空间量子密钥分配中的偏振劣化及系统改进设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在这个信息呈爆炸式增长的年代,信息的安全问题日益突出,保密通信的需求日益增长。安全密钥的获取是保密通信的关键。量子密钥分配由于可以提供大量安全密钥的分发而受到人们的青睐。经过二十余年的发展,在量子密钥分配的两大关键指标,即实现密钥分配的距离和成钥速率两方面都有了巨大的进步。
     但是,从目前的空间量子密钥分配实验结果来看,当传输距离大于10公里时,误码率都在5%以上,最终的成钥率只有几百bit/s。由于空间量子密钥分配一般采用偏振态编码方式,如果信号光子的偏振态在产生或传输的过程中偏离了密钥分配协议所要求的理想偏振态,即偏振发生劣化,将导致密钥误码率的增加。因此,有效解决空间量子密钥分配中的偏振劣化问题,是降低系统误码率、提升密钥分配效率的关键之一。本论文围绕空间量子密钥分配中的偏振劣化,包括系统中光学器件的不理想所导致的信号偏振光子的偏振态的转换以及大气传输所带来的信号光子的退偏振效应,进行了以下几个方面的研究:
     (1)分析了空间量子密钥分配系统中偏振劣化的器件来源。指出光在光学器件的介质分界面处折、反射时的偏振相关特性是系统中偏振劣化的物理根源。用来分/合束的偏振无关分束器(NPBS)的偏振相移特性的误差是系统退偏振的重要来源。采用琼斯矩阵法就NPBS对系统误码率的影响进行了分析。提出对光路布置设计的改进方案,在这一方案中,只对NPBS的透射p光与s光的相移差有性能要求,可以降低NPBS的偏振相移误差对误码率的影响。并改进设计了满足系统设计要求的新型NPBS。分别选用一般NPBS和改进设计过的NPBS构建空间量子密钥分配系统,进行室外200米及1.3公里的空间量子密钥分配对比实验。实验结果与理论预期符合基本一致,改进NPBS的设计及接收端光学系统的光路布置使系统误码率降低了2.6%,证明了对系统设计方案改进的有效性。
     (2)提出了基于正交对称结构的空间量子密钥分配系统的改进设计方案。在这一方案中,发射端和接收端采用同一种NPBS,两者相互呈90°放置,使得经过第一个NPBS的p光相对于第二个NPBS是s光,而经过第一个NPBS的s光相对于第二个NPBS是p光,从而抵消NPBS对透射p光和s光的相移差。这使得无需对NPBS的透射p光与s光的相移差作性能要求,就可以降低NPBS所带来的偏振劣化对误码率的影响。采用琼斯矩阵方法对这一方案的有效性进行了理论验证,并给出实验系统的示意图。
     (3)采用蒙特卡罗方法详细分析了偏振光在云雾大气中的退偏振及传输损耗特性。分别针对不同浓度及不同平均粒子半径的云雾模型,在不同的空间量子密钥分配系统的接收机参数下,进行了数值模拟。得到了在不同的接收机参数下,偏振光经过云雾大气传输后的传输损耗及退偏振变化规律,为分析穿越云雾的空间量子密钥分配提供了理论基础。搭建了测量偏振光经过大气传输后的退偏振效应的测试装置,给出了在合肥地区测得的累积实验结果。
     (4)进行了云雾大气中空间量子密钥分配的误码率仿真计算,讨论了不同云雾大气下空间量子密钥分配的可行性。结果表明,在实际接收机系统参数下,多次散射引起的光子的退偏振对系统误码率的影响相对于探测器暗记数与背景光噪声之和对误码率的影响是可以忽略的。通过计算得出了穿越云雾的量子密钥分配的误码率与云雾浓度的关系,论证了可以进行有效空间量子密钥分配的云雾浓度上限和对应的气象视距。
Nowadays, with the explosive growth of information, the information security problem becomes more and more prominent and the demand for secure communication is constantly increasing. The critical point of secure communication is the acquisition of the keys to encrypt the information. Quantum key distribution (QKD) has attracted great attention as it can offer great amount of secure key. After more than twenty years development, QKD has made great achievements in its two critical specifications of distance and the secure key generation rate.
     However, from the current experimental result of free space QKD, the error bit is always above 5% and the secure key generation rate is only several 100bps when the distance is greater than 10km. Because the free space QKD usually adopts polarization coding, the error bit rate for the quantum key will increase if the polarization state of the signal photon deviate from that required by the QKD protocol at the stage of the generation of the signal photon or at the stage of the transmission of the signal photon. So the key to reduce the error bit rate and increase the efficiency for the QKD is to solve the polarization degradation problem in free space QKD. This paper centers on the polarization degradation in free space QKD, including polarization state transfer for the signal polarized photon in the optical system due to imperfection for the optical devices and depolarization effect for the signal photon after transmission through the atmosphere. The main content of the paper is as follows:
     (1) The origin of the depolarization in the QKD system is analyzed. It indicates that the polarization dependent properties when the light reflects from or refracts through the optical device’s dielectric interface is the origin of the depolarization in the system. For the free space QKD system, the polarization dependent phase shift difference for the NPBS (nonpolarizing beamsplitter) is the main source of the depolarization in the system. The Jones matrix method is adopted to analyze the affect of NPBS on the system error bit rate. The improved design for the arrangement of the optical path is proposed in which the system’s error bit rate can be decreased by only declining the phase shift difference between the p light and the s light in the transmitting optical path for the NPBS. An commercially available NPBS and our improved NPBS is used respectively to setup a free space QKD system. Several outdoor 200m and 1.3km QKD experiment is conducted to prove the feasibility of the design for the NPBS and the QKD system. The result indicates that the system’s bit error rate is declined by 2.6% by improving the NPBS and the arrangement of the receiver’s optical path, thus proving the validity of the improved design for the system.
     (2) A second improved design scheme based on orthogonally symmetric structure for the free space QKD system is raised up. In this scheme, the transmitter and the receiver use the same NPBS, and the two NPBS rotates by 90°relative to each other. This cancels the phase shift difference between the p light and s light caused by using only one NPBS so that it can decrease the error bit rate by the depolarization in the system. The feasibility of the design scheme is improved by Jones matrix method and the illustrative experimental system is given out.
     (3) The Monte Carlo method is adopted to analyze the transmission loss and depolarization properties when the polarized light passes through the atmosphere. The simulation is conducted for the clouds and fogs with different drop concentration and different mean radius for different free space QKD receivers. The variation law of the transmission loss and depolarization is released and this makes basis for the analysis for the feasibility of QKD through cloud/fog. We set up the depolarization measurement system for polarized light transmitted through the atmosphereand released the depolarization measurement result in Hefei .
     (4) The feasibility for free space quantum key distribution through cloud/fog is analyzed. The result suggests that, for practical QKD receiver, the influence of depolarization from multiple scattering on the error bit rate of QKD is negligible compared with the influence by the detector’s dark count and the background light. By analyzing and calculating the error bit rate for the free space quantum key distribution system, the relationship between the error bit rate and the drop concentration of the cloud or fog for quantum key distribution through cloud or fog is released. It gives out the maximum drop concentration of the cloud or fog and the corresponding shortest meteorological range for effective free space quantum key distribution.
