方程空间方向采用差分人工离散,而时间方向利用MATLAB Simulink的S函数进行求解,最终得到了蒸发器动态变化规律。对涡旋式膨胀机进行了理论研究与分析。根据涡旋式膨胀机的理论分析和几何建模,给出了该种膨胀机膨胀比的计算方法,各状态参数在膨胀过程中的变化情况,以及各种不可逆损失对膨胀机的影响。
     3提出以热回收效率而不是循环效率来评价低品位热能利用有机物朗肯循环系统的性能。由于热源流体与有机物工质存在换热不充分的现象,热源流体在离开系统排入环境时仍有一定做功能力,因此采用热回收效率能更准确反应低品位热能利用ORC系统的性能。本文给出了理想的低品位热能利用动力循环系统所能达到的最大热回收效率,同时,还证明了热回收效率分析与熵增分析具有某种意义上的等价性。然后,本文给出了低品位热能回收ORC系统的热回收效率随工作参数的变化情况,发现热回收效率随着蒸发压力的变化存在最大值,同时在此蒸发压力下熵增最小。然后,本文以有机物朗肯循环回收熔融碳酸盐燃料电池—燃气轮机尾气排热为例说明了ORC系统在回收低品位热能方面的作用,发现ORC系统能提高复合循环系统效率3.8个百分点。
     4在国内首次研制成功了1 kW级低品位热能利用有机物朗肯循环发电系统实验装置,并对有机物朗肯循环系统进行了实验研究。系统以异丁烷为工质,以80℃-100℃的热水模拟为热源,采用涡旋式膨胀机,发电功率达到1.1kW,最大第一定律效率达到2.9%。实验装置的建立为以后大功率有机物朗肯循环的规模化利用奠定了良好的基础。
     5分析了蒸发器和膨胀机的实验数据结果。蒸发器的实验数据结果分析表明,蒸发器的火用效率受蒸发压力影响较大。而膨胀机的实验结果表明,膨胀机的转速受其入口体积流量影响较大,实验中膨胀机最高转速4828rpm,最高效率0.501。由于实验设备的限制,实验系统的效率低于理论结果,但是系统的实验结果与理论分析其变化趋势基本相符。
     6对整个系统的实验数据分析发现,蒸发压力和工质流量存在一个最佳值,使得系统输出功率最大,其原因是由于在较高的蒸发压力或工质流量下,膨胀机入口存在气液两相的现象。不同热源温度下的测试则发现最佳蒸发压力或工质流量随热源温度的增加而增加。第一定律效率也发现了同样的最大值现象,其原因与输出功率最大值的原因类似。
Organic Rankine Cycle (ORC) is an effective technique to generate power from low and medium temperature heat source, including industrial waste heat, solar heat, geothermal and biomass etc. Advantages of ORC are high efficiency, simple system, environment friendly, and so on. This work presents the theoretical analysis of Organic Rankine Cycle, as well as experiment study. The experiment system is the first 1kW experiment ORC project in China, and the maximum power of this system achieves 1.1kW. Detail of this work is as follows:
     1 Performance of simple Organic Rankine Cycle was presented in this work. Properties of working fluid, including isentropic properties, were firstly presented and analyzed. The difference between organic fluids and water was showed by a sample calculation, the result shows that the advantages of organic fluids is dry expansion process, proper system pressure, low enthalpy drop. Then, performance of ORC under different working parameters was showed, one of the most important result is that first law efficiency is a weak function of superheat temperature. This work also studied the effect of reheat ORC, regenerative ORC, and the result proves that ORC with reheat can improve the output power of waste heat recovery ORC system.
     2 Evaporator, which generates the highest irreversibility in ORC system, is analyzed by both static and dynamic model. The process of an evaporator includes preheating, boiling and superheating. A single stage counter flow evaporator was studied by its temperature distribution, entropy generation and exergy efficiency. The result shows that irreversibility of evaporator includes both internal and external irreversibility. The increasing of evaporating pressure decreases the internal entropy generation, but increases the external entropy generation. So a minimum entropy generation exists, which is also the maximum exergy efficiency for evaporator. Partial differential equations were established to describe the dynamic model of evaporator. The equations were dispersed in the space direction manually, and solved by S function of Matlab simulink. Theoretical analysis of scroll expander was presented according to geometrical study. The expansion ratio was firstly calculated. And then the change of status parameters during the expanding process was studied. At last their irreversible loss of expander is presented.
