无轴承永磁同步电机无位置传感器及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无轴承电机集旋转与转子自悬浮功能于一体,具有无需润滑、无磨损、无机械噪声、高速高精等特点,在精密数控机床、航空航天、飞轮储能等高科技领域有广泛的应用前景。相比其他类型的无轴承电机,无轴承永磁同步电机具有结构简单、高功率密度、高效率、运行可靠等优点,成为目前无轴承电机技术的研究热点之一。传统机械式传感器的安装与使用不仅使电机体积增大、成本增加,更严重限制了无轴承永磁同步电机优良高速性能的发挥。与普通永磁同步电机相比,无轴承永磁同步电机稳定运行时转子处于自悬浮状态,外界扰动、参数摄动等因素使转子位置、速度及径向位移更容易产生振动和突变。突破机械式传感器约束,实现全速范围内无位置传感器稳定悬浮运行及高性能控制对实现无轴承永磁同步电机超高速、低成本、实用化运行具有重要的意义。基于上述背景,本文在国家863高技术研究发展计划(2007AA04Z13)和国家自然科学基金(60974053)等项目资助下,对无轴承永磁同步电机数学模型、转子磁场定向控制、自适应非奇异终端滑模控制、无位置传感器运行、全数字控制实验平台设计及试验运行进行重点研究,主要研究工作及取得的成果如下:
     1.对二自由度表贴式无轴承永磁同步电机中悬浮力产生机理进行深入分析,从麦克斯韦张量法出发,建立转子偏心时悬浮力精确解析模型,从机电能量转换关系推导考虑转子偏心与悬浮绕组电流影响的电磁转矩数学模型。从转子动力学出发,建立转子运动方程及系统运动方程。
     2.提出一种自适应非奇异终端滑模控制方法。设计自适应变速指数趋近律,通过引入系统状态变量的一阶范数,根据系统状态距离平衡点位置的远近自适应增大指数趋近速度,缩短趋近时间,在快速趋近的同时,自动减小等速趋近速度,从而保证系统在到达切换面时削弱系统抖振,采用该趋近律设计无轴承永磁同步电机转子速度与径向位移非奇异终端滑模控制器,能够更快速地跟踪速度及径向位移给定值,并对外界扰动及参数摄动有较强的鲁棒性。
     3.针对平方根无迹卡尔曼滤波存在对模型参数变化鲁棒性差、收敛速度慢及对突变状态跟踪能力低等缺陷,提出一种改进平方根无迹卡尔曼滤波算法。结合强跟踪滤波原理,通过引入时变渐消因子在线自适应调整增益矩阵和状态预测误差协方差平方根矩阵,实现残差序列正交或近似正交,强迫平方根无迹卡尔曼滤波保持对实际状态的快速跟踪。在滤波过程中采用矩阵QR分解和Cholesky因子更新,以协方差平方根阵代替协方差阵参加迭代运算,有效地避免了滤波器发散,提高滤波算法收敛速度和稳定性。应用该方法设计无轴承永磁同步电机转子位置与速度估计器,可以提高系统对平稳状态、转速突变状态及外界扰动下的估计精度。
     4.针对单一转速估计方法难以实现全速范围内转子位置与速度准确估计的缺陷,提出一种转子位置与速度复合估计方法。对于表贴式无轴承永磁同步电机,在零速及低速运行时,采用脉振高频信号注入法估计转子位置与速度,该方法不依赖于电机模型参数而仅依赖于电机本身的凸极特性,可实现零速及低速时转子位置与速度的准确估计;中高速运行时,采用改进平方根无迹卡尔曼滤波进行转子位置与速度估计,利用强跟踪滤波极强的模型失配鲁棒性,独特的强跟踪能力,有效地改善系统对稳态及突变状态的跟踪性能,通过设计两种方法的“软切换”,实现低速到高速的平滑过渡,从而实现全速范围内转子位置与速度的准确估计。
     5.针对传统旋转高频信号注入法中信号处理精度低、延时时间长及过程复杂等缺陷,提出一种基于有限冲激响应优化滤波的改进型旋转高频信号注入法。通过离线设计等纹波最佳逼近有限冲激响应滤波器,利用该滤波器提取高频电流信号,实现高频电流信号提取误差更小。通过对高频电流做外差处理,提取转子位置误差信号,省去旋转高频信号注入法中的同步轴系滤波单元。针对有限冲激响应滤波器相位滞后,设计线性相位补偿,缩短系统延时时间。该方法结构简单,估计精度高,易于调试与实现,可实现转子位置与速度的准确估计。
     6.构建了无轴承永磁同步电机全数字控制实验平台,对其硬件设计及软件流程进行详细阐述。采用空间电压矢量脉宽调制技术实现转子磁场定向控制,进行电机调速、转速突变状态下的悬浮运行试验,设计无位置传感器自适应非奇异终端滑模控制详细实现方案,为进一步开展无轴承永磁同步电机无位置传感器高性能控制奠定基础。
Bearingless motors not only have the functions of rotation and rotor self suspension, but also have the characteristics of no lubrication, no wear, no mechanical noise, high speed and high precision. With these advantages, bearingless motors have broad application prospect in high speed precision numerical control machine tools, aerospace, flywheel energy storage system and other high-tech fields. Compared with other type of bearingless motors, the bearingless permanent magnet synchronous motor, due to its advantages of simple structure, high power density, high efficiency, reliable operation, has become one of the hot spots in the research field of bearingless motors presently. The installation and use of the traditional mechanical sensors has maken the motor volume increase, cost increase, at the same time, it has seriously limited the excellent performance of high speed to the bearingless permanent magnet synchronous motor. Compared with ordinary permanent magnet synchronous motor, the rotor is self-suspension, when the bearingless permanent magnet synchronous motor work at steady state, rotor position, speed and radial displacement are more prone to vibrate and mutate because of the external disturbance, parameter perturbation and other factors. The stable operation without position sensor and high performance control will meet the requirement of ultra high speed, low cost and practical application of the bearingless permanent magnet synchronous motor. Supported by the National High Technology Research and Development Plan of China (2007AA04Z213) and the National Natural Science Foundation of China under grant(60974053), in order to improve the performance of bearingless permanent magnet synchronous motor, several key theoretical and technological problems, such as the mathematical model, rotor magnetic field orientated control, adaptive nonsingular terminal sliding mode control, position sensorless operation in full speed, and digital control system of bearingless permanent magnet synchronous motor and experimental operation are comprehensively studied. The main researches and the corresponding achievement are as follows:
     1. A profound analysis on the generation of magnetic levitation forces for a surface-mounted bearingless permanent magnet synchronous motor with two degree of freedom is presented. From Maxwell tensor method, levitation force analytical model is deduced considering the rotor eccentricity. The mathematical model of electromagnetic torque is derived from the electromechanical energy conversion relationship considering rotor eccentricity and suspension winding current, motion equations of the rotor and systems are established.
     2. An adaptive nonsingular terminal sliding mode control is put forward. In order to obtain faster convergence of state variables during the whole process in nonsingular terminal sliding mode control, an adaptive variable-rated exponential reaching law is presented where the L1norm of state variables is introduced. Exponential and constant approach speed can adaptively adjust according to the state variables' distance to the equilibrium position, which can short the reaching time and weak system chattering. The method is applied to the bearingless permanent magnet synchronous motor system, speed and radial displacement controller of adaptive nonsingular terminal sliding mode control are designed, simulation results show that, the proposed adaptive nonsingular terminal sliding mode controller could rapidly track the given values, system overshoot and static error are small, higher robustness can be obtained.
     3. Aiming at the defects of low robustness to model parameter variation, slow convergence, and undesirable tracking ability to abrupt state changes in square root unscented Kalman filter algorithm, an improved square root unscented Kalman filter is proposed. Combined with the strong tracking filtering principle, by introducing the time-varying fading factor and the diminishing factor to adjust gain matrices and the state-forecast covariance square root matrix, in order to realize the orthogonality of the residual sequences and force the square root unscented Kalman filter to track the real state rapidly. In the process of filtering, Cholesky and QR decomposition are used. Covariance square root matrix is used instead of covariance in iterative computation, which can effectively avoid the filter divergence and improve the algorithm convergence speed and stability. The vector control system for bearingless permanent magnet synchronous motor without a speed sensor is set up based on this approach. Rotor position and speed estimators designed by this method, can improve the estimate accuracy at stationary state, speed mutation status and the external disturbance.
     4. Because of one method cannot obtain precise estimation of rotor speed and position in full speed, a compound method using high frequency signal injection and improved square root unscented Kalman filter algorithm is proposed to estimate the rotor speed and position for a surface-mounted bearingless permanent magnet synchronous motor. When the motor work at state of zero and ultra-low speed, fluctuating high frequency signal injection is used, which does not depend on the motor parameter, only depend on motor space-saliency effect, accurate estimation will be achieved; at the high speed, the improved square root unscented Kalman filter is used. The improved square root unscented Kalman filter has strong robustness of the model mismatch and unique strong tracking ability, which can effectively improve the tracking performance to steady state and mutation status. By designing speed switch, smooth switching is achieved. The proposed method is capable of precisely estimating rotor speed and position in full speed.