引文
[1] S.J. Lomonaco,“A Quick Glance at Quantum Cryptography.”,Cryptologia 23, no.1, 1999, pp.1-41
    [2] Charles H. Bennett, Gilles Brassard, Jean-Marc Robert, Privacy Amplification by Public Discussion, SIAM J. Comput. Volume 17, Issue 2, pp. 210-229 (1988)
    [3] Bennett, C. H., G. Brassard, C. Cre′peau, and U. M. Maurer, 1995,‘‘Generalized privacy amplification,’’IEEE Trans. Inf. Theory 41, 1915–1923
    [4] D Rosenberg, C G Peterson, J W Harrington,et al., Practical long-distance quantum key distribution system using decoy levels, New Journal of Physics 11 (2009) 045009
    [5] D Stucki, N Walenta, F Vannel,et al., High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres, New Journal of Physics 11 (2009) 075003
    [6] J. G. Rarity, P. R. Tapster, P. M. Gorman, P. Knight, Ground to satellite secure key exchange using quantum cryptography,New Journal of Physics 4, 82 (2002).
    [7] Kwiat, P. G., A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, 1993,‘‘High-efficiency single-photon detectors,’’Phys. Rev. A 48, R867–870
    [8] Aspelmeyer, M., Jennewein, T., Pfennigbauer, M., Leeb,W. and Zeilinger, A. Long distance quantum communications with entangled photons using satellites. IEEE Journal of Selected Topics in Quantum Electronics, special issue on”Quantum Internet Technologies”, quant-ph quant-ph/0305105 (2005).
    [9] M Pfennigbauer, M Aspelmeyer, W R Leeb, et al. Satellite-based quantum communication terminal employing state-of-the-art technology. J. Opt. Netw. 4, 549–560 (2005).
    [10]Bennett, Charles H., and Gilles Brassard, Quantum cryptography:Public key distribution and coin tossing, International Conference on Computers, Systems & Signal Processing, Bagalore, India, December 10-12, 1984, pp 175– 179
    [11] C. H. Bennett, phys. Rev. Lett, 68,3121(1992) Quantum cryptography using any two nonorthogonal states
    [12] Peter W. Shor, John Preskill ,Simple Proof of Security of the BB84 Quantum Key Distribution Protocol”[J]Physics Review Letters, 2000, 85(2): 441-444
    [13] Gottesman, D. , Hoi-Kwong Lo, Proof of security of quantum key distribution with two-way classical communications, Information Theory, IEEE Transactions on, 49,2003,457-475
    [14] Kiyoshi Tamaki, Masato Koashi,et al. Security of the Bennett 1992 quantum-key distribution protocol against individual attack over a realistic channel [J] Physical Review A, 2003, 67(3): 032310
    [15] Kiyoshi Tamaki, Norbert Lütkenhaus,et al. Unconditional security of the Bennett 1992quantum key-distribution protocol over a lossy and noisy channel [J] Physical Review A,2004, 69(3): 032316
    [16] C.H. Bennett et al.,Experimental quantum cryptography, J. Cryptology 5, 3 (1992)
    [17] B. C. Jacobs , J. D. Franson ,Quantum cryptography in free space, Optics Letters/ Vol. 21, No. 22 / November 15, 1996
    [18] W. T. Buttler,1 R. J. Hughes, P. G. Kwiat,et al. Free-space quantum key distribution, Physical Review A , 57, 1998
    [19] W. T. Buttler,1 R. J. Hughes, P. G. Kwiat,et al. Free-space quantum key distribution at night SPIE Vol. 3385 S 0277-786X/98/
    [20] W. T. Buttler,1 R. J. Hughes, P. G. Kwiat,et al. Practical free-space quantum key distribution over 1 km,Physical Review Letters,81(15),3283-3286,1998
    [21] W.T. Buttler, R.J. Hughes, S.K. Lamoreaux, et al. Daylight quantum key distribution over 1.6 km, Phys. Rev. Lett. 84, 5652–5655 (2000)
    [22] Richard J Hughes, Jane E Nordholt, Derek Derkacs et al. ,Practical free-space quantum key distribution over 10 km in daylight and at night ,New Journal of Physics 4 (2002) 43.1–43.14
    [23] C. Kurtsiefera, P. Zardaa,b, M. Haldera, et al. Long Distance Free Space Quantum Cryptography, Proc. SPIE, Vol. 4917, 25 (2002),25-31
    [24] T. S. Manderbach, et al.Experimental demonstration of free space decoy-state quantum key distribution over 144 km,”[J]Physics Review Letters ,2007,98(1):010504
    [1] Wiesner, S., Conjugate coding, Sigact News, Vol. 15, no. 1, 1983, pp. 78-88
    [2] Bennett, Charles H., and Gilles Brassard, Quantum cryptography:Public key distribution and coin tossing, International Conference on Computers, Systems & Signal Processing, Bagalore, India, December 10-12, 1984, pp 175– 179
    [3] W. K. Wootters & W. H. Zurek , A single quantum cannot be cloned, Nature 299, 1982,802– 803
    [4] Horace P. Yuen, Amplification of quantum states and noiseless photon amplifiers, Physics Letters A,113,1986,405-407
    [5] Peter W. Shor, John Preskill ,Simple Proof of Security of the BB84 Quantum Key Distribution Protocol”[J]Physics Review Letters, 2000, 85(2): 441-444
    [6] Kiyoshi Tamaki, Norbert Lütkenhaus,et al. Unconditional security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel [J] Physical Review A,2004, 69(3): 032316
    [7] Gottesman, D. , Hoi-Kwong Lo, Proof of security of quantum key distribution with two-way classical communications, Information Theory, IEEE Transactions on, 49,2003,457-475
    [8] Artur K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991)
    [9] C. H. Bennett, phys. Rev. Lett, 68,3121(1992) Quantum cryptography using any two nonorthogonal states
    [10] D. Bruss, Optimal Eavesdropping in Quantum Cryptography with Six States,Phys. Rev. Lett,81,3018,(1998)
    [11] H. Bechmann-Pasquinucci and N. Gisin, Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography, Phys. Rev. A 59, 4238 (1999)
    [12] H. B. Pasquinucci, A. Peres, Quantum Cryptography with 3-State Systems,Phys. Rev. Lett, 85,3313(2000)
    [13] S. J. D. Phoenix, S. M. Barnett, A. Chefles, Three-state quantum cryptography, J.Mod. Opt.,47,507(2000)
    [14] K. Inoue, E. Waks, and Y. Yamamoto, Differential phase shift quantum key distribution Phys. Rev. Lett. 89, 037902 (2002)
    [15] V. Scarani, A. Acin, G. Ribordy, N. Gisin, Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations,Phys. Rev. Lett. 92, 057901 (2004)
    [16] D. Bruss, M. Christandl, A. Ekert, B.-G. Englert, D. Kaszlikowski, C. Macchiavello, Tomographic Quantum Cryptography: Equivalence of Quantum and Classical Key Distillation, Phys. Rev. Lett. 91, 097901(2003)
    [17] Lior Goldenberg , Lev Vaidman, Quantum Cryptography Based on Orthogonal States, Physical Review Letters, 75,1239-1243
    [18] Guo-Ping Guo, Chuan-Feng Li, Bao-Sen Shi,et al. Quantum key distribution scheme with orthogonal product states, Physical Review A,64,2001,042301
    [19] Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H. Secure communication with single-photon two-qubit states, J. Phys. A, Math. Gen. 35, 407 (2002)
    [20] K. Bostrom, T. Felbinger ,Phys. Rev. Lett,89,187902(2002) Deterministic Secure Direct Communication Using Entanglement