     3 Heat recovery efficiency describes the performance of waste heat recovery ORC system better than cycle efficiency. The reason is that waste heat flow can not transfer its all exergy to working fluid, so it still has some exergy when leaving evaporator. This process result in external loss, and heat recover efficiency can describe both external loss and internal loss exactly. Ideal heat recovery efficiency for a waste heat recovery system was presented, and it was also proved the equilibrium between maximum heat recovery efficiency and minimum entropy generation rate. The effect of working conditions on heat recovery efficiency was presented, and one of the results shows that heat recovery has a maximum value when changing evaporating pressure. At last, a triple stage hybrid system using MCFC-GT-ORC was treated as an example of waste heat recovery system, and the result shows that an increment of 3.8% can be received by combing ORC system.
     4 Firstly established a 1kW waste heat recovery ORC system in China. Isobutane was selected as the working fluid of the experimental system, hot water as heat source, and scroll expander as expander. The experimental system was successfully operated, a maximum power of 1.1kW and 2.9% first law efficiency has been received.
     5 The experiment results were analyzed by studying the performance of evaporator, expander. The testing results of evaporator show that evaporating pressure effects exergy efficiency greatly. The testing results of expander prove that expander’s inlet volume flowrate effects rotating speed of expander greatly. Maximum rotating speed during the experiment is 4828 rpm, and maximum efficiency is 0.501.
     6 The testing results of whole system show that expander output power has a maximum value when changing evaporating of working fluid flowrate. The reason is the two phase flow entering expander when evaporating pressure and flowrate is high. Detail test proved that the optimum evaporating pressure or fluid flowrate increases with waste heat flow temperature. The maximum cycle efficiency of the testing system is 2.9%. Cycle efficiency also has maximum value, the reason is similar. Maximum heat recovery efficiency is 0.9%, and it also has a maximum value when changing evaporating pressure or working fluid flow rate.
引文
[1] Barber R. E. Rankine-cycle systems for waste heat recovery[J]. Chemical Engineering (New York), 1974, 81(25): 101-104, 106.
    [2] Casci C., Angelino G., Gaia M., Ferrari P., Giglioli G., Macchi E. Experimental results and economics of a small(40kW) Organic Rankine Cycle engine[J]. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1980, 2(1008-1014.
    [3] Doyle E. F., Paquin M. L. Application potential for Organic Rankine bottoming cycles for heavy duty trucks[J]. Journal of Geophysical Research, 1979, 4(2020-2023.
    [4] Bitterlich W., Kestner D. Introduction into the ORC-technology[J]. Brennstoff-Waerme-Kraft, 1984, 36(7-8): 332-335.
    [5] Bitterlich W., Kestner D., Patil M. Thermodynamic calculations and optimization of an Organic Rankine Cycle used in solar power generation[C]. Science et Technique du Froid, 1981: 59-70.
    [6] Samuel A. A., Shet U. S. P., Gupta M. C. Solar thermal power plant thermodynamic analysis[J]. Desalination, 1980, 3(1279-1292.
    [7]林汝谋,金红光,蔡睿贤.新一代能源动力系统的研究方向与进展[J].动力工程, 2003, 23(3): 2370-2376.
    [8]蔡睿贤,金红光,林汝谋.能源动力系统应与环境相协调[J].创新科技, 2008, 3): 54-55.
    [9] Wang S. K., Hung T.-C. Thermodynamic analysis of organic Rankine cycle using dry working fluids[C]. Proceedings of the American Power Conference, 1998: 631-635.
    [10] Angelino G., Colonna Di Paliano P. Multicomponent working fluids for organic Rankine cycles (ORCs)[J]. Energy, 1998, 23(6): 449-463.
    [11] Hung T.-C. Waste heat recovery of organic Rankine cycle using dry fluids[J]. Energy Conversion and Management, 2001, 42(5): 539-553.
    [12] Yamamoto T., Furuhata T., Arai N., Mori K. Design and testing of the Organic Rankine Cycle[J]. Energy, 2001, 26(3): 239-251.
    [13] Liu B.-T., Chien K.-H., Wang C.-C. Effect of working fluids on organic Rankine cycle for waste heat recovery[J]. Energy, 2004, 29(8): 1207-1217.
    [14]魏东红,陆震,鲁雪生,顾建明.废热源驱动的有机朗肯循环系统变工况性能分析[J].上海交通大学学报, 2006, 40(8): 1398-1402.
    [15]顾伟,翁一武,王艳杰.低温热能有机物发电系统热力分析[J].太阳能学报, 2008, 29(5): 608-612.
    [16] Peterson R. B., Wang H., Herron T. Performance of a small-scale regenerative Rankine power cycle employing a scroll expander[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222(3): 271-282.
