基于线性矩阵不等式方法的建筑结构H∞控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,越来越多的土木建筑物结构形式向着大跨高耸的体型发展。为了减小这些大型复杂结构的振动,新型材料、新型阻尼器和各种附属结构不断地发展并应用于结构的振动控制中。随着混合控制和主动控制技术分别投入到广州电视塔与京基100两栋超高层建筑中来减振控制,主动控制技术已经开始受到重视。对于高耸大跨等大型结构,与被动地增大刚度相比,主动控制会大量减小其投入的经济成本。为了适应今后的发展趋势,本文考虑了在土木结构中采用主动控制可能带来的一些问题,进行了相关的研究工作,目的在于减小主动控制技术在土木工程中应用所带来的问题。本文的控制算法为Hoo控制,计算理论为LMI方法,作者所做的工作如下:
     (1)考虑控制系统本身传感器出现故障的情况,设计了故障检测器对故障进行了诊断,并且隔离(即FDI),再对控制策略进行重组,使其具有容错的功能(即FTC)。文中通过建立动态控制器设计方法和基于Kalman滤波器的静态控制器设计方法分别设计了动态故障检测器和静态故障检测器,应用静态估值检测器对控制策略进行了重组。设计过程中,均是将设计目标设定为系统传递函数的Hoo范数,并通过LMI方法进行求解。通过数值算例分别对动态、静态故障检测器、容错控制器进行了验证,用以说明文中提出的方法对传感器故障的识别和容错的有效性。
     (2)考虑土木结构尺度大导致的主动控制反馈时间延迟的问题,采用了分散控制来解决,通过双同伦法将BMI问题近似为了LMI问题,最后解得Hoo分散控制器。通过6层框架数值算例和带有2个AMD的双层框架振动台试验对文中提出的Hoo分散控制器设计方法进行了验证,用以说明Hoo分散控制在处理大尺度的土木建筑结构振动控制中的适用性。
     (3)由于土木结构在使用中存在附加荷载,振动中刚度阻尼会变化,本文考虑了结构参数的不确定,提出了基于D-K迭代方法和LMI方法的Hoo鲁棒控制器设计方法。通过4层框架数值算例和带有1个AMD的双层框架振动台试验进行了验证,用以说明文中提出的Hoo鲁棒控制是可以考虑到结构参数变化并保证控制的鲁棒性的。
     (4)对于大尺度土木结构,同时考虑主动控制反馈时间延迟和结构参数的不确定,提出了对结构参数不确定具有鲁棒性的Hoo分散控制器设计方法,融合了D-K迭代方法与双同伦方法。通过4层框架数值算例对此方法进行了验证,用以说明文中提出的控制器设计方法可以同时考虑反馈时间延迟和结构参数不确定等因素。
In recent decades, the economy is developed very fast. There are a lot of infrastructures with large span or extra high, which can be damaged due to the vibration. In order to reduce the vibration of these structures, many new materials, dampers and accessory structures have been utilized to control the structural vibration. Nowadays, the hybrid control and active control were used in Guangzhou TV tower (Canton Tower) and KingKey Financial Center (KK100), respectively. Compared with increasing the structural stiffness, active control can save a lot of money. So it is necessary to do some research on active control. In this dissertation, some active control problems caused by civil structural characteristics are considered. And some research on how to make the active control robust are performed. The reaseach is all based on the Hoo theory and linear matrix inequality (LMI) approach. The primary innovative contents are as follows:
     (1) Considering the faults in the sensors of the control system, the filters are designed to conduct the fault detection and isolation (FDI). The control strategy is reformed to have the fault tolerant control (FTC) performance. The dynamic filter and static filter are designed. The former one is based on the dynamic H∞controller design theorem. The later one is motivated by Kalman filter theorem. These two filters are both solved by LMI approach. The static filter is then used to reform the control strategy, which can execute the fault tolerant control. Their performance are validated by numerical examples, respectively.