    [21]A. Wojcik,Phys. Rev. Lett,90,157901(2003) Eavesdropping on the‘‘Ping-Pong’’Quantum Communication Protocol
    [22] Qing-yu Cai, The“Ping-Pong”Protocol Can Be Attacked without Eavesdropping, Phys. Rev. Lett. 91, 109801 (2003)
    [23] Qing-yu Cai, Bai-wen Li, Improving the capacity of the Bostr?m-Felbinger protocol, Physical Review A 69, 054301 (2004)
    [24] Fu-Guo Deng, Gui Lu Long, Xiao-Shu Liu ,Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Physical Review A 68, 042317 (2003)
    [25] He Guang Qiang,Zeng Gui Hua , deterministic quantum key distribution based on Gaussian-modulated EPR correlations,Chinese Physics,15,1284,(2006)
    [26] F.L. Yan, X.Q. Zhang, A scheme for secure direct communication using EPR pairs and teleportation, Eur. Phys. J. B 41, 75–78 (2004)
    [27] T Gao, F L Yan,Z X Wang,Deterministic secure direct communication using GHZ states and swapping quantum entanglement,J. Phys. A: Math. Gen. 38 (2005) 5761–5770 ]
    [28] Nan-Run Zhou,Li-Jun Wang,Jie Ding,Li-Hua Gong,Xiang-Wu Zuo, Novel QuantumDeterministic Key Distribution Protocols with Entangled States, Int J Theor Phys (2010) 49: 2035–2044
    [29] Li Dong, Xiao-Ming Xiu, Yuan-Peng Ren, Hui-Wei Liu,A Deterministic Secure Quantum Communication Protocol Using Genuine Four-particle Entangled States with Incomplete Quantum Teleportation, Acta Physica Polonica B,41,1203(2010)]
    [30] Li Dong, Xiao-Ming Xiu, Ya-Jun Gao, Feng Chi, Deterministic secure quantum communication against collective-dephasing noise by using EPR pairs and auxiliary photons,Opt. Commun. 282, 1688 (2009)
    [31] Hui Uuan Jiang, Wen Zhen Cao, Chong Li,Deterministic secure quantum communication Achieved By Using Quantum Swapping, Int. J. Quantum Inf. 6, 493 (2008)
    [32] Yen Cheng-An, Horng Shi-Jinn, Goan Hsi-Sheng, Kao Tzong-Wann, Chou Yao-Hsin, Quantum direct communication with mutual authentication , Quantum Inf. Comput. 9, 376 (2009)
    [33] Deterministic and efficient quantum cryptography based on Bell’s theorem, Physical Review A 73, 050302, 2006
    [34] Qing-yu Cai, Bai-wen Li, Deterministic Secure Communication Without Using Entanglement,CHIN.PHYS.LETT.,Vol. 21, No. 4 (2004) 601]
    [35] Lucamarini, M., Mancini, S.: Phys. Rev. Lett. 94, 140501 (2005)
    [36] Fu-Guo Deng,Gui Lu Long,Secure direct communication with a quantum one-time pad, Physical Review A 69, 052319 (2004)]
    [37] Man Zhong Xiao, Xia Yun Jie, Zhang Zhan Jun, Secure Deterministic Bidrectional communication Without Enganglement, Int. J. Quantum Inf. 4, 739 (2006)
    [38] Hwang, T., Li, C.M., Lee, N.Y.: Int. J. Mod. Phys. C 19, 625 (2008)
    [39] Hwa yean Lee, Jongin Lim, and HyungJin Yang, Quantum direct communication with authentication, Phys. Rev. A 73, 042305 (2006)
    [40] Yang, Y.G., Wen, Q.Y., Zhu, F.C., An efficient quantum secure direct communication scheme with authentication, Chin. Phys. 16, 1838 (2007)
    [41] Wang Min Jie, Pan Wei,Quantum Secure Direct Communication Based on Authentication, Chin. Phys. Lett. 25, 3860 (2008)
    [42]林青群,王发强,米景隆,梁瑞生,刘颂豪,基于随机相位编码的确定性量子密钥分配,物理学报,56,5796(2007)]
    [43] Liu Wen Jie, Chen Han Wu, Li Zhi Qiang, Liu Zhi Hao, Efficient Quantum Secure Direct Communication with Authentication ,Chin. Phys. Lett. 25, 2354 (2008)
    [44] Han Lian-Fang, Chen Yue-Ming, Yuan Hao, Deterministic Quantum Secure Direct Communication with Dense Coding and Continuous Variable Operations, Commun. Theor. Phys. 51, 648 (2009)
    [45] WANG Chuan, WANG Wan-Ying, AI Qing, LONG Gui-Lu, Deterministic Quantum Key Distribution with Pulsed Homodyne Detection, Commun. Theor. Phys. (Beijing, China) 53 (2010) pp. 67–70]
    [46]Ch. Silberhorn, T. C. Ralph, N. Lütkenhaus, G. Leuchs, Continuous Variable Quantum Cryptography: Beating the 3 dB Loss Limit, Phys. Rev. Lett. 89, 167901 (2002)
    [47] Patrick Navez, Alessandra Gatti, and Luigi A. Lugiato, Invisible transmission in quantum cryptography using continuous variables: A proof of Eve’s vulnerability, Phys. Rev. A 65, 032307 (2002)
    [48] Frédéric Grosshans , Philippe Grangier, Continuous Variable Quantum Cryptography UsingCoherent States, Phys. Rev. Lett. 88, 057902 (2002)
    [49] Frédéric Grosshans ,Nicolas J. Cerf, Continuous-Variable Quantum Cryptography is Secure against Non-Gaussian Attacks, Phys. Rev. Lett. 92, 047905 (2004)
    [50] Ryo Namiki ,Takuya Hirano, Practical Limitation for Continuous-Variable Quantum Cryptography using Coherent States, Phys. Rev. Lett. 92, 117901 (2004)
    [51] K. Bencheikh, Th. Symul, A. Jankovic,J. A. Levenson, Quantum key distribution with continuous variables, J. Mod. Opt.,48,1903
    [52] St Phane F lix, Nicolas Gisin ,Andr Stefanov ,Hugo Zbinden, Faint laser quantum key distribution: Eavesdropping exploiting multiphoton pulses, J. Mod. Opt.,48, 2009
    [53] Grosshans F,et al Quantum key distribution using gaussian-modulated coherent states. Nature,2003,421:238-241
    [54]Ranjith Nair, Horace P. Yuen, Eric Corndorf, Takami Eguchi,Prem Kumar,Quantum-noise randomized ciphers,Phys. Rev. A,74, 052309(2006)
    [55] Chuang Liang, Gregory S. Kanter, Eric Corndorf, and Prem Kumar ,Quantum Noise Protected Data Encryption in a WDM Network, Ieee Photonics Technology Letters, 17,1573(2005)
    [56]Yuen H P. KCQ:A New Approach to Quantum Cryptography I. General Principles and Key
    [57] Corndorf E et al. Quantum-noise randomized data-encryption for WDM fiber-optic networks. arXiv: quant-ph/0501077 V3,2005
    [58] Experimental quantum cryptography, C.H. Bennett et al., J. Cryptology 5, 3 (1992)
    [59] [Quantum cryptography in free space B. C. Jacobs and J. D. Franson, Optics Letters/ Vol. 21, No. 22 / November 15, 1996]
    [60] Free-space quantum key distribution W. T. Buttler,1 R. J. Hughes,1 P. G. Kwiat,1 G. G. Luther,1 G. L. Morgan, J. E. Nordholt,2 C. G. Peterson,1 and C. M. Simmons Physical Review A Volume 57, Number 4 APRIL 1998,
    [61] Free-space quantum key distribution at night w. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther,G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons SPIE Vol. 3385 S 0277-786X/98/
    [62] W. T. Buttler, R. J. Hughes, P. G. Kwiat, et al. Practical free-space quantum key distribution over 1 km, Physical Review Letters,81(15),3283-3286,1998
    [63] Daylight quantum key distribution over 1.6 km,W.T. Buttler, R.J. Hughes, S.K. Lamoreaux, G.L. Morgan, J.E. Nordholt and C.G. Peterson,Phys. Rev. Lett. 84,(24) 5652–5655 (2000)
    [64] P. W. Shor and J.Preskill.Simple proof of security of the BB84 quantum key distribution protoc01.Phys.Rev.Lett.,2000,85(2):44l—444.