     5. Aiming at the defects of low precision, long delay and complicated process in the signal processing of traditional rotating high frequency signal injection method, an improved rotation high frequency signal injection method based on finite impulse response filter is proposed. Equiripple and optimal approximating finite impulse response filter is introduced to extract the high frequency current, which can realize minimum extraction error of the high frequency current signal. Using heterodyning processing to the high frequency current, the rotor position error signal can be extracted. This method can eliminate the synchronous shaft filter and reduce the complexity of the system.In order to achieve minimum delay of rotor speed and position estimation, linear phase compensation is used in the finite impulse response filter. The method has the advantages of simple structure, high accuracy, easy realization and debugging, accurate estimation of rotor position and speed can be obtained.
     6. The digital control system of bearingless permanent magnet synchronous motor is designed, the corresponding hardware systems and software systems are designed. The space voltage vector pulse width modulation is used to realize the rotor magnetic field orientated control strategy. Stable suspension operation in speed adjustment and speed step are achieved in the platform. Detailed experiment scheme for position sensorless control of bearingless permanent magnet synchronous motor based on adaptive nonsingular terminal sliding mode control is proposed, which establishes a solid foundation for developing the high performance position sensorless control of the bearingless permanent magnet synchronous motor further.
引文
[1]A. Chiba, D. T. Power, M. A. Rahman. Charaeteristiecs of a Bearingless Induction Motor [J]. IEEE Transaction on Industly Applications.1991,27(6):5199-5201.
    [2]M. Oshima, S. Miyazawa, T. Deido, et al. Characteristics of a Permanent Magnet Type Bearingless Motor [J]. IEEE Transaction on Industry Applications.1996,32(2):363-370.
    [3]Andres, O. Salazar, A. Chiba, et al. A review of developments in bearingless Motors[C]. Proceedings of 7th International Symposium on Magnetic Bearings. ETH Zurich,2000,335-340.
    [4]邓智泉,严仰光.无轴承交流电机的基本理论和研究现状[J].电工技术学报,2000,15(2):29-35.
    [5]http://www. levitronix. com.
    [6]W. Amrhein, S. Silber, K. Nenninger. Developments on bearingless drive technology[C].8th International Symposium on Magnetic Bearings, Japan,2002,229-234.
    [7]Y. Okaka, S. Miyamoto, T. Ohishi. Levitation and torque control of internal permanent magnet type bearingless motor[J]. IEEE Transaction on Control System,1996,32(2):363-369.
    [8]M. Ooshima. Analyses of Rotational Torque and Suspension Force in a Permanent Magnet Synchronous Bearingless Motor with Short-pitch Winding[C]. IEEE Power Engineering Society General Meeting, Tampa,2007,1932-5517.
    [9]R. Sehob, J. Bichsel. Vector Control of the Bearingless Motor[C].4th International Symposium on Magnetic Bearings. Zuerich,1994,327-332.
    [10]邓智泉,仇志坚,王晓琳,等.无轴承永磁同步电机的转子磁场定向控制研究[J].中国电机工程学报,2005,25(1):104-108.
    [11]仇志坚,邓智泉,严仰光.无轴承永磁同步电动机的原理及实现[J].电工技术学报,2004,19(11):8-13.
    [12]黄雷.永磁型无轴承电机系统的无传感器运行研究[D].浙江大学博士学位论文,2008.
    [13]高剑,黄守道,马晓枫,等.基于交互式MRAS策略的无轴承异步电机无速度传感器矢量控制系统,电工技术学报,2008,23(11):41-46.
    [14]秦峰,贺益康,刘毅,等.两种高频注入法的无传感器运行研究[J].中国电机工程学报,2005,25(5):116-121.
    [15]H. Nian, Y. He, D. Chen, et al. Self-sensing of the rotor position and displacement for an inset permanent magnet type bearingless motor[C]. International Conference on Electrical Machines and Systems,2007,1508-1512.
    [16]A. Chiba, J. A. Santisteban. A PWM Harmonics Elimination Method in Simultaneous Estimation of Magnetic Field and Displacements in Bearingless Induction Motors[J]. IEEE Transactions on Industry Applications,2012,48(1):124-131.
    [17]J. Asama, M. Amada, N. Tanabe, et al. A Evaluation of a Bearingless PM Motor With Wide Magnetic Gaps[J]. IEEE Transactions on Energy Conversion,2010,25(4):957-964.
