偏振复用相干光通信系统数字均衡技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色散均衡技术是光纤通信系统的关键技术之一,而电域数字均衡技术与光域色散补偿技术相比,既有体积小、成本低的优势,又可以与数字信号处理技术相结合实现优异的性能,因此数字均衡技术成为光纤通信领域的研究热点之一。受益于超大规模数字集成电路工艺的发展,以及多进制调制、相干检测、偏振复用(PDM)等技术在光通信领域的应用,数字均衡技术已成为下一代100Gbit/s光网络的必备技术。
     相干检测不仅能提高接收机的灵敏度,而且能保持光纤色度色散和偏振模色散对信号影响的线性,适合作为长距离光纤通信系统的检测方案。偏振复用在不改变光纤链路的情况下,增加发射机和接收机的复杂度,使得系统传输容量翻倍。偏振复用相干检测与传统的多进制调制结合常称为单载波系统,而正交频分复用(OFDM)则是多载波调制,它增加了系统的灵活性,并提供了100Gbit/s以上系统传输容量的能力。本论文主要研究偏振复用相干检测单载波系统和光正交频分复用系统的数字色散均衡技术。
     本论文的工作是在河北省自然科学基金项目(No. F2008000116)和国家自然科学基金项目(No.60572018)的支持下进行的。主要研究内容有:
     1.根据非线性薛定谔(NLS)方程,分析了30ps以上光脉冲在长距离光纤中的传输方程,研究了群速度色散(GVD)和偏振模色散(PMD)对光信号传输的影响,并分析了偏振模色散的补偿原理;研究了偏振复用相干检测单载波系统和光正交频分复用系统的线性信道模型,分析了光纤信道色度色散(CD)和偏振模色散的矩阵模型,建立了112Gbit/s偏振复用相干检测单载波系统和光正交频分复用系统的仿真模型。
     2.针对100Gbit/s偏振复用相干检测单载波系统,提出了一种以蝶形复数有限冲激响应(FIR)滤波器为基本结构的数字色散均衡器,以递归最小二乘(RLS)算法实现自适应,并与最小均方(LMS)算法实现自适应的均衡器相比较。仿真分析了两种算法更新的均衡器在不同信道线性损伤条件下的均衡性能。实验结果表明:递归最小二乘算法对信道残留色度色散和偏振模色散的均衡效果优于最小均方算法,在25抽头均衡器的配置下,它能以2.74dB的光信噪比代价同时补偿1760ps/nm的残留色度色散和104.9ps偏振模色散引起的平均差分群时延,与同等条件下的最小均方算法相比有2.23dB的性能提升。
     3.提出了一种用于100Gbit/s偏振复用相干检测单载波系统的数字色散均衡器,以蝶形复数无限冲激响应(IIR)滤波器为基本结构,以最小均方算法完成自适应。仿真分析了该均衡器在不同信道线性损伤条件下的均衡性能。实验结果表明:在21前馈抽头+2反馈抽头的配置下,该均衡器能以2.95dB的功率代价同时补偿1440ps/nm的残留色度色散和95ps的平均差分群时延。
     4.提出了一种基于凯撒窗函数的改进的符号内频域平均(ISFA)算法,用于改善100Gbit/s偏振复用相干检测光正交频分复用系统的信道估计和均衡在噪声环境下的性能。仿真分析了不同系统条件下改进算法与原算法的信道估计均衡性能。实验结果表明:基于凯撒窗的改进的符号内频域平均算法比原算法在性能上有所提升。改进算法用于补偿1000km常规单模光纤的群速度色散和偏振模色散达到前向纠错码(FEC)要求的误码率上限所需的光信噪比为15.73dB,比原算法低0.24dB。改进算法用于补偿900km常规单模光纤的群速度色散和偏振模色散所需的光信噪比代价为3.01dB,比原算法低0.35dB。
Dispersion equalization is one of the key technologies for modern fiber opticcommunication systems. Compared with the optical dispersion compensation, theelectronic digital equalization has smaller size and lower cost, and it can achieveexcellent performance with the combination of digital signal processing. Digitalequalization techniques become one of the hot research fields of optical fibercommunication. Benefit from the development of ultra-large-scale digital integratedcircuit technology, as well as the M-ary modulation, coherent detection andpolarization division multiplexing (PDM) technology in the field of opticalcommunications, digital equalization has become an essential technology of the nextgeneration100Gbit/s optical networks.