    [17] Angelino G., di Paliano P. C. Organic rankine cycles (ORCs) for energy recovery from molten carbonate fuel cells[C]. Proceedings of the Intersociety Energy Conversion Engineering Conference, 2000: 1400-1409.
    [18] Legmann H. Recovery of industrial heat in the cement industry by means of the ORC process[C]. IEEE Cement Industry Technical Conference (Paper), 2002: 29-35.
    [19] Dersch J., Geyer M., Herrmann U., Jones S. A., Kelly B., Kistner R., Ortmanns W., Pitz-Paal R., Price H. Trough integration into power plants-a study on the performance and economy ofintegrated solar combined cycle systems[J]. Energy, 2004, 29(5-6): 947-959.
    [20] Chinese D., Meneghetti A., Nardin G. Diffused introduction of Organic Rankine Cycle for biomass-based power generation in an industrial district: A systems analysis[J]. International Journal of Energy Research, 2004, 28(11): 1003-1021.
    [21] Manolakos D., Papadakis G., Mohamed E. S., Kyritsis S., Bouzianas K. Design of an autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination[J]. Desalination, 2005, 183(1-3): 73-80.
    [22] Canada S., Brosseau D. A., Price H. Design and construction of the APS 1-MWE parabolic trough power plant[C]. International Solar Energy Conference, 2006: ASME, SOLAR ENERGY DIVISION.
    [23] Garcia-Rodriguez L., Delgado-Torres A. M. Solar-powered Rankine cycles for fresh water production[J]. Desalination, 2007, 212(1-3): 319-327.
    [24] Garcia-Rodriguez L., Blanco-Galvez J. Solar-heated Rankine cycles for water and electricity production: POWERSOL project[J]. Desalination, 2007, 212(1-3): 311-318.
    [25] Delgado-Torres A. M., Garcia-Rodriguez L., Romero-Ternero V. J. Preliminary design of a solar thermal-powered seawater reverse osmosis system[J]. Desalination, 2007, 216(1-3): 292-305.
    [26] Delgado-Torres A. M., Garcia-Rodriguez L. Preliminary assessment of solar Organic Rankine cycles for driving a desalination system[J]. Desalination, 2007, 216(1-3): 252-275.
    [27] Madhawa Hettiarachchi H. D., Golubovic M., Worek W. M., Ikegami Y. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources[J]. Energy, 2007, 32(9): 1698-1706.
    [28] Kohlenbach P., McEvoy S., Stein W., Burton A., Wong K., Lovegrove K., Burgess G., Joe W., Coventry J. Novel parabolic trough collectors driving a small-scale organic rankine cycle system[C]. Proceedings of the Energy Sustainability Conference 2007, 2007: 995-1004.
    [29] Borsukiewicz-Gozdur A., Nowak W. Maximising the working fluid flow as a way of increasing power output of geothermal power plant[J]. Applied Thermal Engineering, 2007, 27(11-12): 2074-2078.
    [30] Leibowitz H. M., Micak H. A. Design of a 2 MW Kalina cycle binary module for installation in Husavik, Iceland[J]. Transactions - Geothermal Resources Council, 1999, 23(75-80.
    [31] Drescher U. Niedertemperaturwandlung: Thermodynamik des Organic Rankine Cycle und des Kalina Cycle[J]. VDI Berichte, 2008, 2026): 179-187.
    [32] Zamfirescu C., Dincer I. Thermodynamic analysis of a novel ammonia-water trilateral Rankine cycle[J]. Thermochimica Acta, 2008, 477(1-2): 7-15.
    [33] Vijayaraghavan S., Goswami D. Y. Organic working fluids for a combined power and cooling cycle[C]. American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, 2003: 77-85.
    [34] Vijayaraghavan S., Goswami D. Y. Organic working fluids for a combined power and cooling cycle[J]. Journal of Energy Resources Technology, Transactions of the ASME, 2005, 127(2): 125-130.
    [35] Hung T. C., Shai, T.Y., Wang, S.K. A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667.
    [36] DiPippo R. Second law assessment of binary plants generating power from low-temperature geothermal fluids[J]. Geothermics, 2004, 33(5): 565-586.
    [37] Mago P. J., Srinivasan K. K., Chamra L. M., Somayaji C. An examination of exergy destruction in organic Rankine cycles[J]. International Journal of Energy Research, 2008, 32(10): 926-938.
    [38] Wei D., Lu X., Lu Z., Gu J. Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery[J]. Energy Conversion and Management, 2007, 48(4): 1113-1119.
    [39] Kosmadakis G., Manolakos D., Kyritsis S., Papadakis G. Economic assessment of a two-stage solar organic Rankine cycle for reverse osmosis desalination[J]. Renewable Energy, 2009, 34(6): 1579-1586.
