生物结构色及人工构色研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当周期性结构产生的光子禁带位于可见光波段时,由于禁带对应波长范围的光在结构中无法传播,形成反射增强,该结构可呈现禁带对应波长范围的颜色。如果在可见光波段有多个源于禁带或者其他因素的反射峰,将会呈现混合色现象。
     在生物界中,颜色的形成主要有两种来源,色素和结构色,在昆虫和鸟类身上发现的很多明亮耀眼、五彩斑斓的颜色很多都是结构色,机理有薄膜干涉、衍射、散射以及结构更为复杂的光子晶体。
     第一章中,介绍了颜色的基本知识,概述了光子晶体和生物体结构色的背景知识和主要研究进展。
     第二章中,介绍了光子晶体的常用理论计算方法,重点介绍了平面波展开法和传输矩阵法;还介绍了色度学中利用三刺激值函数计算RGB值的计算方法。
     第三章中,研究了孔雀尾羽眼斑的颜色产生机理。我们发现颜色是由小羽支表皮处的两维光子晶体结构产生的。孔雀通过改变二维光子晶体结构的晶格常数来控制禁带即主要反射峰的位置,通过控制周期数目来增强法布里-珀罗干涉峰的影响强度,造就棕色混合色。
     第四章中,我们研究了鸽子颈部绿色和紫色羽毛的虹彩现象。结构和光谱说明两种羽毛的虹彩现象是由角蛋白表皮的干涉效应造成的。我们还进行了偏振对颜色影响的理论分析,发现羽毛随不同观察角度的颜色和亮度变化都与偏振有关,其中p波的布鲁斯特角对颜色起着重要的作用。
     第五章中,基于孔雀尾羽二维光子晶体结构模型,继续深入的研究了棕色的构成机理以及各种结构变化因素对颜色合成的影响。进而,我们还简要讨论了一维、简单二维和三维的情况。这将对人工合成颜色的尝试提供有意的参考。
When the band gap original by the period structure located in visible region, because the light with wavelength falling into the band gap can not traveling in the structure, producing reflectance peak, so this structure will present the color of the light whose wavelength corresponding the region of the band gap. If there are two or more reflectance peaks original by band gap or other reasons in visible region, there will be mix color.Color production in nature takes advantage of either structure coloration and pigmentation. Structure colors in insects and bird feathers have been usually qualitatively understood by thin-film interference, diffraction, scattering and also photonic crystals structure.In the first chapter, the introduction of basic knowledge of coloration is given. The background knowledge and the main research progress of photonic crystals and biological structure color are introduced.In the second chapter, commonly used theretical methods of PCs are introduced. Plan wave method and transfer matrix method are discussed in detail. Calculating RGB values by the trustimulus function by CIE is shown lastly.In the third chapter, we studied the mechanism of the coloration of the eye pattern on peacock tail feathers. We found that the color is come from the two-dimensional photonic crystals structure around the scarfskin of the barbules. Peacock controls the location of the band gap, viz. the mail reflectance peak, through changing the lattice constant of the two-dimensional photonic crystals structure, and tries to buildup the influence of the Fabry-Perot interference peak through changing the number of periods, therefore producing the mix brown color.In the fourth chapter, we studied the iridescence phenomena of the green and purple feathers on the neck of pigeon. The structure and optical spectrum suggest that the iridescence phenomena in both green and purple barbules should be due to interference from the top keratin cortex layer alone. Furthermore, we also studied theoretically the influence of light polarization on coloration. With varying incident angle, the changes in both color and brightness are different for different polarizations. The existence of Brewster's angle for p-polarization plays an important role on colouration.In the fifth chapter, base on the two-dimensional photonic crystals structure on the peacock tail feathers, we studied the mechanism of the brown color on the eye pattern in details. Furthermore, we discussed the condition of one-dimensional, simple two-dimensional and three-dimensional in brief. These will be beneficial to the attempts of artificial coloration.
引文
[1] I.牛顿,《光学-关于光的反射、折射、拐射和颜色的论文》(科学普及出版社,1988).
    [2] 李亨,《颜色技术原理及其应用》(科学出版社,1994).
    [3] 荆其诚,焦书兰,喻柏林,胡维生,《色度学》(科学出版社,1979).
    [4] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [5] S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [6] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, NJ, 1995).