    [65] Richard J Hughes, Jane E Nordholt, Derek Derkacs and Charles G Peterson ,Practical free-space quantum key distribution over 10 km in daylight and at night ,New Journal of Physics 4 (2002) 43.1–43.14
    [66] Quantum cryptography:A step towards global key distribution C. Kurtsiefer, P. Zarda, M. Halder,H. Weinfurter, P. M. Gorman, P. R. Tapster , J. G. Rarity NATURE | VOL 419 | 3 OCTOBER 2002
    [67] T. S. Manderbach, et al.Experimental demonstration of free space decoy-state quantum key distribution over 144 km,”[J]Physics Review Letters ,2007,98(1):010504
    [68]Aspelmeyer, M. et al. Long-Distance Free-Space Distribution of Entangled. Photons. Science 301, 621-623 (2003).
    [69] Resch, K. J. et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202-209 (2005). 10
    [70] Peng, C.-Z. et al. Experimental Free-Space Distribution of Entangled Photon Pairs over a Noisy Ground Atmosphere of 13km. Phys. Rev. Lett. 94, 150501 (2005).
    [71]R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. ?mer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, A. Zeilinger Entanglement-based quantum communication over 144 km Nature Physics 3, 481-486 (2007)
    [72]Thomas Scheidl, Rupert Ursin, Alessandro Fedrizzi, Sven Ramelow, Xiao-Song Ma, Thomas Herbst,Robert Prevedel, Lothar Ratschbacher, Johannes Kofler,Thomas Jennewein and Anton Zeilinger ,Feasibility of 300km quantum key distribution with entangled states New Journal of Physics 11 (2009) 085002
    [73] G. Brassard, N. Lu¨tkenhaus, T. Mor, and B. C. Sanders, Limitations on practical quantum cryptography,Phys. Rev. Lett. 85, 1330 (2000)
    [74] Hwang, W.-Y. (2003). "Quantum Key Distribution with High Loss: Toward Global Secure Communication." Physical Review Letters 91(5): 057901.)
    [75]Wang X B. Beating the Photon number splitting Attack in Practical Quantum Cryptography [J ] . Phys Rev Lett , 2005
    [76]Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light [J ] . Phys Rev A , 2005 , 72 (1) : 012322
    [77] Lo H K, Ma X, Chen K. Decoy State Quantum Key Distribution [J ]. Phys Rev Lett , 2005 , 94 (23) : 230504 [78 ] Ma X , Qi B , zhao Y, et al. Practical Decoy State for Quantum Key Distribution[J ] . Phys Rev A , 2005 , 72 (1) : 012326 [79 ] Zhao Y, Qi B , Ma X , et al. Experimental Quantum Key Dist ribution with Decoy States [J ] . Phys Rev Lett , 2006 , 96 (7) : 070502
    [80] J. C. Bienfang , A. Restelli, D. Rogers, etc.,High-repetition rate quantum key distribution, Proc. of SPIE Vol. 6780,2007, 67800C-1
    [81] J L Duligall, M S Godfrey, K A Harrison, W J Munro, J G Rarity1, Low cost and compact quantum key distribution, New Journal of Physics 8 (2006) 249 PII: S1367-2630(06)30840-3 1367-2630/06/010249
    [82] J. G. RARITY, P. R. TAPSTER and P. M. GORMAN ,Secure free-space key exchange to 1.9km and beyond, journal of modern optics, 2001, vol. 48, , 1887-1901
    [83]张逸新,迟泽英,光波在大气中的传输与成像,国防工业出版社,1997
    [84] D. Deirmendjian, "Scattering and Polarization Properties of Water Clouds and Hazes in the Visible and Infrared," Appl. Opt. 3, 187-196 (1964)
    [85] D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions, American Elsevier, New York,1969
    [86]图梅(S.Twomey)著王明星译大气气溶胶科学出版社,1984
    [87] Pasceri, R. E. and Friedlander, S. K. , Measurements of the Particle Size Distribution of the Atmospheric Aerosol: II. Experimental Results and Discussion, J. Atmos. Sci. 22,577-584,1965
    [88] Clark, W. E. , Whitby, K. T. , Concentration and Size Distribution Measurements of Atmospheric Aerosols and a Test of the Theory of Self-Preserving Size Distributions, J. Atmos. Sci. 24 ,677-687
    [89] G. L. Knestrick, T. H. Cosden, and J. A. Curcio, "Atmospheric Scattering Coefficients in the Visible and Infrared Regions," J. Opt. Soc. Am. 52, 1010-1016 (1962)
    [90] Giichi Yamamoto, Masayuki Tanaka, "Determination of Aerosol Size Distribution from Spectral Attenuation Measurements," Appl. Opt. 8, 447-453 (1969)
    [91] Robert J. Charlson, Helmuth Horvath , Rudolf F. Pueschel, The direct measurement of atmospheric light scattering coefficient for studies of visibility and pollution, Atmos. Environ.,1,469-478
    [92] Elterman, L. (1966b)“An Atlas of Aerosol Attenuation and Extinction Profiles for the Troposphere and Stratosphere”, Rept. AFCRL-66-828. AFCRL, Bedford, Mass.
    [93] Bullrich, K., Scattered radiation in the atmosphere, In Advances in Geophysics, Vol. 10, Academic Press, New York
    [94] Neiburger, M. and Chien, C. W. (1960).“Computations of the growth of cloud drops by condensation using an electronic digital computer.”In Physics of Precipitation Monograph No. 5, American Geophysical Union. Available from University Microfillms, Ann Arbor.
    [95]Francesco Tampieri, Claudio Tomasi, Size distribution models of fog and cloud droplets in terms of the modified gamma function, Tellus, 28,333-347
    [96] J. A. Garland , some fog droplet size distributions obtained by an impaction method, Quarterly Journal of the Royal Meteorological Society, 97, 483–494, 1971
    [97]北京大学地球物理系大气物理教研室云物理教学组:云物理学基础,北京:农业出版社,1981.