     (2) Considering the time delay for control system in the large scale civil structures, the Hoo decentralized controller is designed through double homotopy approach. The proposed method is first studied numerically with a six-story building example, and then validated experimentally through shaking table tests of a two-story frame with active mass dampers.
     (3) Considering the structural parametric uncertainties, the Hoo robust controller is designed based on the D-K iteration method and LMI approach, The proposed algorithm is first theoretically validated by a four-story structure numerical example, and then experimentally corroborated by a shaking table test of a two-story frame with one active mass damper.
     (4) Considering the time delay and the parametric uncertainties simultaneously, a innovative control strategy is proposed to design the Hoo robust decentralized controller. This new method combines D-K iteration and double homotopy approach. Finally, the proposed method is validated numerically with a four-story building example.
引文
[1]李宏男.建筑抗震设计原理[M].北京:中国建筑工业出版社,1996.
    [2]周福霖.工程结构减振控制[M].北京:地震工程出版社,1997.
    [3]YAO J. T. P. Concept of structural control[J].,1972,98(7):1567-1574.
    [4]李宏男.结构振动控制实践的新进展[J].世界地震工程,1995,2(11):34-39.
    [5]李宏男,阎石.中国结构控制的研究与应用[J].地震工程与工程振动,1999,1(19):107-112.
    [6]唐家祥.建筑结构基础隔震[M].武汉:华中理工大学出版社,1993.
    [7]唐家祥,朱宏平.叠层橡胶隔震支座的振动传递特性[J].工程力学,1995,(04):109-114.
    [8]董彦哲,唐家祥,李黎,等.叠层橡胶基础隔震房屋结构设计与研究[J].建筑结构学报,1996,(02):37-47.
    [9]刘文光,周福霖,庄学真,等.铅芯夹层橡胶隔震垫基本力学性能研究[J].地震工程与工程振动,1999,(01):93-99.
    [10]徐忠根,周福霖.我国首栋橡胶垫隔震住宅楼动力分析[J].世界地震工程,1996,(01):38-42.
    [11]张克猛,范晓军,黄幼玲.一种新型隔震器的研制[J].西安交通大学学报,2002,(01):70-73.
    [12]施卫星,李正升.建筑结构基础隔震系统的发展及应用[J].结构工程师,1997,(01):14-18.
    [13]杨迪雄,李刚,程耿东.隔震结构的研究概况和主要问题[J].力学进展,2003,(03):302-312.
    [14]SOONG T. T., DARGUSH G. F. Passive energy dissipation systems in structural engineering[M]. London:Wiley,1997.
    [15]SLADEK J., KLINGNER R. Effect of tuned-mass dampers on seismic response[J]. Journal of Structural Engineering,1983,109(8):2004-2009.
    [16]XU Y., KWOK K. Semianalytical method for parametric study of tuned mass dampers [J]. Journal of Structural Engineering,1994,120(3):747-764.
    [17]CHEN G., WU J. Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-storey building structure[J]. Earthquake Engineering & Structural Dynamics,2003,32(5):793-810.
    [18]MIRANDA J. C. On tuned mass dampers for reducing the seismic response of structures [J]. Earthquake Engineering & Structural Dynamics,2005,34(7):847-865.
    [19]SADEK F., MOHRAZ B., TAYLOR A. W., et al. A method of estimating the parameters of tuned mass dampers for seismic applications[J]. Earthquake Engineering & Structural Dynamics,1997,26(6):617-635.
    [20]WU J., CHEN G., LOU M. Seismic effectiveness of tuned mass dampers considering soil-structure interaction[J]. Earthquake Engineering & Structural Dynamics, 1999,28(11):1219-1233.
    [21]胡继军,黄金枝,李春祥,等.网壳——TMD风振控制分析[J].建筑结构学报,2001,3(22):31-35.
    [22]叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计[J].振动工程学报,2000,3(13):376-384.
