随机电磁光束时空域传输特性的一些研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相干性和偏振性是光束的两个重要特性,自从1994年James首先发现部分相干电磁光束在自由空间传播时其偏振度会发生变化以来,相干性和偏振性被认为是相互关联的。最近,Wolf提出用2×2阶交叉光谱密度矩阵来描写空间-频率域中的随机电磁光束,建立了表征部分相干部分偏振电磁光束相干性和偏振性的统一理论。随后,国内外的研究人员对随机电磁光束进行了大量的研究。部分相干、部分偏振的电磁光束被广泛的应用于非线性光学、大气激光光通信、惯性约束核聚变、光学成像等领域。本文在理论上研究了随机电磁光束在光学谐振腔中的传输特性,分析了光腔参数对光束相干、偏振、光谱特性的影响。从空间—时间域出发研究了随机电磁脉冲光束的时空耦合条件,分析了时空耦合特性对脉冲光束偏振特性的影响。具体各章内容为:
     第一章,分别综述了激光光束传输变换理论的发展历史,部分相干光的研究背景,偏振光学理论的历史与进展。概述了本论文的研究目的、内容和创新点。
     第二章,介绍了一些光传输理论基础:光传输的衍射理论,矩阵光学相关内容,部分相干光的张量处理方法,偏振光学理论。
     第三章,利用张量的方法处理随机电磁光束在高斯型光学谐振腔中的传输问题。特别分析了光束在谐振腔内传输过程中的偏振度演化特性。结果显示偏振度的演化趋势不仅依赖于光束的初始参数,还依赖于光腔的结构参数。分析表明稳定腔和非稳腔内光束的偏振度演化趋势有很大区别。
     第四章,基于Stokes参数与相干偏振统一理论的联系,分析了随机电磁光束的偏振态在高斯光腔中的演化特性,给出Stokes参数和偏振椭圆的表达式。结果显示偏振特性相关参数在传输过程呈现振荡还是呈现单调变化与光腔参数有关。此外,随着传输周期数N的增大,偏振特性在空间的横向分布将不再均匀,而是逐渐趋于高斯型。
     第五章,研究了随机电磁光束的高斯型光腔内传输时光谱的演化特性。分析表明随机电磁光束在光腔中的频移特性主要取决于光束的初始偏振度和光腔参数。光束光谱在轴上点发生蓝移,轴外点发生红移。此外,分析得到了光束相对频移量与初始偏振度无关的条件。
     第六章,提出了时空耦合的随机电磁脉冲光束模型,采用6×6阶矩阵对此脉冲光束进行描述,分析了脉冲光束产生时空耦合的条件。研究了时空耦合的随机电磁脉冲通过反射光栅后传输特性,结果表明脉冲光束的偏振度演化特性不仅依赖于光栅结构,而且由于时空耦合效应的存在,偏振度的演化与脉冲光束的时间空间特性有密切的联系。
Coherence and polarization are two important characteristics of optical beam. In1994, James first demonstrated that the degree of polarization of partially coherent optical beam would been varying when the beam propagating in free space. Since then, the coherence and polarization have been consider correlative. The2×2matrix of cross spectral density has been used to describe random electromagnetic beams(REMBs) in spatio-frequency domain by E. Wolf. The unified theory of coherence and polarization has been built. Then the research of REMBs has attracted people's widespread attention. The partially coherent and partially polarized beam has been widely applied in nonlinear optics, free-space optical communications, inertial confinement fusion by laser, and optical imaging. This thesis focuses on the studies on the propagation property of REMBs in optical resonator and the analysis of the affecting of REMBs'coherence, polarization and spectrum by resonator parameter. Furthermore, the condition of spatio-temporal coupling of random electromagnetic pulsed beams(REMPBs) has been studied in spatio-temporal domain. The affecting of polarized characteristic of pulsed beams by the spatio-temporal coupling is analyzed. The contents of this thesis are as follows:
     In Chapter1, the history of light propagation and transformation theory, the background of the research on partially coherent light and the progresses in polarized light theory are reviewed. The purpose, main content and originality of this paper are presented.
     In Chapter2, the basic theory of light propagation, such as theory optical diffraction, matrix optics, the tensor method of partially coherent optics and theory of polarized optics, are introduced.
     In Chapter3, The interaction of an electromagnetic Gaussian Schell-model (EGSM) beam with a Gaussian cavity is analyzed. In particular, the evolution of the degree of polarization of the EGSM beam is investigated. The results show that the behavior of the degree of polarization depends on both the statistical properties of the source that generate the EGSM beam and on the parameters of the cavity.
     In Chapter4, On the basis of the unified theory of coherence and polarization we investigate the behavior of the state of polarization of a stochastic electromagnetic beam in the Gaussian cavity. Both formulations in terms of Stokes parameters and in terms of polarization ellipse are given. We show that the state of polarization stabilizes, except in the case of a lossless cavity, after several passages between the mirrors and might exhibit monotonic or oscillatory behavior depending on the parameters of the resonator. We also find that an initially uniformly polarized beam remains non-uniformly polarized even for large number of passages between the mirrors of the cavity.
     In Chapter5, Evolution of the spectral shift of a stochastic electromagnetic Gaussian Schell-model (EGSM) beam in a Gaussian cavity is investigated in detail. It is shown that the spectral shift of the EGSM beam in a Gaussian cavity is mainly determined by the degree of polarization of the initial beam and the parameters of the cavity. The blue shift occurs at the on-axis point, while the red shift can occur at the off-axis points. The condition under which the relative spectral shift is independent of the degree of polarization of the initial beam is analyzed.