    [98]邹进上,刘长盛,刘文保,大气物理基础,北京:气象出版社,1982
    [99] Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, parametrization of the scattering and absorption parameters of individual ice crystals, J. Geophys. Res.,105,4699-4718
    [100] Andrew J. Heymsfield ,Jean Iaquinta, Cirrus crystal terminal velocities Journal of the Atmospheric Sciences,Vol 57, 2000,916-938
    [101] L. W. Carrier, G. A. Cato, and K. J. von Essen , The Backscattering and Extinction of Visible and Infrared Radiation by Selected Major Cloud Models, Applied Optics,6,1209-1216,1967
    [102] George M. Hale, Marvin R. Querry,Optical Constants of Water in the 200-nm to 200-um Wavelength Region, Applied Optics, 12,1973,555-563
    [103] A.A.M. Saleh ,1967,Investigation of laser wave depolarization due to atmospheric transmission, IEEE Journal of Quantum Electronics,3, 1967,540-543
    [104] D. H?hn, Depolarization of a Laser Beam at 6328 ? due to Atmospheric Transmission [J] Applied Optics 1969, 8(2), 367–369
    [105] JOHN W. STROHBEHN,1967 Polarization and Angle-of -Arrival Fluctuations for a Plane Wave Propagated Through aTurbulent Medium
    [106] Yu. A. Kravtsov,1973“Geometric”depolarization of light in a turbulent atmosphere
    [107] A. V. Anufriev(1983)(Change in the polarization of light in a turbulent atmosphere
    [108] H. C. Van De Hulst, light scattering by small particles, New York. John Wiley & Sons,Inc. pp 104,1957
    [109]Sekera, Z.(1956)“Recent developments in the study of the polarization of skylight.”In Advacnes in Geophysics, Vol 3. Academic Press,New York
    [110]Sekera, Z(1957a)“Light scattering in the atmosphere and the polarization of sky light,”J. Opt. Soc. Am., 47,484-490
    [111]Coulson, K. L. Tables related to radiation Emerging from a planetary atmosphere withrayleigh scattering.”University of California Press,Berkeley
    [112]Dave, J. V. and Furukawa,P. M.(1966b).“Intensity and polarization of the radiation emerging from an opically thick Rayleigh atmosphere,”J. Opt. Soc., Am. ,56,394-400
    [113]Fraser, R. S., 1976: Satellite measurement of mass of Sahara dust in the atmosphere. Appl. Opt., 15, 2471–2479.
    [114] Griggs, M., 1975: Measurement of atmospheric aerosol optical thickness over water using ERTS-1 data. J. Air Pollut. Contr.Assoc., 25, 622–626.
    [115] Takayama, Y., and T. Takashima, 1986: Aerosol optical thickness of yellow sand over the Yellow Sea derived from NOAA satellite data. Atmos. Environ., 20, 631–638.
    [116] Kaufman, R. S. Fraser, and R. A. Ferrare, 1990a: Satellite remote sensing of large-scale air pollution: Method. J. Geophys. Res., 95,9895–9909
    [117]怀红燕,李正强,陈良富等,基于地基偏振观测研究北京城区北部大气气溶胶特性变化,遥感学报, 12,2008,490-498
    [118]Mishchenko M I , Travis L D. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight . J . Geophys. Res. , 1997 , 102 : 16989~17013
    [119]Leroy, M., and Coauthors, 1997: Retrieval of aerosol properties and surface bidirectional reflectances from POLDER/ADEOS.J. Geophys. Res., 102, 17 023–17 037
    [120]Herman, M., J. L. Deuzé, C. Devaux, P. Goloub, F. M. Bréon, and D. Tanré, 1997: Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements. J. Geophys. Res., 102, 17 039–17 049
    [121] Pierre-Yves Deschamps, FranCois-Marie Brdon, Marc Leroy,et al.,The POLDER Mission: Instrument Characteristics and Scientific Objectives, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 32, 598-615, MAY 1994
    [122] M. Leroy ,J. L. Deuzé,F. M. Bréon,O. Hautecoeur,M. Herman,J. C. Buriez,D. Tanré,S. Bouffiès,P. Chazette, J. L. Roujean Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D14, PP. 17,023-17,037, 1997
    [123] A.A. Kokhanovsky, F.-M. Breon, A. Cacciari, E. Carboni, D. Diner,W. Di Nicolantonio, R.G. Grainger, W.M.F. Grey, R. H?ller, K.-H. Lee, Z. Li, P.R.J. North, A.M. Sayer, G.E. Thomas, W. von Hoyningen-Huene, Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments, Atmospheric Research 85 (2007) 372–394
    [124] Xuehua Fan, Philippe Goloub, Jean-Luc Deuzé,et al., Evaluation of PARASOL aerosol retrieval over North East Asia, Remote Sensing of Environment, 12,2008,697-707
    [125]James E. Hansen, J. W. Hovenier, Interpretation of the Polarization of Venus, Journal of the Atmospheric Sciences,vol.31,1137-1160,1974
    [126] Santer, R., Deschamps, M., Ksanfomaliti, L. V., et al, Photopolarimetry of Martian aerosols. II - Limb and terminator measurements, Astronomy and Astrophysics, 158,1986, 247-258
    [127] Kawabata, K., Coffeen, D. L., Lane,et al., Cloud and Haze Particle Properties from Pioneer Venus Polarimetry, Journal of Geophysical Research, 85, 8129-8140
    [128] Martin G. Tomasko,Peter H. Smith,Photometry and polarimetry of Titan: Pioneer 11 observations and their implications for aerosol properties, Icarus, 51, 1982, 65-95
    [129] M. G. Tomasko,L. R. Doose, Polarimetry and photometry of Saturn from Pioneer 11: Observations and constraints on the distribution and properties of cloud and aerosol particles,Icarus 58,1984,1-34
    [130] Nobuo Sugimoto, Ichiro Matsui, Atsushi Shimizu, et al.,Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization lidar on board the research vessel Mirai
    [131] Nobuo Sugimoto,Choo Hie Lee, Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths
    [132] Tetsu Sakai, Tomohiro Nagai, Masahisa Nakazato,et al., Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba。
    [133]Toshihiro Somekawa, A New Concept to Characterize Nonspherical Particles from Multi-wavelength Depolarization Ratios Based on T-matrixComputation
    [134] Toshihiro Somekawa, Chihiro Yamanaka, Masayuki Fujita,et al., Simultaneous three-wavelength depolarization measurements of clouds and aerosols using a coherent white light continuum
    [135] Luc R. Bissonnette, Multiscattering model for propagation of narrow light beams in aerosol media, Applied Optics, Vol. 27, 2478,1988
    [136] L. R. Bissonnette, "Multiple scattering of narrow light beams in aerosols," Appl. Phys. B: Lasers Opt. 60,315-323 (1995)
    [137] Mary S. Quinby-Hunt, Lael L. Erskine, and Arlon J. Hunt, Polarized light scattering by aerosols in the marine atmospheric boundary layer, Applied Optics, Vol. 36, 51681997
    [138] Volkov, N. G., Kovach, V. Yu, Light scattering by the spherically symmetric heterogeneous aerosol particles, Izvestiya Akademii Nauk Ssssr Fizika Atmosferyi Okeana,Vol: 26,1990
    [139] Yair Benayahu, Asher Baram, Avishai Ben-David, and Ariel Cohen ,Mathematical inversion of angular single and double scattering of laser light from aerosol particles,JOSA A, Vol. 9, Issue 9, pp. 1633-1637 (1992)