    [23]LIN Y., CHENG C., LEE C. A tuned mass damper for suppressing the coupled f lexural and torsional buffeting response of long-span bridges [J]. Engineering Structures, 2000,22(9):1195-1204.
    [24]RANA R., SOONG T. T. Parametric study and simplified design of tuned mass dampers [J]. Engineering Structures,1998,20(3):193-204.
    [25]李国强,陈素文,李杰,等.上海金茂大厦结构动力特性测试[J].土木工程学报,2000,(02):35-39.
    [26]CHEN G., WU J. Optimal placement of multiple tune mass dampers for seismic structures[J]. Journal of Structural Engineering,2001,127(9):1054-1062.
    [27]蔡国平,孙峰,黄金枝,等.MTMD控制结构地震反应的特性研究[J].工程力学,2000,(03):55-59.
    [28]李春祥.地震作用下高层钢结构的最优MTMD控制策略及设计[J].计算力学学报,2002,(01):83-88.
    [29]KELLY J. M., SKINNER R. I., HEINE A. J. Mechanisms of energy absorption in special devices for use in earthquake rsistant structures [J]. Bulletin of N. Z. society for Earthquake Engineering,1972,3(5):63-88.
    [30]邢书涛,郭迅.一种新型软钢阻尼器力学性能和减震效果的研究[J].地震工程与工程振动,2003,(06):179-186.
    [31]李冀龙,欧进萍.X形和三角形钢板阻尼器的阻尼力模型(i)——基于双线性本构关系[J].世界地震工程,2004,(01):10-16.
    [32]李玉顺,沈世钊.安装软钢阻尼器的钢框架结构抗震性能研究[J].哈尔滨工业大学学报,2004,(12):1623-1626.
    [33]PALL A. S., MARSH C. Response of friction damped braced frames[J]. ASCE Journal of the Stuctural Division,1982,6(108):1313-1323.
    [34]吴斌,张纪刚.基于几何非线性的pall型摩擦阻尼器滞回特性分析与试验验证[J].地震工程与工程振动,2001,(S1):60-65.
    [35]吴斌,张纪刚,欧进萍.Pall型摩擦阻尼支撑内力计算方法[J].世界地震工程,2004,(02):6-11.
    [36]李惠,吴波.液压粘弹性控制系统对建筑结构抗震控制的研究[J].地震工程与工程振动,1996,(02):67-75.
    [37]周云,刘季.粘弹性阻尼器结构的抗震设计方法[J].世界地震工程,1996,(01):23-31.
    [38]徐赵东,周洲,赵鸿铁,等.粘弹性阻尼器的计算模型[J].工程力学,2001,(06):88-93.
    [39]魏文晖,瞿伟廉.设置fvd框架结构的非线性地震反应控制研究[J].东南大学学报(自然科学版),2004,(03):386-389.
    [40]OKUBO H., KOMATSU N., TSUMURA T. Tendon control system for active shape control of flexible space structures[J]. Journal of Intelligent Material Systems and Structures,1996,7(4):470-475.
    [41]CHANG J. C. H., SOONG T. T. Structural control using active tuned mass dampers[J]. ASCE Journal of the Engineering Mechanics Division,1980,6(106):1091-1098.
    [42]田石柱,刘季.结构模型的AMD主动控制试验[J].地震工程与工程振动,1999,(04):90-94.
    [43]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,(10):85-90.
    [44]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社,2003.
    [45]CAO H., REINHORN A. M., SOONG T. T. Design of an active mass damper for a tall TV tower in Nanjing, China[J]. Engineering Structures,1998,20(3):134-143.
    [46]KOBORI T., TAKAHASHI M., NASU T., et al. Seismic response controlled structure with active variable stiffness system[J]. Earthquake Engineering & Structural Dynamics, 1993,22(11):925-941.
    [47]周福霖,谭平,阎维明.结构半主动减震控制新体系的理论与试验研究[J].广州大学学报(自然科学版),2002,(01):69-74.