     In Chapter6, Matrix optics is applied to a class of random, in time and space, electromagnetic pulsed beam-like (REMPB) radiation interacting with linear optical elements. A6x6order matrix describing transformation of a six-dimensional state vector including four spatial and two temporal positions within the field is used to derive conditions for spatio-temporal coupling. An example is included which deals with a spatio-temporal coupling in a typical REMPB on reflection from a reflecting grating. Electromagnetic nature of such interaction is explored via considering dependence of the degree of polarization of the reflected REMPB on its source and on the structure of the grating.
引文
1-1. A. G. Fox and T. Li, "Resonant Modes in a Maser Interferometer", Bell Sys. Tech. J.40,450-456 (1961).
    1-2. H. Kogelnik, "Imaging of optical modes-resonators with internal lenses", Bell Sys. Tech. J.44,455-462 (1965)
    1-3. S. A. Collins, "lens-systems diffraction integral written in terms of matrix optics", J. Opt. Soc. Am,60,1168-1177 (1970).
    1-4.洪熙春,黄维刚,王绍民,“失调光学系统的衍射积分公式”,物理学报,31,1656-1659(1982).
    1-5. S. M. Wang S M and D. M. Zhao, Matrix Optics, Springer (2000).
    1-6.林强,陆璇辉,王绍民,“非轴对称光学系统的ABCD定律”,光学学报,8,658-662(1988)
    1-7. Q. Lin, S. Wang, J. Alda and e. Bernabeu, Transformation of nonsymmetric Gaussian beam into symmetric one by means of tensor ABCD law, Optik,85, 67-72(1990).
    1-8.张志刚,“飞秒激光技术”,科学出版社(2011).
    1-9. S. P. Dijaili, A. Dienes, J. S. Smith, "ABCD matrices for dispersive pulse propagation", IEEE J. Quantum Electronics 26,1158-1164 (1990).
    1-10.张筑虹,范滇元,“用时域ABCD矩阵元表达的时间菲涅尔数”,光学学报,11,1011-1015(1991).
    1-11.张筑虹,范滇元,“光学系统的时间衍射积分及其应用”,光学学报,12,179-182(1992).
    1-12. Q. Lin, S. Wang, J. Alda and E. Bernabeu, "Transformation of pulsed nonideal beams in a four-dimension domain", Opt. Lett.18,669-671 (1993).
    1-13. E. Wolf, "The influence of Young's interference experiment on the development of statistical optics", Progress in Optics,50,251-273 (2007).
    1-14. M. Born, and E. Wolf, "Principle of Optics 7th ed", (Cambridge University Press) New York (1999).
    1-15. P.H van Cittert, "Die wahrscheinliche schwingungsverteilung in Einer von Einer lichtquelle direkt oder mittels einer linse beleuchteten ebene", Physica,1,201-210 (1934).
    1-16. P.H van Cittert, "Kohaerenz-probleme", Physica,6,1129-1138 (1939)
    1-17. F. Zernike, "The concept of degree of coherence and its application to optical problems", Physica,5,785-795 (1938).
    1-18. H.H.Hopkins, "On the Diffraction Theory of Optical Images", Proc. R. Soc. Lond. A,217,408-432(1953).
    1-19. E. Wolf, "A Macroscopic Theory of Interference and Diffraction of Light from Finite Sources. Ⅰ. Fields with a Narrow Spectral Range", Proc. R. Soc. Lond. A., 225,96-111(1954)
    1-20. E. Wolf, "A Macroscopic Theory of Interference and Diffraction of Light from Finite Sources. Ⅱ. Fields with a Spectral Range of Arbitrary Width", Proc. R. Soc. Lond. A.,230,246-265 (1955).
    1-21. A. Blanc-Lapierre, "La notion de coherence en optique", P. Dumontet, Revue de Physique Appliquee,34,1-21 (1955).
    1-22. L.Mandel, E.Wolf, "Optical coherence and Quantum optics", (Cambridge university press) New York, (1995).
    1-23. E. Collett and E. Wolf, "Is complete spatial coherence necessary for the generation of highly directional light beams?", Opt. Lett.2,27-29 (1978).
    1-24. E. Collett and E. Wolf, "Partially coherent sources which produce the same far-field intensity distribution as a laser", Opt. Commun.,25,293-296 (1978).
    1-25. Emil Wolf and G. S. Agarwal, "Coherence theory of laser resonator modes", J. Opt. Soc. Am. A 1,541-546 (1984).
    1-26. Ari T. Friberg and Jari Turunen, "Spatially partially coherent Fabry-Perot modes", J. Opt. Soc. Am. A 11,227-235 (1994).
    1-27. P. DeSantis, A. Mascello, C. Palma, and M. R. Perrone, "Coherence growth of laser radiation in Gaussian cavities," IEEE J. Quantum Electron.32,802-812 (1996).
    1-28.F. Gori, "Propagation of the mutual intensity through a periodic structure," Atti Fond. Giorgio Ronchi 35,434-447 (1980).
    1-29.C. Palma and G. Cincotti, "Spectral shifts of a paratially coherent field after passing through a lens," Opt. Lett.22,671-672 (1997).
    1-30. C. Palma, G. Cardone, and G. Cincotti, "Spectral changes in Gaussian-cavity lasers," IEEE J. Quantum Electron.34,1082-1088 (1998).
    1-31. Y. Kato, K.Mima, N. Miyanaga, S. Arinaga et al., Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression, Phys. Rev. Lett.,53,1057-1060 (1984).
    1-32. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, Random phase plates for beam smoothing on the Nova laser, Appl. Opt.32,2543-2554 (1993).
    1-33. P. A. Belanger and C. Pare, Optical resonators using graded-phase mirrors, Opt. Lett.16,1057-1059(1991).