    [140] M. Wendisch, W. Von Hoyningen-Huene,Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements,Conference on visibility and fine particles ,Volume 28, Issue 5, March 1994, Pages 785-792
    [141] Gabella M, Guzzi R, Kisselev V, et al.,Retrieval of aerosol profile variations in the visible and near infrared: Theory and application of the single-scattering approach ,Applied Optics,Vol. 36, 1328-1336,1997
    [142] Mukai S, Sano I ,Algorithms for aerosol retrieval based on scattering calculations , Computers and Mathematics with Applications 37 , 133-139, (1999)
    [143] Dubovik O, Holben BN, Lapyonok T, et al.,Non-spherical aerosol retrieval method employing light scattering by spheroids, Geophysical Research Letters,Vol. 29,10.1029/ 2001GL014506,2002
    [144] Xiaomei Lu, Yuesong Jiang, Xuguo Zhang, et al.An Algorithm to retrieve aerosol properties from analysis of multiple scattering influences on both Ground-Based and Space-Borne Lidar Returns, Optics Express, Vol. 17,8719-8728,2009
    [145] Shoji Asano, Makoto Sato , Light scattering by randomly oriented spheroidal particles,Applied Optics, Vol. 19, No. 6 / 15 March 1980
    [146]Yoshihide Takano and Kolt Jayaweera Scattering phase matrix for hexagonal ice crystals computed from ray optics,APPLIED OPTICS / Vol. 24, No. 19 / 1 October 1985 3254-3263
    [147]Kahnert, F. M. (2003b): Numerical methods in electromagnetic scattering theory, J.Quant. Spectr. Rad. Transf, 79-80, 775–824
    [148] Asano S, Yamamoto G. Light scattering by a spheroidal particle. Appl Opt 1975;14:29–49, Voshchinnikov NV, Farafonov VG. Optical properties of spheroidal particles. Astrophys Space Sci 1993;204:19–86
    [149]Yang P, Liou KN. Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles
    [150]Qiming Cai and Kuo-Nan Liou Polarized light scattering by hexagonal ice crystals: theory1 October 1982 / Vol. 21, No. 19 / APPLIED OPTICS
    [151] Morgan MA, Mei KK. Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution. IEEE Trans Antennas Propag 1979;27:202–14,
    [152]Silvester PP, Ferrari RL.,Finite elements for electrical engineers. New York: Cambridge Univ Press, 1996
    [153] Schiesser WE. The numerical method of lines. New York: Academic Press, 1991
    [154]Rother T, Schmidt K. The discretized Mie-formalism for plane wave scattering on dielectric objects with non-separable geometries. JQSRT 1996;55:615–25.
    [155] Rother T, Schmidt K. The discretized Mie-formalism—a novel algorithm to treat scattering on axisymmetric particles. J Electromagn Waves Appl 1996;10:273–97.,
    [156]Oguchi T. Scattering properties of oblate raindrops and cross polarization of radio waves due to rain: calculations at 19.3 and 34.8 GHz. J Radio Res Lab Jpn 1973;20:79–118,
    [157] Harrington RF. Field computation by moment methods. New York: Macmillan, 1968
    [158]Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 1994;11:1491–9.,
    [159]Draine BT. The discrete dipole approximation for light scattering by irregular targets. In: Mischenko MI, Hovenier JW, Travis LD, editors. Light scattering by nonspherical particles. San Diego: Academic Press, 2000. p. 131–44
    [160] Mishchenko MI, Travis LD, Mackowski DW. T-matrix computations of light scattering by nonspherical particles:a review. JQSRT 1996;55:535–75
    [161] Yang,P.,Liou,K. N.,Finite-difference time domain method for light scattering by small ice crystals in three dimensional space.J.Opt.Soc.Am.A,1996b,Vol.13.2072—2085.
    [162] Richard M. Schotland, Kenneth Sassen, Richard Stone,Observations by Lidar of Linear Depolarization Ratios for Hydrometeors, Journal of Applied Meteorology,10,1011-1017
    [163] Kuo Nan Liou,Henry Lahore,Laser Sensing of Cloud Composition: A Backscattered Depolarization Technique, Journal of Applied Meteorology,13,257-263
    [164]Kenneth Sassen ,Depolarization of Laser Light Backscattered by Artificial Clouds, Journal of Applied Meteorology,13,923-933
    [165] S. R. Pal, A. I. Carswell, The Polarization Characteristics of Lidar Scattering from Snow and Ice Crystals in the Atmosphere
    [166] J. S. Ryan and A. I. Carswell,J. Opt. Soc. Am., Vol. 68, No. 7, July 1978
    [167] Kenneth Sassen , Kuo-Nan Liou, Journal of the Atmospheric Sciences,Vol. 36,852-861
    [168] J. D. Houston and A. 1. Carswell Four-component polarization measurement of lidar atmospheric scattering, Applied Optics, Vol. 17, 614-620, 1978
    [169] J.C. Scott, and A.C. Dilley, 1987: Remote sounding of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus. J. Atmos. Sci. , 44, 729-747
    [170] D.O'C. Starr, and T. U忧ai , 1989a: Mesoscale and microscale structure of cirrus clouds: Three case studies. J. Atmos. Sci. ,46,371-396
    [171] Lidar depolarization from multiple scattering in marine stratus clouds, Applied Optics Vol. 25, 1450-1459,1986
    [172] Gross, A. , M.J. Post, and F.F. Hall , Jr. , 1984: Depolarization,backscatter, and attenuation of C02 lidar by cirrus clouds. ApplOpt., 23, 2518-2522.
    [173] Spinhirne, J.D. , and W.O. Hart, 1990: Cirrus structure and radiative parameters from airborne Iidar and spectral radiometer observations:28 October 1986 FIRE case study. Man. Wea. Rev., 118,2329-2343
    [174] L. Pfister, H. B. Selkirk, E. J. Jensen, M. R. Schoeberl, O. B. Toon, E. V. Browell, W. B. Grant, B. Gary, M. J. Mahoney,T. V. Bui, and E. Hintsa,“Aircraft observations of thin cirrus clouds near the tropical tropopause,”J. Geophys. Res. 106,9765–9786 (2001).
    [175] D. M. Winker and C. R. Trepte,“Laminar cirrus observed near the tropical tropopause by LITE,”Geophys. Res. Lett. 25, 3351–3354 (1998)
    [176] E. V. Browell, S. Ismail, A. F. Carter, N. S. Higdon, C. F.Butler, P. A. Robinette, O. B. Toon, and M. R. Schoeberl,“Airborne lidar observations in the wintertime Arctic stratosphere - Polar stratospheric clouds,”Geophys. Res. Lett.Suppl. 17, 385–388 (1990)
    [177] G. Ancellet and F. Ravetta,“Compact airborne lidar for tropospheric ozone: description and field measurements,”Appl. Opt. 37, 5509–5521 (1998).
    [178] M. K?stner, K. T. Kriebel, R. Meerk?tter, W. Renger, G. H. Ruppersberg, and P. Wendling,“Comparison of cirrus height and optical depth derived from satellite and aircraft measurements,”Mon. Weather Rev. 121, 2708–2718 (1993)
    [179] V. Mitev, R. Matthey, and V. Makarov,“Miniature backscatter lidar for cloud and aerosol observation from high altitude aircraft, part II,”Recent Res. Dev. Geophys. 4, 1–11 (2002)
    [180] Guido Di Donfrancesco, Francesco Cairo, Carlo Buontempo,etc. Balloonborne lidar for cloud physics studies, Appl. Opt. 45, 5701–5708 (2006).