    [48]吴波,刘汾涛,魏德敏.变刚度半主动控制结构的抗震设计方法[J].振动工程学报,2003,(03):52-56.
    [49]何玉敖,冯德平.主动变刚度结构体系(avs)多模态优化控制研究[J].建筑结构学报,2000,(03):53-59.
    [50]李敏霞,欧进萍,王刚,等.足尺变刚度控制系统性能试验与计算模型[J].地震工程与工程振动,2000,(04):96-100.
    [51]李敏霞,刘季.变刚度半主动结构振动控制的试验研究[J].地震工程与工程振动,1998,(04):90-95.
    [52]李敏霞,刘季.电液式变刚度结构振动控制系统的稳定性分析[J].振动与冲击,1999,(02):83-85.
    [53]KARNOPP D., CROSBY M. J., HARWOOD R. A. Vibration control using semi-active force generators[J]. Journal of Engineering for Industry,1974,96(2):619-626.
    [54]SYMANS M. D., CONSTANTINOU M. C., TAYLOR D. P., et al. Semi-active fluid viscous dampers for seismic response control [C]. Proceedings of First World Conference on Structural Control, Pasadena,1994.
    [55]KOBORI T. Mission and perspective towards future structural control research[C]. Proceedings of 2nd World Conference on Structures Control, Kyoto, Japan,1998.
    [56]孙作玉,隋丽丽.变阻尼半主动结构控制振动台试验[J].地震工程与工程振动,2000,(04):106-111.
    [57]李惠,袁雪松,吴波.粘滞流体变阻尼半主动控制器对结构抗震控制的试验研究[J].振动工程学报,2002,(01):29-34.
    [58]KAWASHIMA K., UNJOH S. Seismic response control of bridges by variable dampers[J]. Journal of Structural Engineering,1994,120(9):2583-2601.
    [59]欧进萍,杨飏.压电-T型变摩擦阻尼器及其性能试验与分析[J].地震工程与工程振动,2003,(04):171-177.
    [60]LI H. N., SONG G. B. Sub-optimal bang-bang control of buildings with piezoelectric friction dampers[C]. Proceedings of SPIE, San Diego,2005.
    [61]CHEN G. D., CHEN C. Q. Semiactive control of the 20-story benchmark building with piezoelectric friction dampers[j]. Journal of engineering mechanics,2004,130(4): 393-400.
    [62]LU L. Predictive control of seismic structures with semi-active friction dampers [J]. Earthquake Engineering & Structural Dynamics,2004,33(5):647-668.
    [63]XU Y. L., QU W. L., CHEN Z. H. Control of wind-excited truss tower using semiactive friction damper[J]. Journal of structural engineering,2001,127(8):861-868.
    [64]瞿伟廉,陈朝晖,徐幼麟.被动及半主动摩擦阻尼器对合肥翡翠电视塔地震反应的控制[J].地震工程与工程振动,2000,(02):101-106.
    [65]EHRGOTT R. C., MASRI S. F. Modeling the oscillatory dynamic behaviour of electrorheological materials in shear[J]. Smart Materials and Structures, 1992,1 (4):275.
    [66]GAVIN H. P., ORTIZ D. S. Testing and modeling of a proto-type er damper for seismic structural response control[C]. Proceedings of International Workshop on Structural Control, Honolulu, HI, USA,1993.
    [67]SPENCER B. F., DYKE S. J., SAIN M. K. Dynamical model of a magnetroheological damper[C]. Proceedings of Structures Congress XIV, ASCE, Chicago, USA,1996.
    [68]李宏男,常治国,王苏岩.基于智能算法的MR阻尼器半主动控制[J].振动工程学报,2004,(03):96-101.
    [69]关新春,欧进萍.磁流变耗能器的阻尼力模型及其参数确定[J].振动与冲击,2001,(01):7-10.
    [70]隋莉莉,欧进萍.半主动磁流变减振驱动器的工作原理及应用[J].哈尔滨建筑大学学报,2002,(03):9-13.