    1-34.王立刚,蔡阳健,江晓清,林强,“利用腔内相位调制改善固体激光器的光束质量”,中国激光,A28,966-970(2001).
    1-35.陈和,李曙光,袁波江,陆璇辉,林强,“电光相位调制的Nd I YAG激光时空相干性变化的研究”,激光与红外,35,758-761(2005).
    1-36. F. Wang, Y. Cai, and S. He, "Experimental observation of coincidence Fractional Fourier transform with a partially coherent beam," Opt.Express,14,6999-7004 (2006).
    1-37. F. Wang, Y. Cai, "Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics", J. Opt. Soc. Am. A,24, 1937-1944(2007).
    1-38. Y. Cai, F. Wang, "Lensless imaging with partially coherent light," Opt.Lett,32, 205-207(2007).
    1-39. R. Simon, E. C. G. Sudarshan, and N. Mukunda. "Anisotropic Gaussian Schell-model beams:Passage through optical systems and associated invariants", Phys. Rev. A,31,2419-2434 (1985).
    1-40. A.T, Friberg, J. Turunen, "Algebraic and graphical propagation methods for Gaussian Schell-model beams", Opt. Eng.25,857-863, (1986)
    1-41. J. Turunen, A.T. Friberg, "Matrix representation of Gaussian Schell-model beams in optical systems", Opt. Laser. Technol.18,259-267, (1986)
    1-42. R. Martinez-Herrero, P. M. Mejias, M. Sanchez, J. L. H. Neira, "Third-and fourth-order parametric characterization of partially coherent beams propagating throughABCD optical systems", Opt. Quantum. Electron.24, S1021-1026 (1992).
    1-43. R. Martinez-Herrero, G. Piquero, P.M. Mejias, "On the propagation of the kurtosis parameter of general beams", Opt. Commun.15,225-232, (1995).
    1-44.C. Mujat and A. Dogariu, "Statistics of partially coherent beams:a numerical analysis", J. Opt. Soc. Am. A 21,1000-1003 (2004).
    1-45. Q. Lin, Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams," Opt. Lett.27,216-218 (2002).
    1-46. Y. Cai, F. Wang, "Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-Model beams:a review", the Open Opt. J.,4, 1-20(2010).
    1-47.D. H. Goldstein, "Polarized Optics,2nd Ed", Marcel Dekker, Inc., New York (2003)
    1-48.廖延彪,“偏振光学”,科学出版社,北京(2003).
    1-49. R. Martinez-Herrero, P. M. Mejias, G. Piquero, "Characterization of Partially Polarized Light Fields", Springer-Verlag, Berlin Heidelberg (2009).
    1-50. D. F. V. James, Change of polarization of light beam on propagation in free-space, J. Opt. Soc. Am. A 11,1641-1643 (1994).
    1-51. F. Gori, Matrix treatment for partially polarized, partially coherent beams, Opt. Lett.23,241-243
    1-52. F. Gori, M. Santarsiero, R. Borghi, and G. Piquero, "Use of the van Cittert-Zernike theorem for partially polarized sources," Opt. Lett.25,1291-1293 (2000).
    1-53.F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello and R. Simon, "Partially polarized Gaussian Schell-model beams", J. Opt. A:Pure Appl. Opt.3, 1-9 (2001).
    1-54. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi and A. Mondello, "Synthesis of partially polarized Gaussian Schell-model sources", Opt. Commun. 208,9-16 (2002).
    1-55. G. Piquero, R. Borghi, and M. Santarsiero, "Gaussian Schell-model beams propagating through polarization gratings", J. Opt. Soc. Am. A 18,1399-1405 (2001).
    1-56. E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams", Phys. Lett. A,312,263-267 (2003)
    1-57.E. Wolf, "Introduction to the theory of coherence and polarization of light" Cambridge U. Press, Cambridge (2007).
    1-58. T. Shirai, O. Korotkova, and E. Wolf, "A method of generating electromagnetic Gaussian Schell-model beams", J. Opt. A:Pure Appl. Opt.7,232-237 (2005).
    1-59.B. Kanseri and H. C. Kandpal, "Experimental determination of electric cross-spectral density matrix and generalized Stokes parameters for a laser beam", Opt. Lett.33,2410-2412 (2008).
    1-60.0. Korotkova, M. Salem, E. Wolf, "The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence", Opt. Commun.233,225-230 (2004).
    1-61. W Lu, L Liu, J Sun, Q Yang, Y Zhu, "Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence", Opt. Commun.271,1-8 (2007).
    1-62. X. Ji, E. Zhang, B. Lu, "Changes in the spectrum and polarization of polychromatic partially coherent electromagnetic beams in the turbulent atmosphere", Opt. Commun.275,292-300 (2007).
    1-63. M. Salem and G. P. Agrawal, "Coupling of stochastic electromagnetic beams into optical fibers", Opt. Lett.34,2829-2831 (2009).
    1-64. M. Salem and G. P. Agrawal, "Effects of coherence and polarization on the coupling of stochastic electromagnetic beams into optical fibers", J. Opt. Soc. Am. A 26,2452-2458(2009).
    1-65. W. Gao and O. Korotkova, "Changes in the state of polarization of a random electromagnetic beam propagating through tissue", Opt. Commun.270,474-478 (2007).
    1-66. Z. Chen, L. Hua, J. Pu, "Tight Focusing of Light Beams:Effect of Polarization, Phase and Coherence", Prog, in Opt.,57,219-259 (2012).
    1-67. E. Wolf, "Polarization invariance in beam propagation," Opt. Lett.32,3400-3401 (2007).