    [40] Schuster A., Karellas S., Kakaras E., Spliethoff H. Energetic and economic investigation of Organic Rankine Cycle applications[J]. Applied Thermal Engineering, 2009, 29(8-9): 1809-1817.
    [41]肖立川,陈宏,黄冬良,陈辉.应用多工质朗肯循环提高火电厂效率[J].动力工程, 2006, 26(2): 273-277.
    [42] Mago P. J., Chamra L. M., Somayaji C. Performance analysis of different working fluids for use in organic Rankine cycles[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(3): 255-264.
    [43] Chen Y., Lundqvist P., Johansson A., Platell P. A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery[J]. Applied Thermal Engineering, 2006, 26(17-18): 2142-2147.
    [44] Maizza V., Maizza A. Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems[J]. Applied Thermal Engineering, 2001, 21(3): 381-390.
    [45] Yari M. Performance analysis of the different organic Rankine cycles (ORCs) using dry fluids[J]. International Journal of Exergy, 2009, 6(3): 323-342.
    [46]朱江,鹿院卫,马重芳,吴玉庭.低温地热有机朗肯循环(ORC)工质选择[J].可再生能源, 2009, 27(2): 76-79.
    [47]王晓东.太阳能低温朗肯循环系统适用工质的理论和实验研究.热能工程.天津:天津大学, 2008.
    [48]王辉涛,王华.低温太阳能热力发电有机朗肯循环工质的选择[J].动力工程, 2009, 29(3): 287-291.
    [49] Drescher U., Bruggemann D. Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants[J]. Applied Thermal Engineering, 2007, 27(1): 223-228.
    [50] Tchanche B. F., Papadakis G., Lambrinos G., Frangoudakis A. Fluid selection for a low-temperature solar organic Rankine cycle[J]. Applied Thermal Engineering, 2009, 29(11-12): 2468-2476.
    [51]郑浩,汤珂,金滔,王金波,徐立俊,项靖麒.有机朗肯循环工质研究进展[J].能源工程, 2008, 4): 5-11.
    [52] Andersen W. C., Bruno T. J. Rapid screening of fluids for chemical stability in organic rankine cycle applications[J]. Industrial and Engineering Chemistry Research, 2005, 44(15): 5560-5566.
    [53] Invernizzi C. Thermal stability evaluation of working fluids for rankine cycles: experimental equipment and calibration results[J]. Termotecnica Milano, 1990, 44(4): 69-76.
    [54] Gu W., Weng Y., Cao G. Testing and thermodynamic analysis of low-grade heat power generation system using Organic Rankine Cycle[C]. International Conference on PowerEngineering, 2007: 93-97.
    [55] Badr O., Probert D., O'Callaghan P. W. Selection of operating and optimisation of design parameters for multi-vane expanders[J]. Applied energy, 1986, 23(1): 1-46.
    [56] Badr O., Probert D., O'Callaghan P. W. Multi-vane expanders as prime movers in low-grade energy engines[J]. Proceedings of the Institution of Mechanical Engineers. Part A. Power and process engineering, 1986, 200(A2): 117-125.
    [57] Badr O., Probert S. D., O'Callaghan P. Performances of multi-vane expanders[J]. Applied energy, 1985, 20(3): 207-234.
    [58] Badr O., O'Callaghan P. W., Probert S. D. Multi-vane expanders: geometry and vane kinematics[J]. Applied energy, 1985, 19(3): 159-182.
    [59] Badr O., O'Callaghan P. W., Hussein M., Probert S. D. Multi-vane expanders as prime movers for low-grade energy Organic Rankine-Cycle engines[J]. Applied energy, 1984, 16(2): 129-146.
    [60] Saitoh T. S., Yamada N., Wakashima S. Study of solar Organic Rankine Cycle System using scroll expander[J]. Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2005, 71(703): 986-992.
    [61] Lemort V., Quoilin S., Cuevas C., Lebrun J. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle[J]. Applied Thermal Engineering, 2009, 29(14-15): 3094-3102.
    [62] Mathias J., Johnston J., Cao J., Priedeman D., Christensen R. Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of an Organic Rankine Cycle[J]. Journal of Energy Resources Technology, Transactions of the ASME, 2009, 131(1): 1-9.
    [63] Larjola J. Electricity from industrial waste heat using high-speed organic Rankine cycle (ORC)[J]. International Journal of Production Economics, 1995, 41(1-3): 227-227.
    [64]刘广彬,赵远扬,李连生,卜高选,束鹏程.低温余热回收用涡旋膨胀机性能模拟研究[J].西安交通大学学报, 2009, 43(7): 88-91.