     Coherent detection can not only improve the receiver sensitivity, but alsomaintain the linearity of chromatic dispersion and polarization mode dispersioneffects, and is suitable for the detection scheme of long-haul fiber opticcommunication systems. Polarization division multiplexing does not change the fiberlink, making the system transmission capacity doubled via increasing the complexityof the transmitter and receiver. The combination of polarization division multiplexing,coherent detection and M-ary modulation often referred to as single-carrier systems.Orthogonal frequency division multiplexing (OFDM) is a multi-carrier modulationscheme. It increases the flexibility of the system, and provides the ability of a100Gbit/s and above system transmission capacity. This research mainly investigates thedigital dispersion equalization technologies for polarization multiplexed coherentsingle-carrier system and optical orthogonal frequency division multiplexing system.
     The work in this thesis is supported by the Hebei Province Natural ScienceFoundation (No. F2008000116) and the National Natural Science Foundation (No.60572018). The main contents are as follows:
     1. After analyzing the nonlinear Schrodinger equation of optical pulses above 30ps in the long-haul optical fiber, the effect of group velocity dispersion(GVD) and polarization mode dispersion (PMD) on optical signaltransmission is studied, and the compensation principle of polarization modedispersion is analyzed. The linear channel model of the polarizationmultiplexed coherent single-carrier system and optical orthogonal frequencydivision multiplexing system is studied, and a matrix channel model of fiberchromatic dispersion (CD) and polarization mode dispersion is analyzed.Simulation model for112Gbit/s polarization multiplexed coherentsingle-carrier system and optical orthogonal frequency division multiplexingsystem are created.
     2. A butterfly finite impulse response (FIR) filter based structure is proposedfor the digital dispersion equalizer of100Gbit/s polarization multiplexedcoherent single-carrier system, which adopt least mean square (LMS)algorithm and recursive least squares (RLS) algorithm as the adaptivealgorithm. Simulation analyses of the equalization performance of twoalgorithms updated equalizer under different channel impairments arecarried out. The simulation results show that: the equalization performanceof the recursive least squares algorithm better than the least mean squarealgorithm, with the configuration of the25-tap equalizer, recursive leastsquares algorithm can compensate1760ps/nm residual chromatic dispersionand104.9ps mean differential group delay (DGD) caused by polarizationmode dispersion simultaneously with2.74dB optical signal to noise ratio(OSNR) penalty, and has2.23dB performance improvement compared withthe least mean square algorithm under the same conditions.
     3. A butterfly infinite impulse response (IIR) filter based structure is proposedfor the digital dispersion equalizer of100Gbit/s polarization multiplexedcoherent single-carrier system, which adopts least mean square algorithm asthe adaptive algorithm. The equalization performances of the designedequalizer are analyzed by simulation under different channel linearimpairments. The simulation results show that: with the configuration of21feed forward taps and2feed back taps, the equalizer can compensate 1440ps/nm residual chromatic dispersion and95ps mean differential groupdelay simultaneously with2.95dB power penalty.
     4. An improved intra-symbol frequency domain average algorithm using theKaiser window function is proposed to improve the channel estimation andequalization performance of100Gbit/s polarization multiplexed coherentoptical orthogonal frequency division multiplexing system in noisyenvironments. The channel estimation and equalization performances of theimproved algorithm and original algorithm are analyzed through simulationunder different system conditions. The simulation results show that: theKaiser-window-based improved algorithm has improved performance thanthe original algorithm. To compensate the group velocity dispersion andpolarization mode dispersion of1000km transmission fiber and achieve thebit error rate upper limit required by forward error correction (FEC) code,the improved algorithm need an OSNR of15.73dB,0.24dB lower than theoriginal algorithm. To compensate the group velocity dispersion andpolarization mode dispersion of900km transmission fiber, the optical signalto noise ratio penalty of the improved algorithm is3.01dB,0.35dB lowerthan the original algorithm.