    1-68. M. Salem and E. Wolf, "Coherence-induced polarization changes in light beams," Opt. Lett.33,1180-1182 (2008).
    1-69. D. Zhao, E. Wolf, "Light beams whose degree of polarization does not change on propagation", Opt. Comun.281,3067-3070 (2008).
    1-70. D. Zhao, T. Wang, "Direct and inverse problems in the theory of light scattering", Prog, in Opt.57,261-308 (2012).
    1-71. F. Wang, G. Wu, X. Liu, S. Zhu, and Y. Cai, "Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source," Opt. Lett.36,2722-2724(2011).
    1-72.M. E. Fermann, A. Galvanauskas, G. Sucha, "Ultrafast Lasers:Technology and Applications",1 ed. (CRC Press, NewYork,2003)
    1-73. L. Wang and C. Zhao, "Dynamic Radiation Force of a Pulsed Gaussian Beam Acting on Rayleigh Dielectric Sphere", Opt. Express 15,10615-10621 (2007).
    1-74. P. Paakkonen, J. Turunen, P. Vahimaa, et al, "Partially coherent Gaussian pulses", Opt. Commun.204,53-58 (2002).
    1-75. H. Lajunen, P. Vahimaa, and J. Tervo. "Theory of spatially and spectrally partially coherent pulses". J. Opt. Soc. Am. A 22,1536-1545 (2005).
    1-76. Q. Lin, L. Wang, S. Y. Zhu, "Partially coherent light pulse and its propagation", Opt. Commun.219,65-70 (2003).
    1-77. L. Wang, N. Liu, Q. Lin, S. Y. Zhu, "Superluminal propagation of light pulses:A result of interference", Phys. Rev. E,68,066606 (2003).
    1-78.31. L. Wang, Q. Lin, H. Chen, S. Y. Zhu, "Propagation of partially coherent pulsed beams in the spatiotemporal domain", Phys. Rev. E 67,056613 (2003).
    1-79. H. Lajunen, J. Tervo, J. Turunen, P. Vahimaa and F. Wyrowski, "Spectral coherence properties of temporally modulated stationary light sources", Opt. Express 11,1894-1899 (2003)
    1-80. V. Torres-Company, G. Minguez-Vega, J. Lancis, and A. T. Friberg, "Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper", Opt. Lett.32,1608-1610 (2007).
    1-81. H. Lajunen, P. Vahimaa, J. Tervo, "Theory of spatially and spectrally partially coherent pulses," J. Opt. Soc. Am. A 22,1536-1545 (2005).
    1-82. J. Lancis, V. Torres-Company, E. Silvestre, and P. Andr'es, "Space-time analogyfor partially coherent plane-wave pulses", Opt. Lett.30,2973-2975 (2005).
    1-83. V. Torres-Company, H. Lajunen, J. Lancis, A.T. Friberg, "Ghost interference with classical partially coherent light pulses", Phys. Rev. A 77,043811 (2008).
    1-84. K. Saastamoinen, J. Turunen, P. Vahimaa, A.T. Friberg, "Spectrally partially coherent propagation-invariant fields" Phys. Rev. A 80 (2009) 053804.
    1-85. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre and P. Andres, "Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media," Opt. Express 18,14979-14991 (2010).
    1-86. T. Shirai, T. Setala, and A. T. Friberg, "Temporal ghost imaging with classical non-stationary pulsed light," J. Opt. Soc. Am. B 27,2549-2555 (2010)
    1-87. H. Lajunen and T. Saastamoinen, "Non-uniformly correlated partially coherent pulses," Opt. Express 21,190-195 (2013).
    1-88. W.H. Huang, S.A. Ponomarenko, M. Cada, G.P. Agrawal, "Polarization changes of partially coherent pulses propagating in optical fibers," J. Opt. Soc. Am. A 24, 3063-3068 (2007).
    1-89. C. Ding, L. Pan, and B. Lu, Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, New J. Phys.11,083001 (2009)
    1-90. C. Ding, L. Pan, and B. Lu, "Changes in the spectral degree of polarization of stochastic spatially and spectrally partially coherent electromagnetic pulses in dispersive media," J. Opt. Soc. Am. B 26,1728-1735 (2009).
    1-91. C. Ding, Y. Cai, O. Korotkova, Y. Zhang, and L. Pan, Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse, Opt. Lett.36,517-519 (2011).
    2-1. M. Born, and E. Wolf, "Principle of Optics 7th ed", (Cambridge University Press) New York (1999).
    2-2.王绍民,赵道木,“矩阵光学原理”,杭州大学出版社,杭州(1994).
    2-3.吕百达,“激光光学:光束描述、传输变换与光腔技术物理(第三版)”,高等教育出版社,北京(2003).
    2-4. S. A. Collins, "lens-systems diffraction integral written in terms of matrix optics", J. Opt. Soc. Am,60,1168-1177 (1970).
    2-5.林强,陆旋辉,王绍民,“非轴对称光学系统的ABCD定律”,光学学报,8,658-662(1988).
    2-6.林强,王绍民,“张量光学”,杭州大学出版社,杭州(1994).
    2-7. Q. Lin, Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams," Opt. Lett.27,216-218 (2002).
    2-8. Y. Cai, F. Wang, "Tensor method for treating the propagation of scalar and electromagnetic Gaussian Schell-Model beams:a review", the Open Opt. J.,4, 1-20(2010).
    2-9. S. P. Dijaili, A. Dienes, J. S. Smith, "ABCD matrices for dispersive pulse propagation", IEEE J. Quantum Electronics 26,1158-1164 (1990).
    2-10.张筑虹,范滇元,“光学系统的时间衍射积分及其应用”,光学学报,12,179-182(1992).