    [65] Colonna P., Harinck J., Rebay S., Guardone A. Real-gas effects in organic Rankine cycle turbine nozzles[J]. Journal of Propulsion and Power, 2008, 24(2): 282-294.
    [66] Turunen-Saaresti T., Van Buijtenen J., Tang J., Larjola J. Experimental and numerical study of real-gas flow in a supersonic ORC turbine nozzle[C]. Proceedings of the ASME Turbo Expo, 2006: 1527-1533.
    [67] Colonna P., Rebay S. Numerical simulation of dense gas flows on unstructured grids with an implicit high resolution upwind Euler solver[J]. International Journal for Numerical Methods in Fluids, 2004, 46(7): 735-765.
    [68] Hoffren J., Talonpoika T., Larjola J., Siikonen T. Numerical simulation of real-gas flow in a supersonic turbine nozzle ring[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(2): 395-403.
    [69] Brown B. P., Argrow B. M. Application of Bethe-Zel'dovich-Thompson fluids in organic Rankine cycle engines[J]. Journal of Propulsion and Power, 2000, 16(6): 1118-1124.
    [70] Bronicki L. Y. Organic rankine cycles in geothermal power plants 25 years of ormat experience[C]. Transactions - Geothermal Resources Council, 2007: 499-502.
    [71]徐业鹏.能量转换与新能源[M].北京:冶金工业出版社, 1990.
    [72] Goldstick R. J.余热回收手册[M].长沙:中南工业大学出版社, 1987.
    [73] Baatz E., Heidt G. First waste heat power generating plant using the Organic Rankine CycleProcess for utilizing residual clinker cooler exhaust air[J]. ZKG International, 2000, 53(8): 425-436.
    [74] Wang J., Dai Y., Gao L. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry[J]. Applied Energy, 2009, 86(6): 941-948.
    [75]张红.低沸点工质的有机朗肯循环纯低温余热发电技术[J].水泥, 2006, 8): 13-15.
    [76]王江峰,戴义平,陈江.中低温余热发电技术及其在水泥生产中的应用[J].节能, 2007, 2): 32-34.
    [77] Nowak W., Borsukiewicz-Gozdur A., Stachel A. A. Using the low-temperature Clausius-Rankine cycle to cool technical equipment[J]. Applied Energy, 2008, 85(7): 582-588.
    [78]柯文.基于有机朗肯循环的铝电解槽烟气余热发电技术研究.中南大学, 2009.
    [79]赵巍,杜建一,徐建中.微型燃气轮机与有机朗肯循环装置组成联合循环的设计与分析[J].中国电机工程学报, 2009, 29(29): 19-24.
    [80]吴仲华.能的梯级利用与燃气轮机总能系统[M].北京:机械出版社, 1988.
    [81]林汝谋,金红光,蔡睿贤.燃气轮机总能系统及其能的梯级利用原理[J].燃气轮机技术, 2008, 21(1): 1-12.
    [82] Akkaya A. V., Sahin B. A study on performance of solid oxide fuel cell-organic Rankine cycle combined system[J]. International Journal of Energy Research, 2009, 33(6): 553-564.
    [83] Chacartegui R., Sanchez D., Munoz J. M., Sanchez T. Alternative ORC bottoming cycles for combined cycle power plants[J]. Applied Energy, 2009, 86(10): 2162-2170.
    [84] Invernizzi C., Iora P., Silva P. Bottoming micro-Rankine cycles for micro-gas turbines[J]. Applied Thermal Engineering, 2007, 27(1): 100-110.
    [85] Hung T. C. Triple cycle: A conceptual arrangement of multiple cycle toward optimal energy conversion[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(2): 429-436.
    [86] Mago P. J., Chamra L. M. Exergy analysis of a combined engine-organic Rankine cycle configuration[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2008, 222(8): 761-770.
    [87] Srinivasan K. K., Mago P. J., Zdaniuk G. J., Chamra L. M., Midkiff K. C. Improving the efficiency of the advanced injection low pilot ignited natural gas engine using organic rankine cycles[J]. Journal of Energy Resources Technology, Transactions of the ASME, 2008, 130(2): 0222011-0222017.
    [88]王恒,,黄文春.双工质循环机组在地热电厂的运用[J].四川电力技术, 1995, 4): 20-24.
    [89]张鹤飞.高等学校教材太阳能热利用原理与计算机模拟[M].西安:西北工业大学出版社, 1990.
    [90] Price H., Hassani V. Modular trough power plant cycle and systems analysis[R]. National Renewable Energy Laboratory, 2002.