    [71]HROVAT D., BARAK P., RABINS M. Semi-active versus passive or active tuned mass dampers for structural control [J]. Journal of Engineering Mechanics,1983,109(3): 691-705.
    [72]ABE M., IGUSA T. Semi-active dynamic vibration absorbers for controlling transient response[J]. Journal of Sound and Vibration,1996,198(5):547-569.
    [73]ABE M. Semi-active tuned mass dampers for seismic protection of civil structures [J]. Earthquake Engineering & Structural Dynamics,1996,25(7):743-749.
    [74]RICCIARDELLI F., OCCHIUZZI A., CLEMENTE P. Semi-active tuned mass damper control strategy for wind-excited structures[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,88(1):57-74.
    [75]SETAREH M. Application of semi-active tuned mass dampers to base-excited systems [J]. Earthquake Engineering & Structural Dynamics,2001,30(3):449-462.
    [76]ABE M., KIMURA S., FUJINO Y. Control laws for semi-active tuned liquid column damper with variable orifice openings[C]. Proceedings of 2nd International Workshop on Structural Control, Hong Kong,1996.
    [77]李宏男,阎石,林皋.建筑结构利用TLCD减振的神经网络智能控制[J].地震工程与工程振动,2000,(03):137-142.
    [78]李宏男,霍林生,闫石.神经网络半主动TLCD对偏心结构的减震控制[J].地震工程与工程振动,2001,(04):135-141.
    [79]李宏男,金峤.基于takagi-sugeno模型的半主动TLCD对偏心结构的减震控制[J].计算力学学报,2003,(05):523-529.
    [80]杨润林,闫维明,周锡元,等.半主动u型液力阻尼器的结构振动控制[J].应用力学学报,2003,(04):108-111.
    [81]YALLA S., KAREEM A. Semiactive tuned liquid column dampers:experimental study[J]. Journal of Structural Engineering,2003,129(7):960-971.
    [82]NI Y. Q., YING Z. G., WANG J. Y., et al. Stochastic optimal control of wind-excited tall buildings using semi-active MR-TLCDs[J]. Probabilistic Engineering Mechanics, 2004,19(3):269-277.
    [83]CHENG F. Y., TIAN P. Generalized optimal active and hybrid control for seismic structure[C]. Proceedings of the First World Conference on Structural Control, Los Angeles,1994.
    [84]CHENG W., QU W., LI A. Hybrid vibration control of Nanjing TV tower under wind excitation[C]. Proceedings of the First World Conference on Structural Control, Los Angeles,1994.
    [85]祁皑.液压阻尼系统(HDS)和混合控制系统(AMD-HDS)对底层柔性建筑的抗震控制研究[D].哈尔滨:哈尔滨工业大学,1998.
    [86]尤昌德.现代控制理论基础[M].北京:电子工业出版社,1996.
    [87]YANG J., AKBARPOUR A., GHAEMMAGHAMI P. New optimal control algorithms for structural control[J]. Journal of Engineering Mechanics,1987,113(9):1369-1386.
    [88]顾仲权,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社,1997.
    [89]李宏男,李忠献,祁皑.结构振动与控制[M].北京:中国建筑工业出版社,2005.
    [90]李宏男,霍林生.结构多维减震控制[M].北京:科学出版社,2008.
    [91]YANG J., WU J., AGRAWAL A. Sliding mode control for nonlinear and hysteretic structures[J]. Journal of Engineering Mechanics,1995,121(12):1330-1339.
    [92]YANG J., WU J., AGRAWAL A. Sliding mode control for seismically excited linear structures[J]. Journal of Engineering Mechanics,1995,121(12):1386-1390.
    [93]王德进.H2和H∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [94]王永骥.神经元网络控制[M].北京:机械工业出版社,1999.
    [95]李人厚.智能控制理论和方法[M].西安:西安电子可以大学出版社,1999.