    2-11.Q. Lin, L. Wang, S. Y. Zhu, "Partially coherent light pulse and its propagation", Opt. Commun.219,65-70 (2003).
    2-12.廖延彪,“偏振光学”,科学出版社,北京(2003).
    2-13. D. H. Goldstein, "Polarized Optics,2nd Ed", Marcel Dekker, Inc., New York (2003).
    2-14. L.Mandel, E.Wolf, "Optical coherence and Quantum optics", (Cambridge university press) New York, (1995).
    2-15. E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams", Phys. Lett. A,312,263-267 (2003)
    2-16. E. Wolf, "Introduction to the theory of coherence and polarization of light" Cambridge U. Press, Cambridge (2007).
    2-17.O. Korotkova and E. Wolf, "Generalized Stokes parameters of random electromagnetic beams", Opt. Lett.30,198-200 (2005).
    3-1. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi and G. Guattari, "Beam coherence-polarization matrix", Pure Appl. Opt. 7,941-951 (1998).
    3-2. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, "Partially polarized Gaussian schell-model beams", J. Opt. A:Pure Appl. Opt.3, 1-9(2001).
    3-3. E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams", Phys. Lett. A 312,263-267 (2003).
    3-4. O. Korotkova, M. Salem, and E. Wolf, "Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source", Opt. Lett.29,1173-1175 (2004).
    3-5. E. Wolf, Introduction to the theory of coherence and polarization of light (Cambridge U. Press,2007).
    3-6. G. Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi and A. Mondello, "Synthesis of partially polarized Gaussian Schell-model sources," Opt. Commun. 208,9-16(2002).
    3-7. T. Shirai, O. Korotkova, and E. Wolf, "A method of generating electromagnetic Gaussian Schell-model beams," J. Opt. A:Pure Appl. Opt.7,232-237 (2005).
    3-8. Y. Cai, D. Ge, and Q. Lin, "Fractional Fourier transform for partially coherent and partially polarized Gaussian Schell-model beams," J. Opt. A:Pure App. Opt.5, 453-459 (2003).
    3-9. O. Korotkova, M. Salem, and E. Wolf, "The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence," Opt. Commun.233,225-230 (2004).
    3-10.O Korotkova, E Wolf, "Changes in the state of polarization of a random electromagnetic beam on propagation", Opt. Commun.246,35-43 (2005).
    3-11.H. Roychowdhury, S. A. Ponomarenko, and E. Wolf, "Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere," J. Mod. Opt.52,1611-1618 (2005).
    3-12.O. Korotkova, Control of the intensity fluctuations of random electromagnetic beams on propagation in weak atmospheric turbulence", Proc. SPIE 61050V,1-9 (2006).
    3-13.H. T Eyyuboglu, Y Baykal, Y Cai, "Degree of polarization for partially coherent general beams in turbulent atmosphere," Appl. Phys. B 89,91-97 (2007).
    3-14.H. Roychowdhury and O. Korotkova, "Realizability conditions for electromagnetic Gaussian Schell-model sources," Opt. Commun.249,379-385 (2005).
    3-15.F. Gori, M. Santarsiero, R. Borghi, and V. Ramirez-Sanchez, "Realizability condition for electromagnetic Schell-model sources," J. Opt. Soc. Am. A 25, 1016-1021 (2008).
    3-16. A. G. Fox and T. Li, "Resonate modes in a maser interferometer," Bell. Syst. Tech. J.40,453-488(1961).
    3-17.E. Wolf, "Spatial coherence of resonant modes in a maser interferometer," Phys. Lett.3,166-168(1963).
    3-18. E. Wolf and G S. Agarwal, "Coherence theory of laser resonator modes," J. Opt. Soc. Am. A 1,541-546 (1984).
    3-19. F. Gori, "Propagation of the mutual intensity through a periodic structure," Atti Fond. Giorgio Ronchi 35,434-447 (1980).
    3-20. P. DeSantis, A. Mascello, C. Palma, and M. R. Perrone, "Coherence growth of laser radiation in Gaussian cavities," IEEE J. Quantum Electron.32,802-812 (1996).
    3-21.C. Palma, G. Cardone, and G Cincotti, "Spectral changes in Gaussian-cavity lasers," IEEE J. Quantum Electron.34,1082-1088 (1998).
    3-22. L. Wang and Q. Lin, "The evolutions of the spectrum and spatial coherence of laser radiation in resonators with hard apertures and phase modulation," IEEE J. Quantum Electron.39,749-758 (2003).
    3-23.Q. Lin, Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams," Opt. Lett.27,216-218 (2002).
    3-24.L.W. Casperson and S. D. Lunnam, "Gaussian modes in high loss laser resonators," Appl. Opt.14,1193-1199 (1975).
    4-1. A. G. Fox and T. Li, "Resonate modes in a maser interferometer," Bell. Syst. Tech. J.40,453-488(1961).
    4-2. G. D. Boyd and J.P. Gordon, "Confocal multimode resonator for millimeter through optical wavelength masers," Bell. Syst. Tech. J.40,489 (1961).
    4-3. E. Wolf, "Spatial coherence of resonant modes in a maser interferometer," Phys. Lett.3,166-168 (1963).
    4-4. E. Wolf and G. S. Agarwal, "Coherence theory of laser resonator modes," J. Opt. Soc. Am. A 1,541-546 (1984).
    4-5. F. Gori, "Propagation of the mutual intensity through a periodic structure," Atti Fond. Giorgio Ronchi 35,434-447 (1980).