    [7] Photonic Band Gap Materials, NATO, ASI, edited by C, M, Soukoulis (Kluwer, Dordrecht, 1996).
    [8] Photonic Band Gaps and Localization, NATO ARW, edited by C, M, Soukoulis (Plenum, New York, 1993).
    [9] Yizhou Li, Lieming Li and Jian Zi, Jpn. J. Appl. Phys. Vol. 42, L294 (2003).
    [10] E. M. Purcell, Phys. Rev. 69, 681 (1964).
    [11] E. R. Brown, C. D. Parker, and E. Yablonovitch, J. Opt. Soc. Am. B 10, 404 (1993).
    [12] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O' Brien and P. D. Dapkus and I. Kim, 284, 1802 (1999).
    [13] J. C. Knight, J. Broeng, T. A. Briks, and P. St. J. Russell, Science 282, 1476 (1998).
    [14] A. Melds et al., Phys. Rev. Lett. 77, 3787 (1996).
    [15] J. D. Joannopoulis, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
    [16] S. -Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulis, Science 282, 274 (1998).
    [17] A. M. Steinberg, P. G. Kwiat and R. Y. Chiao, Phys. Rev. Lett. 71, 708 (1993).
    [18] C. Spielmann, R. Szipocs, A. Stingl and F. Krausz, Phys. Rev. Lett. 73, 2308 (1994).
    [19] M. Mojahedi, E. Schamiloglu, F. Hegeler and K. J. Malloy, Phys. Rev. E 62, 5758 (2000).
    [20] J. M. Bendickson, J. P. Dowling and M. Scalora, Phys. Rev. E 53, 4107 (1996).
    [21] G. D' Aguanno, M. Centini, M. Scalora, C. Sinilia, M. J. Bloemer, C. M. Bowden, J. W. Hans and M. Bertolotti, Phys. Rev. E 63, 036610 (2001).
    [22] N. -H. Liu, S. -Y. Zhu, H. Chert and X. Wu, Phys. Rev. E 65, 046607 (2002).
    [23] X.-H. Hu, Y.-G. Xi, Y.-Z. Li, C. Xu, X. Wang, X.-H. Liu, R.-T. Fu and J. Zi, Jpn. J. Appl. Phys. 42, L165 (2003).
    [24] V. G. Veselago, Sov. Phys. Usp. 10,509 (1968).
    [25] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84,4184 (2000).
    [26] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, S. Schultz, Appl. Phys. Lett. 78, 489 (2001).
    [27] R. A. Shelby, D. R. Smith, S. Schultz, Science 292,77 (2001).
    [28] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, Phys. Rev. Lett. 76,4773 (1996).
    [29] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [30] P. M. Valanju, R. M. Walser, A. P. Valanju, Phys. Rev. Lett. 88,187401 (2002).
    [31] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah and M. Tanielian, Phys. Rev. Lett. 90,107401 (2003).
    [32] M. Notomi, Phys. Rev. B 62,10696 (2000).
    [33] B. Gralak, S. Enoch, G. Tayed, J. Opt. Soc. Am. A17,1012 (2000).
    [34] C. Lou, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Phys. Rev. B 65, 201104 (2002).
    [35] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis, Phys. Rev. Lett. 90, 107402 (2003).
    [36] J. B. Pendry, Phys. Rev. Lett. 85,3966 (2000).
    [37] A. A. Houck, J. B. Brock and I. L. Chuang, Phys. Rev. Lett. 90,137401 (2003).
    [38] S. Enoch, G. Teyeb, P. Saboutoux, N. Guerin, P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
    [39] C.-Y. Luo, M. Ibanescu, S. G. Johnson, J. D. Joannopoulos, Science 299,368 (2003).
    [40] W. L. Barnes, J. Lightware Technol. 17, 2170 (1999).
    [41] H. Rigneault, F. Lemarchand and A. Sentenac, J. Opt. Soc. Am. A17,1048 (2000).
    [42] J. M. Lupton, B. J. Matterson, I. D. W. Samuel, M. J. Jory and W. L. Barnes, Appl. Phys. Lett. 77,3340 (2000).
    [43] A.-L. Fehrembach, S. Enoch and A. Sentenaca, Appl. Phys. Lett. 79, 4280 (2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700