    [18]年珩.无轴承电机的设计与控制研究[D].浙江大学博士学位论文,2005.
    [19]A. Chiba, K. Kiryu, M. A. Rahman, et al. Radial force and speed detection for improved magnetic suspension in bearingless motors[J]. IEEE Transactions on Industry Applications,2006,42(2): 415-422.
    [20]P. K. Hermann. A radial active magnetic bearing[P]. London Patent,No.1478868,October 20,1973.
    [21]P. K. Hermann. A radial active magnetic bearing have a rotating drive[P]. London Patent No.1500 809, Feb.9 1974.
    [22]R. Bosch. Development of a bearingless motor[C]. Proceedings of the International Conference on Electric Machines, Pisa Italy,1988,373-375.
    [23]J. Bichsel. Beitraege zum lagerlosen Elektromotor[D]. Schweiz:Eidgenoessische Technische Hochschule Zuerich,1990.
    [24]A. Chiba, K. Chida, T. Fukao. Principles and characteristics of a reluctance motor with windings of magnetic bearing[C]. Proceedings of the International Conference on Power Electron, Tokyo,1990, 919-926.
    [25]R. Schob. Beitrxge zur lagerlosen Asynchronmaschine[D]. Dissertation ETH Zurich,1993.
    [26]Y. Okada, S. Miyamoto, T. Ohishi. Levitation control of permanent magnet type rotating motor [C]. Proceedings of the Symposium on dynamics of electro magnetic force,1992,251-256.
    [27]R. Schob, N. Barletta. Principle and application of a bearingless slice motor[C]. Proceedings of 5th International Symposium on Magnetic Bearings,1996,313-318.
    [28]K. Nenninger, W. Amrhein, S. Silber, et al. Bearingless single-phase PM motor with low-cost rotary angle sensor[C]. Proceedings of 6th International Symposium on Magnetic Suspension Technology, 2001,576-582.
    [29]J. Amemiya,A. Chiba, D. G. Dorrell, et al. Characteristics of a Consequent-Pole Type Bearingless Motor[J]. IEEE Transaction on Magnetics,2005,41(1):82-89.
    [30]M. Nakagawa,Y. Asano,A. Mizuguchi, et al. Optimization of stator design in a consequent-pole type bearingless motor considering magnetic suspension characteristics[C]. IEEE International Magnetics Conference,2006,42(10):3422-3424.
    [31]N. Watanabe, H. Sugimoto, A. Chiba, et al. Basic Characteristic of the Multi-Consequent-Pole Bearingless Motor[C]. Power Conversion Conference, Nagoya,2007:1565-1570.
    [32]M. Amada, A. Mizuguchi,Y. Asano, et al. Winding design and characteristic of a consequent-pole type bearingless motor with 4-axis active magnetic suspension [C]. IEEE Industry Applications Conference, 2007,552-557.
    [33]J. Asama, Y. Hamasaki, T. Oiwa, et al. Proposal and Analysis of a Novel Single-Drive Bearingless Motor[J]. IEEE Transaction on Industry Electronics,2013,60, (1):129-138.
    [34]J. Asama, R. Natsume, H. Fukuhara, etal, Optimal Suspension Winding Configuration in a Homo-Polar Bearingless Motor[J]. IEEE Transactions on Magnetics,2012,48(11):2973-2976.
    [35]王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析[J].中国电机工程学报,2002,2(5):105-108.
    [36]王凤翔,王宝国,徐隆亚.一种新型混合转子结构无轴承电动机磁悬浮力的矢量控制[J].中国电机工程学报,2005,25(5):98-103.
    [37]仇志坚,邓智泉,王晓琳,等.计及偏心及洛伦兹力的永磁型无轴承电机建模与控制研究[J].中国电机工程学报,2007,27(9):64-70.
    [38]Y. He, H. Nian. Analytical Model and Feedback Control of the Levitation Force for an Induction-Type Bearingless Motor[C]. The 5th International Conference on Power Electronics and Drive Systems, Singapore,2003,242-246.
    [39]贺益康,年珩,阮秉涛.感应型无轴承电机的优化气隙磁场定向控制[J].中国电机工程学报,2004,24(6):116-121.
    [40]Y. Zhou,Y. He, H. Nian. The integrated mathematic model of a permanent magnet type bearingless motor[C]. Proceedings of 8th International Conference on Electrical Machines and Systems,2005, 898-902.