    [91] Mills D. Advances in solar thermal electricity technology[J]. Solar Energy, 2004, 76(1-3): 19-31.
    [92] McMahan A., Klein S. A., Reindl D. T. A finite-time thermodynamic framework for optimizing solar-thermal power plants[J]. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129(4): 355-362.
    [93] Swift A. H. P., Reid R. L., Sewell M. P., Boegli W. J. Operational results for a 3355m2 solar pond in El Paso, Texas[C]. Solar Engineering, 1987: 287-293.
    [94] Ozakcay L., Gurgenci H. Feasibility of solar pond power generation in outback Queensland-Australia[C], 1986: 1510-1514.
    [95] Kamogawa H. OTEC research in Japan[J]. Energy, 1980, 5(6): 481-492.
    [96]赵力,王晓东,张启.非共沸工质用于太阳能低温朗肯循环的理论研究[J].太阳能学报, 2009, 30(6): 738-743.
    [97] Obernberger I., Biedermann F., Thonhofer P., Gaia M., Bini R. New small scale Organic Rankine Cycle (ORC) technology (200 kw electrical) for decentralized biomass power and heat coupling facility[J]. VDI Berichte, 2008, 2044): 133-149.
    [98] Manolakos D., Kosmadakis G., Kyritsis S., Papadakis G. On site experimental evaluation of a low-temperature solar organic Rankine cycle system for RO desalination[J]. Solar Energy, 2009, 83(5): 646-656.
    [99] Kalina A. Combined cycle and waste-heat power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation[J]. ASME paper: 83-JPGC-GT-3, 1983.
    [100]高林,金红光,郑丹星,刘泽龙,林汝谋,蔡睿贤.混合工质中低温热力循环特性研究[J].工程热物理学报, 2001, 22(6): 677-679.
    [101] Karellas S., Schuster A. Supercritical fluid parameters in organic rankine cycle applications[J]. International Journal of Thermodynamics, 2008, 11(3): 101-108.
    [102] Zhang X-R, et al. Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy (2007), doi:10.1016/j.renene.2007.01.003[J].
    [103] Zhang X.R., Yamaguchia H. , Fujima K., Enomoto M., N. S. Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide[J]. Energy, 2007, 32(591-599.
    [104] Boretz J. E. Supercritical Organic Rankine engines(score)[C]. Proceedings of the Intersociety Energy Conversion Engineering Conference, 1986: 2050-2054.
    [105]王建财,陈春天,张颖,杨嘉祥.低温余热发电模型研究[J].哈尔滨理工大学学报, 2003, 8(3): 68-70.
    [106]王建财.低温余热发电模型的研究.高电压与绝缘技术.哈尔滨:哈尔滨理工大学, 2003.
    [107]金红光.热力循环及总能系统学科发展战略[J].中国科学院院刊, 2006, 21(4): 313-319.
    [108] Kaushik S. C., Singh M., Dubey A. Thermodynamic modelling of single/dual organic fluid Rankine cycle cooling systems. A comparative studies[J]. International Journal of Ambient Energy, 1994, 15(1): 37-50.
    [109] Goswami D. Y. Solar thermal power—statur of technologies and opportunities for research[C], 1995: 57-60.
    [110] Tamm G., Goswami Y., Lu S., A. H. Novel combined power and cooling thermodynamic cycle for low temperature heat sources, part I: theoretical Investigation[J]. Journal of Solar Energy Engineering, 2003, 125(2): 218-222.
    [111]郑丹星,陈斌,齐云,金红光.新型氨吸收式动力/制冷复合循环的热力学分析[J].工程热物理学报, 2002, 23(5): 539-542.
    [112]王宇,韩巍,金红光,郑丹星.新型中低温混合工质联合循环[J].中国电机工程学报, 2003, 23(11): 200-204.
    [113]刘猛,张娜,蔡睿贤.氨吸收式串联型制冷和动力复合循环及敏感性分析[J].中国电机工程学报, 2006, 26(1): 1-7.
    [114] Dai Y., Wang J., Gao L. Parametric optimization and comparative study of Organic Rankine cycle (ORC) for low grade waste heat recovery[J]. Energy Conversion and Management, 2009, 50(3): 576-582.
    [115] Dai Y. P., Wang J. F., Gao L. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle[J]. Applied Thermal Engineering, 2009, 29(10): 1983-1990.
    [116]郑彬,翁一武,顾伟.低温热源喷射式发电制冷复合系统特性分析[J].中国电机工程学报, 2008, 28(29): 16-21.
    [117]黄允东,郁永章.利用涡旋机械的朗肯—朗肯循环制冷系统制冷剂的优选[J].流体机械, 1997, 25(1): 52-55,38.