    [96]姜长生,王从庆,魏海坤,等.智能控制与应用[M].北京:科学出版社,2007.
    [97]李宏男,阎石,林皋.智能结构控制发展综述[J].地震工程与工程振动,1999,(02):29-36.
    [98]阎石,林皋,黎海林.人工神经网络在结构振动控制中应用[J].大连理工大学学报,2000,(05):589-592.
    [99]LEE C. C. Fuzzy logic in control systems:fuzzy logic controller.Ⅱ[J]. Systems, Man and Cybernetics, IEEE Transactions on,1990,20(2):419-435.
    [100]LEE C. C. Fuzzy logic in control systems:fuzzy logic controller.Ⅰ[J]. Systems, Man and Cybernetics, IEEE Transactions on,1990,20(2):404-418.
    [101]MCCULLOCH W., PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The bulletin of mathematical biophysics,1943,5(4):115-133.
    [102]Rumelhart D. E., Hintont G. E., Williams R. J. Learning representations by back-propagating errors[J]. Nature,1986,323(6088):533-536.
    [103]HOLLAND J. H. Adaptation in natural and artificial systems:an introductory analysis with applications to biology, control, and artificial intelligence[M]. Oxford, England:U Michigan Press,1975.
    [104]ZAMES G. Feedback and optimal sensitivity:model reference transformations, multiplicative seminorms, and approximate inverses[J]. Automatic Control, IEEE Transactions on,1981,26(2):301-320.
    [105]SARASON D. Generalized interpolation in H∞[J]. Transactions of the American Mathematical Society,1967,127(2):179-203.
    [106]ADAMJAN V., AROV D., KREIN M. Infinite hankel block matrices and related extension problems[J]. Transactions of the American Mathematical Society,1978,111:133-156.
    [107]DOYLE J. C. Lecture notes in advanced multivariable control[C]. ONR/Honeywell Workshop, Minneapolis,1984.
    [108]GLOVER K. All optimal hankel-norm approximations of linear multivariable systems and their 1∞-error bounds[J]. Internal Journal of Control,1984,39:1115-1193.
    [109]FRANCIS B., DOYLE J. Linear control theory with an H∞ optimality criterion[J]. SIAM Journal on Control and Optimization,1987,25(4):815-844.
    [110]BALL J. A., COHEN N. Sensitivity minimization in an H∞ norm:parameterization of all suboptimal solutions[J]. International Journal of Control,1987,46:785-816.
    [111]FOIAS C., TANNENBAUM A. On the four-block problem, I[J]. Operator Theory:Advances and Applications,1988,32:93-112.
    [112]FOIAS C., TANNENBAUM A. On the four block problem, II:the singular system[J]. Integral Equations and Operator Theory,1988,11(5):726-767.
    [113]JONCKHEERE E. A., SILVERMAN L. M. Spectral theory of the linear-quadratic optimal control problem:discrete-time single-input case[J]. Circuits and Systems, IEEE Transactions on,1978,25(9):810-825.
    [114]LIMEBEER D. J. N., HUNG Y. S. An analysis of the pole-zero cancellations in H ∞ optimal control problems of the first kind[J]. Siam Journal on Control and Optimization,1987,25(6).
    [115]LIMEBEER D., HALIKIAS G. A controller degree bound for H∞-optimal control problems of the second kind[J]. SIAM Journal on Control and Optimization,1988,26(3): 646-677.
    [116]KIMURA H., KAWATANI R. Synthesis of H∞ controllers based on conjugation. Decision and Control,1988., Proceedings of the 27th IEEE Conference on1988.
    [117]KWAKERNAAK H. A polynomial approach to minimax frequency domain optimization of multivariable feedback systems[J]. International Journal of Control,1986,44(1): 117-156.
    [118]DOYLE J. C., GLOVER K., KHARGONEKAR P. P., et al. State-space solutions to standard H2 and H∞ control problems[J]. Automatic Control, IEEE Transactions on, 1989,34(8):831-847.