    [41]卜文绍,万山明,黄声华,等.无轴承电机的通用可控磁悬浮力解析模型[J].中国电机工程学报,2009,29(30):84-89.
    [42]卜文绍,乔岩珂,祖从林,等.三相无轴承异步电机的磁场定向控制[J],电机与控制学报,2012,16(7):52-57.
    [43]卜文绍,黄声华,万山明,等.无轴承同步电机旋转惯性振动抑制模型[J].,华中科技大学学报(自然科学版),2009,37(1):116-119.
    [44]H. Zhu, Y. Zhou, T. Li, et al. Decoupling control of 5 degrees of freedom bearingless induction motors using a-th order inversesystem method[J]. Acta Automatica Sinica,2007,33(3):273-278.
    [45]成秋良,朱烷秋.无轴承永磁同步电机增磁调压转速控制策略[J].中国电机工程学报,2009,29(3):91-95.
    [46]W. Pan, B. Xu, X. Sun, et al. Direct Displacement Control of Rotor Eccentric for Bearingless Introduction Motor[C]. Proceedings of 30th Chinese Control Conference. Yantai,China,2011,3435-3438.
    [47]P. Wei, B. Xu,X. Sun, et al. Direct Torque and Suspension Force Control for Bearingless Permanent Magnet Synchronous Motors[C]. Proceedings of 30th Chinese Control Conference, Yantai,China,2011, 3683-3687.
    [48]H. Zou, X. Diao, H. Zhu, et al. Decoupling Control of Bearingless Synchronous Reluctance Motor Based on Support Vector Machines Inverse System [C]. Proceedings of 29th Chinese Control Conference, Beijing, China,2010,711-716.
    [49]X. Sun, H. Zhu. Study on static electromagnetic characteristics of a bearingless permanent magnet synchronous motor[J]. Advanced Science Letters,2012,5(1):40-48.
    [50]T. Suzuki, A. Chiba, M. A. Rahman, et al. An air-gap flux oriented vector controller for stable operation of bearingless induction motors [J]. IEEE Transactions on Industry Application,2000,36(4): 1069-1076.
    [51]Z. Deng,Y. Yan. The Nonlinear Decoupling Control of the Bearingless Induction Motors Based on the Airgap Motor Flux Orientation[J]. Chinese journal of aeronautics,2002,15(1):38-43.
    [52]邓智泉,王晓琳,张宏荃,等.无轴承异步电机的转子磁场定向控制[J].中国电机工程学报.2003,23(3):89-92.
    [53]孙晓东,朱煜秋.基于神经网络逆系统理论无轴承异步电动机解耦控制[J].电工技术学报,2010,25(1):43-49.
    [54]B. Warberger,R. Kaelin,T. Nussbaumer, et al.50N·m/2500W bearingless motor for high purity pharmaceutical mixing [J]. IEEE Transactions on Industry Electronics,2012,59(5):2236-2247.
    [55]T. Reichert, T. Nussbaumer, J. W. Kolar. Bearingless 300W PMSM for bioreactor mixing[J]. IEEE Transactions on Industry Electronics.2012,59(3):1376-1388.
    [56]T. Reichert, T. Nussbaumer, J. W. Kolar, et al. Investigation of Exterior Rotor Bearingless Motor Topologies for High-Quality Mixing Applications[J]. IEEE Transactions on Industry Applications, 2012,99(1):1-9.
    [57]L. Chen, W. Hofmann. Speed Regulation Technique of One Bearingless 8/6 Switched Reluctance Motor With Simpler Single Winding Structure[J]. IEEE Transactions on Industry electronics, 2012,59(6):2592-2600.
    [58]M. Takemoto,A. Chiba, T. Fukao. A new control method of bearingless switched reluctance motors using square-wave currents[C]. IEEE Power Engineering Society Winter Meeting, Singapore, 2000,375-380.
    [59]M. Takemoto, A. Chiba, H. Suzuki, et al. Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation[J]. IEEE Transactions on Industry Applications,2004,40(1):103-112.
    [60]曹鑫,邓智泉,杨钢,等.无轴承开关磁阻电机独立控制策略的研究[J].中国电机工程学报,2008,28(24):94-100.
    [61]杨艳,邓智泉,张倩影,等.控制策略对无轴承开关磁阻电机定子振动的影响[J].航空学 报,2010,31(10):2010-2017.
    [62]R. Schob, N. Barletta. Principle and application of a bearingless slice motor[C]. Proceedings of the 5th international symposium on magnetic bearings, Japan,1996,313-318.