    4-6. P. DeSantis, A. Mascello, C. Palma, and M. R. Perrone, "Coherence growth of laser radiation in Gaussian cavities," IEEE J. Quantum Electron.32,802-812 (1996).
    4-7. C. Palma, G. Cardone, and G. Cincotti, "Spectral changes in Gaussian-cavity lasers," IEEE J. Quantum Electron.34,1082-1088 (1998).
    4-8. E. Wolf, Introduction to the theory of coherence and polarization of light (Cambridge U. Press,2007).
    4-9. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, "Partially polarized Gaussian schell-model beams", J. Opt. A:Pure Appl. Opt.3, 1-9(2001).
    4-10.0. Korotkova, M. Salem, and E. Wolf, "The far-zone behavior of the degree of polarization of partially coherent beams propagating through atmospheric turbulence", Opt. Comm.233,225-230 (2004).
    4-11. O. Korotkova and E. Wolf, "Effects of linear non-image forming devices on coherence and polarization properties of random electromagnetic beams. Part Ⅰ. General theory", J. Mod. Opt.52,2659-2671 (2005).
    4-12. W. Gao, "Changes of polarization of light beams on propagation through tissue," Opt. Comm.260,749-754 (2006).
    4-13.X. Du, D. Zhao, and O. Korotkova, "Changes in the degree of polarization of a random electromagnetic beam propagating through an apertured optical system" (Appl. Phys. Lett., in press).
    4-14.E. Wolf, "Coherence and polarization properties of electromagnetic laser modes", Opt Comm.265,60-62 (2006).
    4-15.T. Saastamoinen, J. Turunen, J. Tervo, T. Setala, and A. T. Friberg, "Electromagnetic coherence theory of laser resonator modes," J. Opt. Soc. A.22, 103-108 (2005).
    4-16. M. Yao, Y. Cai, H. T. Eyyuboglu, Y. Baykal, and O. Korotkova, "The evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity" (submitted to Optics Letters).
    4-17. G. G. Stokes, "On the composition and resolution of streams of polarized light from different sources," Trans. Camb. Phil. Soc.9,399 (1852).
    4-18.M. Born and E. Wolf, Principles of Optics,7th Edition (Cambridge University Press, Cambridge 1999).
    4-19.0 Korotkova and E Wolf, "Changes in the state of polarization of a random electromagnetic beam on propagation", Opt. Comm.246,35-43 (2005).
    4-20.0. Korotkova and E. Wolf, "Generalized Stokes parameters of random electromagnetic beams", Opt. Lett.30,198-200 (2005).
    5-1. E. Wolf, "Invariance of the Spectrum of Light on Propagation," Phys. Rev. Lett. 56,1370-1372(1986).
    5-2. E. Wolf, "Non-cosmological redshifts of spectral lines," Nature 326,363-365 (1987).
    5-3. E. Wolf, "Redshifts and blue shifts of the spectral lines caused by source correlations," Opt. Commun.62,12-16 (1987).
    5-4. E. Wolf, "Red shifts and blue shifts of spectral lines emitted by two correlated sources," Phys. Rev. Lett.58,2646-2648 (1987).
    5-5. M. F. Bocko, D. H. Douglass, and R. S. Knox, "Observation of frequency shifts of spectral lines due to source correlations," Phys. Rev. Lett.58,2649-2651(1987)
    5-6. H. C. Kandpal, J. S. Vaishya and K. C. Joshi, "Wolf shift and its application in spectroradiometry," Opt. Commun.73,169-172 (1989).
    5-7. H. C. Kandpal, J. S. Vaishya, and K. C. Joshi, "Simple experimental arrangement for observing spectral shifts due to source correlation," Phys. Rev. A 41,4541-4542 (1990)
    5-8. F. Gori, G L. Marcopoli and M. Santarsiero, "Spectrum invariance on paraxial propagation," Opt. Commun.81,123-130(1991).
    5-9. M. Santarsiero and F. Gori, "Spectral changes in a Young interference pattern," Phys. Lett. A 167,123-128 (1991).
    5-10. A. Gamliel,1990 Mode analysis of spectral changes in light propagation from sources of any state of coherence J. Opt. Soc. Am. A 71591-1597 (1990).
    5-11.Q. Lin, Z. Wang, J. Chen and S. Wang, "Spectral shift of apertured gaussian schell-model beam," J. Opt (Paris) 26 177-180 (1995).
    5-12.E. Wolf and D. F. V. James, "Correlation-induced spectral changes," Rep. Prog. Phys.59,771-818(1996).
    5-13. J. Pu, H. Zhang and S. Nemoto, "Spectral shifts and spectral switches of partially coherent light passing throug an aperture," Opt.Commun.162,57-63 (1999).
    5-14. C. Palma and G. Cincotti, "Spectral shifts of a paratially coherent field after passing through a lens," Opt. Lett.22,671-672 (1997).
    5-15. Y. Cai and Q. Lin, "Spectral shift of partially coherent twisted anisotropic Gaussian Schell-model beams in free space," Opt. Commun.204,17-23 (2002).
    5-16. A. G. Fox and T. Li, "Resonate modes in a maser interferometer," Bell. Syst. Tech. J.40,453-488 (1961).
    5-17. E. Wolf, "Spatial coherence of resonant modes in a maser interferometer," Phys. Lett.3,166-168 (1963).
    5-18. W. Streifer, "Spatial coherence in periodic systems," J. Opt. Soc. Am.56, 1481-1489(1966)
    5-19. E. Wolf and G. S. Agarwal, "Coherence theory of laser resonator modes," J. Opt. Soc. Am. A 1,541-546 (1984).
    5-20. F. Gori, "Propagation of the mutual intensity through a periodic structure," Atti Fond. Giorgio Ronchi 35,434-447 (1980).