    [181] Winker, D. M., W. H. Hunt, and M. J. McGill (2007), Initial performance assessment of CALIOP, Geophys. Res. Lett., 34, L19803,
    [182] Roy, G., L. Bissonnette, Ch. Bastille, and G. Vallee, 1999: Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: Theory and experimental validation, Appl. Opt. 38, 5202–5211.
    [183] Luc R. Bissonnette, Gilles Roy, and Nathalie Roy, Multiple-scattering-based lidar retrieval: method and results of cloud probings, Appl. Opt. 44, 5565–5581
    [184] Kolev, I., B. Tatarov, N. Kolev, and B. Kaprielov, 2006: Observation of multiple scattering effects in low tropospheric clouds by polarization lidar with variable field-of view,in: MUSCLE XIV (4–7 October 2005, Quebec, Canada). Book of abstracts,3–14.
    [185] Oppel, U. G., 2005: Diffusion patterns of a pulsed laser beam seen by a monostatic and a bistatic CCD lidar, in: Borovoi, A. G. (ed.), MUSCLE XIII. Proceedings of SPIE 5829, 193–208.
    [186] Chaikovskaya, L. I., and E. P. Zege, 2003: Theory for the sounding of multiply scattering media with a bi-static arbitrary polarized lidar systems, Proceedings of SPIE 5397, 228–231.
    [187] Pal, S.R., and A I. Carswell ,Polarization anisotropy in lidar multiple scattering from atmospheric clouds, Appl. Opt. ,24, 3464-3471
    [188] Roy, N., and G. Roy, 2006: Influence of multiple scattering on lidar depolarization measurements with an ICCD camera, in: MUSCLE XIV (4–7 October 2005, Quebec,Canada), Book of abstracts, 17–26.
    [189] Woodard, R., R. L. Collins, R. S. Disselkamp et al., 1998: Circular depolarization lidar measurements of cirrus clouds. Proc. 19th Int. Laser Radar Conf., NASA Conf. Publ. NASA/CP-1998-207671/PT1, 47–50.
    [190] Ishimaru, A., 1978: Wave Propagation and Scattering in Random Media, vol. 1, Chapter 9, New York: Academic Press.
    [191] Liou, K.N., 1971: Time-dependent multiple backscattering, J. Atm. Sci. 28, 824–827.
    [192] Cai, Q. , and K.-N. Liou, 1981: Theory of time-dependent multiple backscattering from clouds. J. Atmos. Sci. , 38, 1452-1466
    [193] Liou, K.N., and H. Lahore, 1974: Laser sensing of cloud composition: a backscattered depolarization technique, J. Appl. Meteor. 13, 257–263.
    [194] Sun, Y.-Y. , and Z.-P. Li, 1989: Depolarization of polarized light caused by high altitude clouds. 2: Depolarization of lidar induced by water clouds
    [195] Yi-Yi Sun, Zhi-Ping Li, and J. B?senberg, Depolarization of polarized light caused by high altitude clouds. 1: Depolarization of lidar induced by cirrus, Applied Optics, Vol. 28, Issue 17, pp. 3625-3632 (1989)
    [196] Bruscaglioni, P., A. Ismaelli, G. Zaccanti, M. Gai, and M. Gurioli, 1995: Polarization of lidar return from water clouds. Calculations and laboratory scaled measurements,Opt. Rev. 2, 312–318
    [197] Mannoni, A., C. Flesia, P. Bruscaglioni, and A. Ismaelli, 1996: Multiple scattering from Xhebyshev particles: Monte Carlo simulations for backscattering in lidar geometry, Appl. Opt. 35, 7151–7164
    [198] Ishimoto, H., and K. Masuda, 2002: A Monte Carlo approach for the calculation of polarized light: application to an incident narrow beam, JQSRT 72, 467–483
    [199] Prigarin, S. M., A. G. Borovoi, P. Bruscaglioni, A. Cohen, I. A. Grishin, U. Oppel, and T. B. Zhuravleva, 2005: Monte Carlo simulation of radiation transfer in optically anisotropic clouds, Proc. SPIE 5829, 88-94
    [200] Jessica C. Ramella-Roman, Scott A. Prahl, Steve L. Jacques, Three Monte Carlo programs of polarized light transport into scattering media: part I,Optics Express,13,4420-4438
    [201] Oppel, U. G., 2005: Diffusion patterns of a pulsed laser beam seen by a monostatic and a bistatic CCD lidar, in: Borovoi, A. G. (ed.), MUSCLE XIII. Proceedings of SPIE 5829, 193–208
    [202] Cameron, B. D., M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cote, 1998: Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium, Optics Lett. 23, 485–487.
    [203] Dogariu, M., and T. Asakura, 1993: Polarization-dependent backscattering patterns from weakly scattering media, J. Optics 24, 271–278.
    [204] Chaikovskaya, L., and E. Zege, 2005: Backscattering patterns in the polarized lidar sounding of strongly scattering media
    [205]Zege, E. P., I. L. Katsev, and I. N. Polonsky, 1998: Power and polarization of lidar return from warm and crystal clouds with multiple scattering. Analytical approach,Conference on Light Scattering by Nonsperical Particles: Theory, Measurements,and Applications. New York: American Meteorological Society, 203–206.
    [206]Zege, E. P., and L. I. Chaikovskaya, 1999: Polarization of multiple-scattered lidar return from clouds and ocean water, JOSA 16, 1430–1438.
    [ 207] Remote sensing of clouds using linearly and circularly polarized laser beams: techniques to compute signal polarization [208 ] Zege, E. P., and L. I. Chaikovskaya, 1996: New approach to the polarized radiative transfer problem, JQSRT 55, 19–31.
    [209] Zege, E. P., and L. I. Chaikovskaya, 2000: Approximate theory of linearly polarized light propagation through a scattering medium, JQSRT 66, 413–435. [ 210] Gorodnichev, E. E., A. I. Kuzovlev, and D. B. Rogozkin, 2000: Propagation of a narrow beam of polarized light in a random medium with large-scale inhomogeneities, Laser Physics 10, 1236–1243. [ 211] Gorodnichev, E. E., A. I. Kuzovlev, and D. B. Rogozkin, 2006: Multiple scattering of polarized light in turbid media with large particles, Light Scattering Reviews 2: Single and Multiple Light Scattering. Kokhanovsky, A. A. (ed), Chichester: Praxis Publishing, 291–338.