    [119]GAHINET P., APKARIAN P. A linear matrix inequality approach to H∞ control[J]. International journal of robust and nonlinear control,1994,4(4):421-448.
    [120]GAHINET P. LMI control toolbox for use with MATLAB[M]. Natick, MA:MathWorks Inc. 1995:1.
    [121]GAHINET P. Explicit controller formulas for LMI-based H∞ synthesis[J]. Automatica, 1996,32(7):1007-1014.
    [122]SCHERER C. The Riccati inequality and state-space H∞-optimal control [D]. Germany: Universitat Wurzburg,1990.
    [123]吴敏,桂卫华,何勇.现代鲁棒控制[M].长沙:中南大学出版社,2006.
    [124]BOYD S., DESOER C. A. Subharmonic functions and performance bounds on linear time-invariant feedback systems[J]. IMA Journal of Mathematical Control and Information,1985,2(2):153-170.
    [125]胡寿松.自动控制原理[M].北京:科学出版社,2001.
    [126]俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [127]黄卫红.矩阵schur补的性质及其应用[D].南京信息工程大学,2008.
    [128]张微敬,欧进萍.基于状态反馈的结构鲁棒控制[J].世界地震工程,2002,(03):37-41.
    [129]ZHOU K., DOYLE J. C., GLOVER K. Robust and optimal control[M]. Englewood Cliffs, NJ:Prentice Hall,1996:596.
    [130]ZHOU K., DOYLE J. C. Essentials of robust control [M]. Upper Saddle River, New Jersey: Prentice Hall,1998.
    [131]YU LI. Robust control-linear matrix inequalities approach[M]. Beijing:Tsinghua University Press,2002.
    [132]张明,施鼎汉.代数Riccati不等式与H∞滤波器[J].厦门大学学报(自然科学版),1997,(06):11-14.
    [133]林岳松,薛安克,钱积新.基于LMI方法的鲁棒H∞滤波器设计[J].电路与系统学报,2004,(05):81-85.
    [134]WANG Y., LYNCH J. P., LAW K. H. Decentralized h∞ controller design for large-scale civil structures[J].,2009,38(3):377-401.
    [135]TSAI H., LIN G. Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems[J]. Earthquake engineering & structural dynamics,1993,22(11):957-973.
    [136]NAGPAL K. M., KHARGONEKAR P. P. Filtering and smoothing in an H∞ sett ing [J]. Automatic Control, IEEE Transactions on,1991,36(2):152-166.
    [137]SANDELL N., VARAIYA P., ATHANS M., et al. Survey of decentralized control methods for large scale systems [J]. Automatic Control, IEEE Transactions on,1978,23(2): 108-128.
    [138]SILJAK D. D. Decentralized control of complex systems[M]. Boston:Academic Press, 1991:527.
    [139]SILJAK D. D. Decentralized control and computations:status and prospects[J]. Annual Reviews in Control,1996,20:131-141.
    [140]LYNCH J. P., LAW K. H. Decentralized control techniques for large scale civil structural systems. Proceedings of the 20th International Modal Analysis Conference[C], Los Angeles, CA,2002.
    [141]XU B., WU Z. S., YOKOYAMA K. Neural networks for decentralized control of cable-stayed bridge[J]. Journal of Bridge Engineering,2003,8(4):229-236.
    [142]SWARTZ R. A., LYNCH J. P. Redundant kalman estimation for a distributed wireless structural control system. Proceedings of the US-Korea Workshop on Smart Structures Technology for Steel Structures[C], Seoul, Korea,2006.
    [143]ROFOOEI F. R., MONAJEMI-NEZHAD S. Decentralized control of tall buildings [J]. The Structural Design of Tall and Special Buildings,2006,15(2):153-170.
    [144]LU K., LOH C., YANG J. N., et al. Decentralized sliding mode control of a building using MR dampers[J]. Smart Materials and Structures,2008,17(5):55006.