    [63]S. Silber, W. Amrhein, P. Bosch, et al. Design aspects of bearingless slice motors[J]. EEE/ASME Transactions on Mechatronics,2005,10(6):611-617.
    [64]廖启新,邓智泉,王晓琳.无轴承薄片电机磁体形状优化设计及系统实现[J].中国电机工程学报,2007,27(12):28-32.
    [65]X. Wang, Q. Zhong, Z. Deng, et al. Current-controlled multiphase slice permanent magnetic bearingless motors with open-circuited phases:fault-tolerant controllability and its verification [J]. IEEE Transactions on Industry Electronics,2012,59(5):2059-2072.
    [66]M. Ooshima, S. Miyazawa,A. Chiba, et al. Performance evaluation and test results of a 11, OOOr/min, 4kW surface-mounted permanent magnet-type bearingless motor[C]. The 7th International Symposium on Magnetic Bearings, ETH Zurich,2000,377-382.
    [67]M. Ooshima, A. Chiba,T. Fukao, et al. Design and analysis of permanent magnet-type bearingless motors[J]. IEEE Transaction on Industrial Electronics,1996,43(2):292-299.
    [68]M. Ooshima, S. Miyazawa,A. Chiba, et al. A rotor design of a permanent magnet-type bearingless motor considering demagnetization[C]. IEEE Proceedings of Power Conversion Conference, Nagaoka, 1997,655-660.
    [69]朱熀秋,张涛.无轴承永磁同步电机有限元分析[J].中国电机工程学报,2006,26(3):136-140.
    [70]K. Inagaki, A. Chiba, M. A. Rahman,et al. Performance characteristics of inset-type permanent magnet bearingless motor drives[C]. IEEE Proceedings of Power Engineering Society Winter Meeting Singapore,2000,202-207.
    [71]U. Bikle, K. Reichert. Lateral force in a bearingless interior-type permanent magnet synchronous machine[C]. International Conference on Experimental Mechanics,1998,1156-1160.
    [72]M. Ooshima, S. Miyazawa,Y. Shima, et al. Increase in Radial Force of a Bearingless Motor with Buried Permanent Magnet-Type Rotor[C]. Proceedings of the 4th International Conference on Motion and Vibration Control,1998,1077-1082.
    [73]M. Ooshima, K. Yamaida. An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation[J]. IEEE Transactions on Energy Conversion,2004,19(3):569-575.
    [74]D. Dorrell, M. Ooshima, A. Chiba. Force Analysis of a Buried Permanent-Magnet Bearingless motor[C]. IEEE International Electric Machines and Drives Conference,2003,1091-1097.
    [75]W. Amrhein, S. Silber, K. Nenninger. Levitation forces in bearingless permanent magnet motors [J]. IEEE Transactions on Magnetics,1999,35(5):4052-4054.
    [76]Y. Okaka, S. Miyamoto, T. Ohishi. Levitation and torque control of internal permanent magnet type bearingless motor[J]. IEEE Transactions on Control Systems Technology,1996,32(2):363-369.
    [77]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算[J].电工技术学报,2002,17(5):6-9.
    [78]王凤翔,王宝国.混合转子式无轴承电机[P].发明专利,专利号:02109707
    [79]黎海文.微型无轴承永磁同步电机的原理与实验研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2005.
    [80]D. Kim, L. S. Stephens. Fault tolerance of a Lorentz-type slotless self-bearing motor according to the coiling schemes[C]. Proceedings of 7th International Symposium on Magnetic Bearings, ETH Zurich, Switzerland,2000,219-224.
    [81]L. S. Stephens, H. M. Chin. Robust Stability of the Lorentz-type self bearing servomotor[J]. The 8th International Symposium on Magnetic Bearings,Japan,2002,27-30.
    [82]J. Amemiya, A. Chiba, D. G. Dorrell, et al. Basic Characteristics of a Consequent Pole Type Bearingless Motor[J]. IEEE Transaction on Magnetics,2005,41(1):82-89.
    [83]J. Asama,M. Amada, M. Takemoto, et al. Voltage Characteristics of a Consequent-Pole Bearingless PM Motor With Concentrated Windings[J]. IEEE Transactions on Magnetics,2009,45(4):1378-1386.
    [84]Y. Asano, A. Mizuguchi, M. Amada, et al. Development of a Four-Axis Actively Controlled Consequent-Pole-Type Bearingless Motor[J]. IEEE Transactions on Industry Applications,2009,45 (4):1378-1386.
    [85]仇志坚,邓智泉,王晓琳,等.新型交替极无轴承永磁电机的原理与实现[J].中国电机工程学报2007,27,(33):1-5.