    [118]黄允东,王存智.利用涡旋机械的朗肯—朗肯循环制冷系统的理论分析和研究[J].石油化工设备技术, 1997, 18(6): 1-4.
    [119]沈维道,蒋智敏,童钧耕.工程热力学[M].北京:高等教育出版社, 2000.
    [120] Gawlik K., Hassani V. Advanced binary cycles: Optimum working fluids[C]. Transactions - Geothermal Resources Council, 1997: 497-502.
    [121] Gu W., Weng Y., Wang Y., Zheng B. Theoretical and experimental investigation of an Organic Rankine Cycle for waste heat recovery system[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2009, 223(5): 523-533.
    [122] McLinden M. O., Didion D. A. Quest for alternatives.[J]. ASHRAE Journal, 1987, 29(12): 32-42.
    [123] Mago P. J., Chamra L. M., Srinivasan K., Somayaji C. An examination of regenerative organic Rankine cycles using dry fluids[J]. Applied Thermal Engineering, 2008, 28(8-9): 998-1007.
    [124] Nag P. K., De S. Design and operation of a heat recovery steam generator with minimum irreversibility[J]. Applied Thermal Engineering, 1997, 17(4): 385-391.
    [125] Reddy B. V., Ramkiran G., Kumar K. A., Nag P. K. Second law analysis of a waste heat recovery steam generator[J]. International Journal of Heat and Mass Transfer, 2002, 45(9): 1807-1814.
    [126] Gu W., Weng Y. W. Second law analysis of evaporator for Organic Rankine Cycle system[C]. ES2008: Proceedings of the 2nd International Conference on Energy Sustainability, Vol 2, 2009.
    [127] Butcher C. J., Reddy B. V. Second law analysis of a waste heat recovery based power generation system[J]. International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2355-2363.
    [128] Mohamed H. A. Entropy generation in counter flow gas to gas heat exchangers[J]. Journal of Heat Transfer 2006, 128(1): 87-92.
    [129]杨世铭,陶文铨.传热学[M].北京:高等教育出版社, 1998.
    [130] McLinden M. O., Klein S. A., Lemmon E. W., Peskin A. P. G. Thermodynamic properties of refrigerants and refrigerants mixtures database (REFPROP) Gaithersburg: National Institute of Standard and Technology, 1998.
    [131] Bejan A. General criterion for rating heat exchanger performance[J]. International Journal of Heat and mass transfer, 1978, 21(5): 655-658.
    [132] Dittus F. W., Boelter L. M. K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1995, 12 (1): 3-22.
    [133] Dieter S., Jerry T. Flow boiling heat transfer in vertical tubes correlated by an asymptotic model[J]. Heat transfer engineering, 1992, 13(2): 43-69.
    [134] Lachi M., Elwakil N., Padet J. The time constant of double pipe and one pass shell-and-tube heat exchangers in the case of varying fluid flow rates[J]. International Journal of Heat andMass Transfer, 1997, 40(9): 2067-2079.
    [135] Correa D. J., Marchetti J. L. Dynamic simulation of shell and tube heat exchanger[J]. Heat Transfer Engineering, 1987, 8(1): 50-59.
    [136] Jia X., Tso C. P., Jolly P., Wong Y. W. Distributed steady and dynamic modelling of dry-expansion evaporators[J]. International Journal of Refrigeration, 1999, 22(2): 126-136.
    [137] Jia X., Tso C. P., Chia P. K., Jolly P. A distributed model for prediction of the transient response of an evaporator[J]. International Journal of Refrigeration, 1995, 18(5): 336-342.
    [138] Pettit N. B. O. L., Willatzen M., Ploug-Srensen L. A general dynamic simulation model for evaporators and condensers in refrigeration. Part II: Simulation and control of an evaporator[J]. International Journal of Refrigeration, 1998, 21(5): 404-414.
    [139] Willatzen M., Pettit N. B. O. L., Ploug-Srensen L. A general dynamic simulation model for evaporators and condensers in refrigeration. Part I: Moving-boundary formulation of two-phase flows with heat exchange[J]. International Journal of Refrigeration, 1998, 21(5): 398-403.
    [140]陈启梅,翁一武,翁史烈,朱新坚.燃料电池-燃气轮机混合发电系统性能研究[J].中国电机工程学报, 2006, 26(4): 31-35.
    [141] Mobarak A., Rafat N., Saad M. Turbine selection for a small-capacity, solar powered generator[C]. Proc. Int. Symp. Workshop on Solar Energy, 1978.