    [145]MA T., XU N., TANG Y. Decentralized robust control of building structures under seismic excitations [J]. Earthquake Engineering & Structural Dynamics,2008,37(1): 121-140.
    [146]LOH C., CHANG C. Application of centralized and decentralized control to building structure:analytical study[J]. Journal of engineering mechanics,2008,134(11): 970-982.
    [147]WANG Y. Time-delayed dynamic output feedback H∞ controller design for civil structures:a decentralized approach through homotopic transformation[J]. Structural Control and Health Monitoring,2011,18(2):121-139.
    [148]WANG Y., LAW K. H., LALL S. Time-delayed decentralized H∞ controller design for civil structures:a homotopy method through linear matrix inequalities. Proceedings of the 2009 American Control Conference (ACC 2009) [C], St. Louis, MO, USA,2009.
    [149]WANG Y., SWARTZ R. A., LYNCH J. P., et al. Decentralized civil structural control using real-time wireless sensing and embedded computing[J]. Smart Structures and Systems,2007,3(3):321-340.
    [150]VANANTWERP J. G., BRAATZ R. D. A tutorial on linear and bilinear matrix inequalities[J]. Journal of Process Control,2000,10(4):363-385.
    [151]KOCVARA M., STINGL M. PENNON-a code for convex nonlinear and semidenite programming[J]. Optimization Methods and Software,2003,18(3):317-333.
    [152]MEHENDALE C. S., GRIGORIADIS K. M. A double homotopy method for decentralised control design[J]. International Journal of Control,2008,81(10):1600-1608.
    [153]FRANKLIN G. F., POWELL J. D., WORKMAN M. L. Digital control of dynamic systems[M]. Menlo Park, CA:Addison-Wesley,1998:742.
    [154]WANG Y., SWARTZ R. A., LYNCH J. P., et al. Decentralized civil structural control using real-time wireless sensing and embedded computing[J]. Smart Structures and Systems,2007,3(3):321-340.
    [155]KAR I. N., MIYAKURA T., SETO K. Bending and torsional vibration control of a flexible plate structure using H∞-based robust control law[J]. Control Systems Technology, IEEE Transactions on,2000,8(3):545-553.
    [156]WANG S., SHIEH L. S., SUNKEL J. W. Robust optimal pole-clustering in a vertical strip and disturbance rejection for uncertain lagrange's systems [J]. Dynamics and Control,1995,5(4):295-312.
    [157]WANG S., ROSCHKE P. N., YEH H. Y. Robust control for structural systems with unstructured uncertainties[J]. Journal of engineering mechanics,2004,130(3): 337-346.
    [158]WANG S. Robust active control for uncertain structural systems with acceleration sensors[J]. Journal of Structural Control,2003,10(1):59-76.
    [159]MACKENROTH U. Robust control systems:theory and case studies[M]. Germany:Springer, 2004.
    [160]DOYLE J. C., GLOVER K., KHARGONEKAR P. P., et al. State-space solutions to standard H2 and H∞ control problems[J]. Automatic Control, IEEE Transactions on, 1989,34(8):831-847.
    [161]PEETERS B., LOWET G., VAN DER AUWERAER H., et al. A new procedure for modal parameter estimation[J]. Sound and Vibration,2004,38(1):24-29.
    [162]PEETERS B., VAN DER AUWERAER H., GUILLAUME P., et al. The PolyMAX frequency-domain method:a new standard for modal parameter estimation?[J]. Shock and Vibration, 2004,11(3):395-409.
    [163]DOEBLING S. W., FARRAR C. R., CORNWELL P. J. Diamond:a graphical interface toolbox for comparative modal analysis and damage identification. Proceedings of the 6th International Conference on Recent Advances in Structural Dynamics [C], Southampton, UK,1997.
    [164]HU S. J., LI H., WANG S. Cross-model cross-mode method for model updating[J]. Mechanical Systems and Signal Processing,2007,21(4):1690-1703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700