    [212] Schulz F M , Stamnes K, Weng F. VDISORT : an improved and generalized discrete ordinate method for polarized radiative t ransfer . J . Quant. S pect rosc. Radiat.T ransfer , 1999 , 61 (1) : 105~122
    [213] Evans K F , Stephens GL. A new polarized atmospheric radiative t ransfer model . J . Quant. Spectrosc. Radiat. Transf er , 1991 , 46 (5) : 413~423
    [214] Min Qilong , Duan Minzheng. A successive order of scattering model for solving vector radiative t ransfer in t he atmosphere. J . Quant. S pect. Radiat. Trans f er. , 2004 , 87 : 243~259
    [215] Transmission, backscattering, and depolarization of waves in randomly distributed spherical particles
    [216] Propagation and Depolarization of an Arbitrarily Polarized Wave Obliquely Incident on a Slab of Random Medium
    [1] C. H. Bennett, G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, , Proceedings of IEEE International Conference on Computers, Systems & Processing (Bangalore,India),1984
    [2] Charles H. Bennett, Gilles Brassard, Jean-Marc Robert, Privacy Amplification by Public Discussion, SIAM J. Comput. Volume 17, Issue 2, pp. 210-229 (1988)
    [3] Gilles Brassard ,Louis Salvail ,Secret-Key Reconciliation by Public Discussion Advances in Cryptology - EUROCRYPT’93, LNCS 765, pp. 410-423, 1994
    [4] T. Sugimoto, K. Yamazaki, A study on secret key reconciliation protocol“cascade”, IEICE Trans. Fundamentals, E83-A, 1987-1991,2000
    [5] W. T. Buttler, S. K. Lamoreaux, J. R. Torgerson,et al., Fast, efficient error reconciliation for quantum cryptography, Phys. Rev. A 67, 052303,2003
    [6] Richard J Hughes, Jane E Nordholt, Derek Derkacs and Charles G Peterson ,Practical free-space quantum key distribution over 10 km in daylight and at night ,New Journal of Physics 4 (2002) 43.1–43.14
    [7] R. J. Hughes, et al. Practical quantum cryptography for secure free-space communications[R] USA:Los Alamos National Laboratory,1999: LA-UR-99-737
    [8]廖延彪,偏振光学,科学出版社,2003
    [9] Mordechai Gilo, Design of a nonpolarizing beam splitter inside a glass cube [J]Applied Optics,1992,31(25): 5345-5349
    [10] Jerzy Ciosek, et al. Design and manufacture of all-dielectric nonpolarizing beam splitters [J]. Applied Optics,1999,38(7):1244-1250
    [11] Jin Hui Shi,et al. Theoretical analysis of non-polarizing beam splitters with appropriate amplitude and phase [J] Optics & Laser Technology, 2009,41 351-355
    [1]廖延彪,偏振光学,科学出版社,2003
    [2] H. C. van de Hulst, Light Scattering by Small Particles,[M]John Wiley &Sons,Inc. 1957
    [3] wave propagation and scattering in random media
    [4] Earl J. McCartney, Optics of the Atmosphere scattering by molecules and particles, [M].John Wiley & Sons,Inc. 1976. E. J.麦卡特尼(著),潘乃先等(译),大气光学分子和粒子散射,[M].北京:科学出版社,1988.
    [5] Mishchenko. M. I.,Travis. L. D.,and Mackowski D. w.,T-matrix computations of light scattering by nonsphefical particles:a review, J.Quant.Spectrosc.Radiat. Transfer.,1996, 55,535-575
    [6] Draine BT, Flatau PJ. Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 1994;11:1491–1499.,
    [7] Yang P, Liou KN. Finite difference time domain method for light scattering by nonspherical and inhomogeneous particles
    [8] R. F. Coleman and K. N. Liou, J. Atmos. Sci. 38,1260 (1981).
    [9] Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: theory. Appl. Opt. 21, 3569–3580.
    [10] Takano, Y., and K. N. Liou, 1989a: Solar radiative transfer in cirrus clouds. Part I. Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci.46, 3–19. [11 ]Yang, P., and K. N. Liou, 1996b: Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. Appl. Opt. 35, 6568–6584.
    [12] Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: solution by a ray-by-ray integration algorithm. J. Opt. Soc. Amer. A. 14, 2278–2288.
    [13] Yoshihide Takano and Kolt Jayaweera ,Scattering phase matrix for hexagonal ice crystalscomputed from ray optics ,APPLIED OPTICS / Vol. 24, No. 19 ,page 3254/ 1 October 1985
    [14] Wind, L. , Szymanski, W. W., Quantification of scattering corrections to the Beer-Lambert law for transmittance measurements in turbid media, Meas. Sci. Technol., 13, 270–275, 2002
    [15] Evgenii E. Gorodnichev, Alexander I. Kuzovlev and Dmitrii B. Rogozkin, multiple scattering of polarized light in turbid media with large particles, Light Scattering reviews,Springer Praxis Books, 2006, Part II, 291-337
    [16]Three Monte Carlo programs of polarized light transport into scattering media: part I 13 June 2005 / Vol. 13, No. 12 / OPTICS EXPRESS 4420
    [17] K. F. Evans and G. L. Stephens,“A new polarized atmospheric radiative transfer model,”J. Quant. Spectrosc. Radiat Transfer. 46, 413-423, (1991).
    [18] Zege, E.P., Katsev, I.L., Polonsky, I.N., 1993. Multicomponent approach to light propagation in clouds and mists, Appl. Opt. 32, 2803– 2812.
    [19]朱本仁,蒙特卡罗方法引论,山东大学出版社,1987
    [20] E. A. Bucher, Computer Simulation of Light Pulse Propagation for Communication Through Thick Clouds Appl. Opt. 12,2391-2400,1973
    [21]傅祖芸,赵海娜丁岩石等译,C数值算法(第二版),电子工业出版社,2004, William H. Press,Saul A. Teukolsky,William T. Vetterling, Brian P. Flannery, Numeriacal Recipes in C :the Art of Scientific Computing ,second Edition ,Cambridge University Press,1992
    [22]J. W. Hovenier,“Symmetry Relationships for Scattering of Polarized Light in a Slab of Randomly Oriented Particles,”Journal of the Atmospheric Sciences 26, 488-499, (1968).
    [23] Rensch ,D. B., Long, R. K. Comparative Studies of Extinction and Backscattering by Aerosols, Fog, and Rain at 10.6μm and 0.63μm [J]. Appl. Opt. 1970,9, 1563-1573.
    [24] George M. Hale, Marvin R. Querry,Optical Constants of Water in the 200-nm to 200-um Wavelength Region, Applied Optics, 12,1973,555-563
    [25] C. H. Bennett, G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, , Proceedings of IEEE International Conference on Computers, Systems & Processing (Bangalore,India),1984
    [26] C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett.,68,3121 (1992)
    [27] Peter W. Shor, John Preskill ,Simple Proof of Security of the BB84 Quantum Key Distribution Protocol”[J]Physics Review Letters, 2000, 85(2): 441-444
    [28] Kiyoshi Tamaki, Masato Koashi,et al. Security of the Bennett 1992 quantum-key distribution protocol against individual attack over a realistic channel [J] Physical Review A, 2003, 67(3):032310
    [29] Kiyoshi Tamaki, Norbert Lütkenhaus,et al. Unconditional security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel [J] Physical Review A,2004, 69(3): 032316
    [30] R. J. Hughes, et al. Practical quantum cryptography for secure free-space communications[R] USA:Los Alamos National Laboratory,1999: LA-UR-99-737
    [31] J. S. Ryan and A. I. Carswell. Laser beam broadening and depolarization in dense fogs[J]. J. Opt. Soc. Am., 1978, 68, 900-908.
    [32] N. Gisin, G.G. Ribordy, W. Tittel, et al. Quantum cryptography[J]. Rev. Mod. Phys., 2002,74,145–195.
    [33] Fürst M., Weier H., Schmitt-Manderbach T. , et al.Free-space quantum key distribution over144 km[C]. Proc. SPIE, 2006, 6399, 63990G.
    [34] Richard J Hughes, Jane E Nordholt, Derek Derkacs and Charles G Peterson ,Practical free-space quantum key distribution over 10 km in daylight and at night ,New Journal of Physics 4 (2002) 43.1–43.14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700