    [86]周媛,贺益康,年珩.永磁型无轴承电机的完整数学模型[J],中国电机工程学报,2006,26(6):134-139.
    [87]朱煜秋,成秋良.基于磁链等效虚拟绕组电流分析方法的无轴承电机径向悬浮力控制[J].科学通报,2009,54(2):262-268.
    [88]孙晓东,朱烷秋,杨泽斌,等.无轴承永磁同步电机最小二乘支持向量机非线性建模控制理论与应用[J],2012,29(4):524-528.
    [89]仇志坚,邓智泉,王晓琳,等.计及偏心及洛仑兹力的永磁型无轴承电机建模与控制研究[J],中国电机工程学报,2007,27(9):64-70.
    [90]左文全,吕艳博,付向东,等.无轴承永磁薄片电机径向悬浮力精确数学建模[J].中国电机工程学报,2012,32(3):103-111.
    [91]S. Zhang, F. Luo. Direct Control of Radial Displacement for Bearingless Permanent Magnet Type Synchronous Motors [J]. IEEE Transactions on Industrial Electronics,2009,56(2):542-552.
    [92]K. Kiryu, A. Chiba, T. Fukao. A radial force detection and feedback effects on bearingless motors [C]. IEEE Industry Applications Conference,2001,64-69.
    [93]年珩,贺益康.感应型无轴承电机磁悬浮力解析模型及其反馈控制[J].中国电机工程学报,2003,23(11):139-144.
    [94]M. Oshima, K. Yamaida. An improved control method of buried-type IPM bearingless motors considering magnetic saturation and magnetic pull variation[J]. IEEE Transactions on Energy Conversion,2004,19(3):569-575.
    [95]王晓琳,贺鹏.无轴承扰动补偿悬浮系统的稳定性分析与验证[J].控制理论与应用,2012,29(5):665-672.
    [96]黄雷,赵光宙,年珩,等.永磁型无轴承电机悬浮系统的H∞鲁棒控制[J].控制理论与应用,2008,25(4):711-716.
    [97]孟令孔,邓智泉,王晓琳,等.无轴承永磁同步电机悬浮子系统的LQG/LTR控制器设计[J].航空学报,2007,28(2):385-340.
    [98]P. Li, X. Yan, B. Yang, et al. Study on Control of Bearingless Permanent Magnet-Type Motor Synchronous Based on Fuzzy Adaptive Sliding Mode[C]. International Conference on Intelligent Computation Technology and Automation,2010,489-492.
    [99]孙玉坤,费德成,朱烷秋.基于α阶逆系统五自由度无轴承永磁电机解耦控制[J].中国电机工程学报,2008,19(22):120-126.
    [100]张亮,孙玉坤.基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制[J].中国电机工程学报2006,26(19):121-126.
    [101]戴先中,刘国海,张兴华.恒压频比变频调速系统的神经网络逆控制[J].中国电机工程学报,2005,25(7):109-114.
    [102]张少如,吴爱国,王利军,等.无轴承永磁同步电机的神经网络逆控制[J].中国机械工程,2008, 19(22):2681-2687.
    [103]X. Sun, H. Zhu. Artificial neural networks inverse control of 5 degrees of freedom bearingless ind uction motor[J]. International Journal of Modelling, Identification and Control,2012,15(3):156-163.
    [104]程启明,杜许峰,郭瑞青,等.基于最小二乘支持向量机的多变量逆系统控制方法及应用[J].中国电机工程学报,2008,28(35):96-101.
    [105]周云红,孙玉坤,黄永红.磁悬浮开关磁阻电机的支持向量机逆全解耦控制[J].江苏大学学报,2012,33(1):60-64.
    [106]黄雷,赵光宙,年珩.基于扩展反电势估算的内插式永磁同步电动机无传感器控制[J].中国电机工程学报,2007,27(9):59-63.
    [107]孙海军,郭庆鼎.参数在线辨识永磁无轴承电机无传感器控制[J].系统仿真学报,2009,21(13):4045-4049.
    [108]程帅,姜海博,黄进,等.基于滑模观测器的单绕组多相无轴承电机无位置传感器控制,[J].电工技术学报,2012,27(7):71-77.
    [109]许波,朱烷秋,姬伟,等.改进型平方根无迹卡尔曼滤波及其在无轴承永磁同步电机无速度传感器运行中的应用[J].控制理论与应用,2012,29(1):53-58.
    [110]孙晓东,朱煜秋,杨泽斌.基于左逆系统的无轴承异步电机无速度传感器运行[J].控制与决策,2012,27(8):256-1260.