    5-21. A. T. Friberg and J. Turunen, "Spatially partially coherent Febry-Perot modes," J. Opt. Soc. Am. A 11,227-235 (1994).
    5-22. V. Bagini, A. Masello, C. Palma, and M. R. Perrone, "Transient states analysis of a partially coherent laser beam propagating through a Gaussian cavity," IEEE J. Quantum Electron.31,1572-1578 (1995)
    5-23.P. DeSantis, A. Mascello, C. Palma, and M. R. Perrone, "Coherence growth of laser radiation in Gaussian cavities," IEEE J. Quantum Electron.32,802-812 (1996).
    5-24. C. Palma, G. Cardone, and G. Cincotti, "Spectral changes in Gaussian-cavity lasers," IEEE J. Quantum Electron.34,1082-1088 (1998).
    5-25. D. F. V. James, "Changes of polarization of light beams on propagation in free space," J. Opt. Soc. Am. A 11,1641-1643 (1994).
    5-26. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi and G Guattari, "Beam coherence-polarization matrix," Pure Appl. Opt.7,941-951 (1998).
    5-27. F. Gori, "Matrix treatment for partially polarized partially coherent beams," Opt. Lett.23,241-243 (1998).
    5-28. G P. Agrawal and E. Wolf, "Propagation-induced polarization changes in partially coherent optical beams," J. Opt. Soc. Am. A 17,2019-2023 (2000).
    5-29. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, "Partially polarized Gaussian schell-model beams," J. Opt. A:Pure Appl. Opt.3, 1-9 (2001).
    5-30. G Piquero, F. Gori, P. Romanini, M. Santarsiero, R. Borghi and A. Mondello, "Synthesis of partially polarized Gaussian Schell-model sources," Opt. Commun. 208,9-16 (2002).
    5-31.E. Wolf, "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A 312,263-267 (2003).
    5-32. Y. Cai, D. Ge, and Q. Lin, "Fractional Fourier transform for partially coherent and partially polarized Gaussian Schell-model beams," J. Opt. A:Pure App. Opt.5, 453-459 (2003).
    5-33.O. Korotkova, M. Salem, and E. Wolf, "Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source", Opt. Lett.29,1173-1175 (2004).
    5-34. E. Wolf, Introduction to the theory of coherence and polarization of light (Cambridge U. Press,2007).
    5-35. T. Shirai, O. Korotkova, and E. Wolf, "A method of generating electromagnetic Gaussian Schell-model beams," J. Opt. A:Pure Appl. Opt.7,232-237 (2005).
    5-36. H. Roychowdhury and O. Korotkova, "Realizability conditions for electromagnetic Gaussian Schell-model sources," Opt. Commun.249,379-385 (2005).
    5-37. F. Gori, M. Santarsiero, R. Borghi, and V. Ramirez-Sanchez, "Realizability condition for electromagnetic Schell-model sources," J. Opt. Soc. Am. A 25,. 1016-1021 (2008).
    5-38.O. Korotkova, M. Salem, and E. Wolf, "The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence," Opt. Commun.233,225-230 (2004).
    5-39.O Korotkova, E Wolf, "Changes in the state of polarization of a random electromagnetic beam on propagation", Opt. Commun.246,35-43 (2005).
    5-40. H. T Eyyuboglu, Y Baykal, Y Cai, "Degree of polarization for partially coherent general beams in turbulent atmosphere," Appl. Phys. B 89,91-97 (2007).
    5-41. Y. Cai, O. Korotkova, H. T. Eyyuboglu, Yahya Baykal, "Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere," Opt. Express 16, 15835-15846(2008).
    5-42. T. Saastamoinen, J. Turunen, J. Tervo, T. Setala, and A. T. Friberg, "Electromagnetic coherence theory of laser resonator modes," J. Opt. Soc. Am. A 22,103-108(2005).
    5-43. E. Wolf, "Coherence and polarization properties of electromagnetic laser modes", Opt Commun.265,60-62 (2006).
    5-44. M. Yao, Y. Cai, H. T. Eyyuboglu, Y. Baykal, and O. Korotkova, "The evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity," Opt. Lett.33,2266-2268 (2008).
    5-45.O. Korotkova, M. Yao, Y. Cai, H. T. Eyyuboglu, Y. Baykal, "The state of polarization of a stochastic electromagnetic beam in an optical resonator," J. Opt. Soc. Am. A 25,2710-2720 (2008).
    5-46. J. Pu, O. Korotkova, and E. Wolf, "Polarization-induced spectral changes on propagation of stochastic electromagnetic beams," Phys. Rev. E 75,056610 (2007).
    5-47. J. Pu, O. Korotkova, and E. Wolf, "Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propagation," Opt. Lett.31,2097-2099 (2006).
    5-48. X. Ji, E. Zhang, and B. Lu, "Changes in the spectrum and polarization of polychromatic partially coherent electromagnetic beams in the turbulent atmosphere," Opt. Commun.275,292-300 (2007).
    5-49. H. Roychowdury, G. P. Agrawal, and E. Wolf, "Changes in the spectrum, in the spectral degree of polarization, and in the spectral degree of coherence of a partially coherent beam propagating through a gradient-index fiber," J. Opt. Soc. Am. A 23,940-948 (2006).
    5-50. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt.5,1550-1567 (1966).
    6-1. S. M. Wang S M and D. M. Zhao, Matrix Optics, Springer (2000)
    6-2. For the collection of original papers by R. C. Jones R C see W. Swindel, Polarized light (Stroudsburg, Pennsylvania, Dowden, Hutchinson & Ross,1975).