    [142] Suri R., Chandra S., Kreshinamorthy M. V., Srinivasamurthy S., Berndorfer K., Hopmann H., Wolf D. Development of small power-plants in rural areas in India[C]. Proc. ISES Congress, 1978: 1722-1727.
    [143] Merigoux J. M., Pocard P. Solar-powered units with screw expanders[C]. Proc. Int. Symp. Workshop on Solar Energy, 1978: 1293-1317.
    [144] Badr O., Naik S., O'Callaghan P. W., Probert S. D. Expansion machine for a low power-output steam Rankine-cycle engine[J]. Applied Energy, 1991, 39(2): 93-116.
    [145] Lorenz J., Fuestel J., Kraft M. New developments for future solar-power plants[C]. Proc. Int. Symp. Workshop on Solar Energy, 1978: 1318-1328.
    [146] Badr O., Naik S., O'Callaghan P. W., Probert S. D. Wankel engines as steam expanders: Design considerations[J]. Applied Energy, 1991, 40(3): 157-170.
    [147] Badr O., Naik S., O'Callaghan P. W., Probert S. D. Rotary Wankel engines as expansion devices in steam Rankine-cycle engines[J]. Applied Energy, 1991, 39(1): 59-76.
    [148] Cipolla G. Experimental Rankine cycle engine designed for utilization of low temperature, low pressure heat[J]. Heizen mit Sonne, 1980: 809-822.
    [149] Kim H. J., Ahn J. M., Park I., Rha P. C. Scroll expander for power generation from a low-grade steam source[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(5): 705-712.
    [150] Brown G. A., Bowlus D. A. Rotary piston expander engine[C]. Proc. 11th IECEC, 1976: 1187-1191.
    [151]陈波.涡旋式膨胀机的热力特性研究.浙江大学, 2004.
    [152] Fox R. W., McDonald A. T. Introduction to fluid mechanics[M]. New York: John Wiley & Sons, 1992.
    [153] Chen Y., Halm N. P., Groll E. A., Braun J. E. Mathematical modeling of scroll compressors - Part I: Compression process modeling[J]. International Journal of Refrigeration, 2002, 25(6): 731-750.
    [154] Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite time processes[J]. J. Appl. Phys., 1996, 79(3): 1191-1218.
    [155]陈林根,孙丰瑞.传热规律对卡诺热机性能的影响[J].工程热物理学报, 1990, 11(3): 241-243.
    [156]陈林根,孙丰瑞.朗肯循环装置的有限时间热力学优化[J].汽轮机技术, 1992, 32(2): 26-30.
    [157]倪何,陈林根,孙丰瑞.具有热阻、热漏和补燃的卡诺和朗肯联合热机循环性能分析[J].汽轮机技术, 2006, 48(5): 332-334,338.
    [158] Bejan A. The equivalence of maximum power and minimum entropy generation rate in the optimization of power plants[J]. Journal of Energy Resources Technology, Transactions of the ASME, 1996, 118(2): 98-101.
    [159] Vargas J. V. C., Bejan A. Thermodynamic optimization of the match between two streams with phase change[J]. Energy, 2000, 25(1): 15-33.
    [160]严子浚.从有限热源获得最大功时卡诺循环的热效率[J].工程热物理学报, 1984, 5(2): 125-131.
    [161] Massardo A. F., Bosio B. Assessment of molten carbonate fuel cell models and integration with gas and steam cycles[J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 103-109.
    [162] Lunghi P., Bove R., Desideri U. Analysis and optimization of hybrid MCFC gas turbines plants[J]. Journal of Power Sources, 2003, 118(1-2): 108-117.
    [163] Magistri L., Traverso A., Massardo A. F., Shah R. K. Heat exchangers for fuel cell and hybrid system applications[J]. Journal of Fuel Cell Science and Technology, 2006, 3(2): 111-118.
    [164] Zhang H., Weng S., Su M. Dynamic modeling on the hybrid molten carbonate fuel cell-gas turbine bottoming cycle[J]. Journal of Fuel Cell Science and Technology, 2005, 2(2): 94-98.
    [165]陈启梅,翁一武,朱新坚,翁史烈.熔融碳酸盐燃料电池-燃气轮机混合动力系统特性分析[J].中国电机工程学报, 2007, 27(8): 94-98.
    [166]陈跃华,曹广益,翁一武. MCFC-燃气轮机联合循环系统模拟与优化[J].热能动力工程, 2006, 21(2): 119-123.
    [167] Jurado F. Study of molten carbonate fuel cell - Microturbine hybrid power cycles[J]. Journal of Power Sources, 2002, 111(1): 121-129.
    [168] Moffat R. J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(6): 3-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700