    [111]年珩,贺益康,秦峰,等.永磁型无轴承电机的无传感器运行研究[J].中国电机工程学报,2004,24(11):101-105.
    [112]H. Nian,Y. He, L. Huang, et al. Sensorless operation of an inset pm bearingless motor implemented by the combination approach of mras and HF signal injection[C]. Proceedings of 6th World Congress on Intelligent Control and Automation.2006,8163-8167.
    [113]S. Bolognani, S. Calligaro, R. Petrella, et al. Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing[J]. IEEE Transactions on Industrial Applications, 2011,7(1):96-104.
    [114]S. Shinnaka. Anew speed-varying ellipse voltage injection method for sensorless drive of permanent magnet synchronous motors with pole saliency-new PLL method using high-frequency current component multiplied signal[J]. IEEE Transactions on Industrial Applications,2008,44 (3):777-788.
    [115]许波,朱烷秋,姬伟,等.基于FIR优化滤波的旋转高频信号注入法及其应用[J].仪器仪表学报588-595.
    [116]郝雯娟,邓智泉,王晓琳.基于增强型自适应观测器的永磁同步电机无速度传感器[J].电工技术学报,2009,24(3):41-46.
    [117]侯利民,张化光,刘秀翀等.PMSM无速度传感器最优转矩控制系统的研究[J].仪器仪表学报,2009,30(4):707-710.
    [118]G. Foo, M. F. Rahman. Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection[J]. IEEE Transactions on Industrial Electronics,2010,57(4):1270-1278.
    [119]T. Kuwajima, T. Nobe,A. Chiba et al. An estimation of Rotor DisPlacements of bearingless motor Based on a High Frequency Equivalent Circuits[C]. IEEE International Conference on Power Electronics and Drive Systems,2001,725-731.
    [120]年珩,贺益康.永磁型无轴承电机无径向位移传感器运行研究[J].电工电能新技术,2006,25(4):15-18.
    [121]周云红,孙玉坤,嵇小辅,等.磁悬浮开关磁阻电机径向位移自检测[J].中国电机工程学报,2012,32(6):150-155.
    [122]T. Tera, Y. Yamauchi, A. Chiba, et al. Performances of bearingless and sensorless induction motor drive based on mutual inductances and rotor displacements estimation[J].IEEE Transactions on Industrial Electronics,2005,53(1):187-194.
    [123]H.Nian, Q. Yu, J. Li. Rotor Displacement Sensorless Control Strategy for PM Type Bearingless Motor Based on the Parameter Identification[C]. International Conference on Electrical Machines and Systems,2009,1-5.
    [124]年珩,贺益康,黄雷.内插式永磁无轴承电机转子位置/位移综合自检测[J].中国电机工程学报,2007,27(9):52-58.
    [125]T. Mizuno, K. Araki, H. Bleuler. Stability analysis of self-sensing magnetic bearing controllers [J]. IEEE Transactions on Control Systems Technology,1996,4(5):572-579.
    [126]朱志莹,孙玉坤,嵇小辅,等.磁悬浮开关磁阻电机转子位移/位置观测器设计[J],中国电机工程学报,2012,32(12):83-89.
    [127]M. Zak. Terminal attractors in neural networks[J]. Physics Letters,1989,2(4):259-274.
    [128]Y. Feng, X. Yu, Z. Man. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica,2002,38(12):2159-2167.
    [129]M. L. Jin, J. Lee, P. Hun. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control[J]. IEEE Transactions on Industrial Electronics,2009,56(9):3593-3601.
    [130]郑剑飞,冯勇,陆启良.永磁同步电机的高阶终端滑模控制方法[J].控制理论与应用,2009,26(6):697-700.
    [131]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990:28-30.
    [132]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:379-395.
    [133]K. B. Park, T. Tsuiji. Terminal sliding mode control of second-order nonlinear uncertain systems [J]. International Journal of Robust and Nonlinear Control,1999,9(11):769-780
    [134]张晓光,赵克,孙力,等.永磁同步电动机滑模变结构调速系统新型趋近律控制[J].中国电机工程学报,2011,31(24):77-82.
    [135]童克文,张兴,张昱,等.基于新型趋近律的永磁同步电动机滑模变结构控制[J].中国电机工程学报,2008,28(21):102-106.
    [136]姜君,陈庆伟,郭健,等.基于新型趋近律的动中通系统滑模稳定跟踪控制[J].控制与决策,2011,26(12):1904-1908.
    [137]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000:60-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700