    6-3. H. Mueller, "The foundations of optics," J. Opt. Soc. Am.38,661-661 (1948); for account of the Mueller's theory see also E. Collett, Polarized Light:Fundamentals and Applications (Marcel Dekker, Inc., New York,1993). Chap.5.
    6-4. O. Korotkova and E. Wolf, "Effects of linear non-image forming devices on coherence and polarization properties of random electromagnetic beams. Part I. General theory", J. Mod. Opt.52,2659-2671 (2005).
    6-5. O. Korotkova and E. Wolf, "Effects of linear non-image forming devices on coherence and polarization properties of random electromagnetic beams. Part II. Examples", J. Mod. Opt.52,2673-2685 (2005).
    6-6. Q. Lin and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams," Opt. Lett.27,216-218 (2002).
    6-7. M. Yao, Y. Cai, H. T. Eyyuboglu, Y. Baykal, and O. Korotkova, "The evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity," Opt. Lett.33,2266-2268 (2008).
    6-8. O. Korotkova, Y. Cai, E. Watson, "Stochastic electromagnetic beams for LIDAR systems operating in turbulent atmosphere", Appl. Phys. B 94,681-690 (2009).
    6-9. O. E. Martinez, "Matrix formalism for pulse compressors", IEEE J. Quantum Electron.24,2530-2536 (1988).
    6-10.0. E. Martinez, "Matrix formalism for dispersive cavities", IEEE J. Quantum Electron.25,296-300 (1989).
    6-11. A. G. Kostenbauder, "Ray-pulse matrices:a rational treatment for dispersive optical systems", IEEE J. Quantum Electron.26,1148-1157 (1990).
    6-12. S. P. Dijaili, A. Dienes, J. S. Smith, "ABCD matrices for dispersive pulse propagation", IEEE J. Quantum Electronics 26,1158-1164 (1990).
    6-13. Q. Lin, S. Wang, J. Alda and E. Bernabeu, "Transformation of pulsed nonideal beams in a four-dimension domain", Opt. Lett.18,669-671 (1993).
    6-14. P. A. Belanger, "Beam propagation and the ABCD ray matrices," Opt. Lett.16, 196-198(1991).
    6-15. P. Paakkonen, J. Turunen, P. Vahimaa, A. T. Friberg, F. Wyrowski, "Partially coherent Gaussian pulses", Opt. Commun.204,53-58 (2002).
    6-16. Q. Lin, L. Wang, S. Zhu, "Partially coherent light pulse and its propagation", Opt. Commun.219,65-70 (2003).
    6-17. L. Wang, Q. Lin, H. Chen, and S. Zhu, "Propagation of partially coherent pulsed beams in the spatiotemporal domain", Phys. Rev. E 67,056613 (2003).
    6-18. H. Lajunen, J. Tervo and P. Vahimaa, "Overall coherence and coherent-mode expansion of spectrally partially coherent plane-wave pulses," J. Opt. Soc. Am. A 21,2117-2123(2004)
    6-19. Y. Cai and Q. Lin, "The fractional Fourier transform for a partially coherent pulse," J. Opt. A:Pure and Appl. Opt.6,307-311 (2004)
    6-20. J. Lancis, V. Torres-Company, E. Silvestre, and P. Andres, "Space-time analogy for partially coherent plane-wave-type pulses," Opt. Lett.30,2973-2975 (2005)
    6-21. H. Lajunen, J. Turunen, P. Vahimaa, J. Tervo, and F. Wyrowski, "Spectrally partially coherent pulse trains in dispersive media," Opt. Commun.255,12-22 (2005).
    6-22. H. Lajunen, P. Vahimaa, and J. Tervo, "Theory of spatially and spectrally partially coherent pulses," J. Opt. Soc. Am. A 22,1536-1545 (2005).
    6-23. V. Torres-Company, G. Minguez-Vega, J. Lancis, and A.T. Friberg, "Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper," Opt. Lett.32,1608-1610 (2007).
    6-24. A. T. Friberg, H. Lajunen, and V. Torres-Company, "Spectral elementary-coherence-function representation for partially coherent light pulses," Opt. Express 15,5160-5165 (2007).
    6-25. V. Torres-Company, H. Lajunen, J. Lancis, and A.T. Friberg, "Ghost interference with classical partially coherent light pulses," Phys. Rev. A 77,043811 (2008).
    6-26. H. Lajunen, V. Torres-Company, J. Lancis, E. Silvestre, and P. Andres, "Pulse-by-pulse method to characterize partially coherent pulse propagation in instantaneous nonlinear media," Opt. Express 18,14979-14991 (2010).
    6-27. C. Ding, L. Pan, and B. Lu, "Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams," New J. Phys.11,083001 (2009)
    6-28. C. Ding and B. Lu, "Spectral shifts and spectral switches of diffracted spatially and spectrally partially coherent pulsed beams in the far field," J. Opt. A:Pure Appl. Opt.10,095006 (2008).
    6-29. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, "Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems," J. Opt. Soc. Am. B 9,1158-1165 (1992)
    6-30. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Spatial-temporal coupling in grating-pair pulse compression system analysed by matrix optics," Opt. Quantum Electron.27 679-692 (1995).
    6-31. G. Piquero, R. Borghi, and M. Santarsiero, "Gaussian Schell-model beams propagating through polarization gratings," J. Opt. Soc. Am. A 18,1399-1405 (2001).
    6-32. E. Wolf, "Unified theory of coherence and polarization of random electromagnetic fields," Phys. Lett. A 312,263-267 (2003).
    6-33. F. Gori, "Matrix treatment for partially polarized, partially coherent beams," Opt. Lett.23,241-243 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700