引文
[1] Gabriel Charlet. Coherent detection associated with digital signal processing for fiberoptics communication. C. R. Physique,2008(9):1012~1030
    [2] Yan Han, Guifang Li. Coherent optical communication using polarizationmultiple-input-multiple-output. OPTICS EXPRESS,2005, Vol.13(19):7527~7534
    [3] Daniel Fritzsche, Thomas Duthel, Christian G. Schaffer. Performance analysis ofdispersion compensating optical FIR filters designed using a quasi-analytic synthesis approach.Optics Communications,2008, Vol.281(9):2429~2432
    [4] Christian Remmersmann, Matthias Westhauser, Stephan Pachnicke, et al. Equalization offirst and second order PMD in100GBit/s PolMux transmission using optical butterfly FIR filters.Conference on Optical Fiber Communication. San Diego, CA,2010
    [5] Tianhua Xu, Gunnar Jacobsen, Sergei Popov, et al. Normalized LMS digital filter forchromatic dispersion equalization in112-Gbit/s PDM-QPSK coherent optical transmission system.Optics Communications,2010, Vol.283(6):963~967
    [6] Xiang Zhou, Jianjun Yu. Advanced Coherent Modulation Formats and Algorithms:Higher-Order Multi-Level Coding for High-Capacity System Based on100Gbps Channel.Conference on Optical Fiber Communication. San Diego, CA,2010
    [7] Thomas Duthel, Sander L. Jansen, Peter M. Krummrich, et al. Multi-channel residualdispersion compensation in a40Gb/s WDM system utilizing a single all-fiber delay line filter.Conference on Optical Fiber Communication. San Diego, CA,2005
    [8] Ze Dong, Jianjun Yu, Hung-Chang Chien, et al. Ultra-dense WDM-PON deliveringcarrier-centralized Nyquist-WDM uplink with digital coherent detection. OPTICS EXPRESS,2011, Vol.19(12):11100~11105
    [9] Yuanyuan Zhang, Maurice O’Sullivan, Rongqing Hui. Theoretical and experimentalinvestigation of compatible SSB modulation for single channel long-distance optical OFDMtransmission. OPTICS EXPRESS,2010, Vol.18(16):16751~16764
    [10] Xiangye Zeng, Jianfei Liu, Jian Wang. Theoretical and Experimental Analysis of DOPUsed as Control Signal in PMD Compensation. The Intelligent Networks and Systems Society,2008(3):15~20
    [11]高丽娜,刘剑飞,曾祥烨,等.一种光正交频分复用系统的联合相位均衡方法.光学学报,2012, Vol.32(1):0106004
    [12] Ezra Ip, Joseph M. Kahn. Digital Equalization of Chromatic Dispersion and PolarizationMode Dispersion. JOURNAL OF LIGHTWAVE TECHNOLOGY,2007, Vol.25(8):2033~2043
    [13] Ezra Ip, Alan Pak Tao Lau, Daniel J. F. Barros, et al. Coherent detection in optical fibersystems. Optics Express,2008, Vol.16(2):753~791
    [14] T. Duthel, C.R.S. Fludger, D. van den Borne. Impairment tolerance of111Gbit/sPOLMUX-RZ-DQPSK using a reduced complexity coherent receiver with a T-spaced equaliser.European Conference on Optical Communication. Berlin, Germany,2007
    [15] C. Fludger, A. Voss, T. Duthel, et al. Characterisation of an RZ-DQPSK transmitterusing coherent detection. European Conference on Optical Communication. Berlin, Germany,2007
    [16] C. Fludger, T. Duthel, C. Schulien. Towards Robust100GE Transmission. IEEE Lasersand Electro-Optics Society (LEOS) meetings. Portland, USA,2007
    [17] C.R.S. Fludger, T. Duthel, D. van den Borne, et al.10x111Gbit/s,50GHz spaced,POLMUX-RZ-DQPSK transmission over2375km employing coherent equalisation. Conferenceon Optical Fiber Communication. Anaheim, CA,2007
    [18] F.N. Hauske, J.C. Geyer, M. Kuschnerov, et al. Optical Performance Monitoring fromFIR Filter Coefficients in Coherent Receivers. Conference on Optical Fiber Communication. SanDiego, CA,2008
    [19] T. Duthel, C. Fludger, J. Geyer, et al. Impact of Polarisation Dependent Loss onCoherent POLMUX-NRZ-DQPSK. Conference on Optical Fiber Communication. San Diego, CA,2008
    [20]林密,张锦南,袁学光,等.40Gb/s偏分复用差分四相移键控传输系统中新型电均衡技术的研究.光学学报,2010, Vol.30(s1):100201
    [21]冯勇,闻和,张汉一.偏振复用差分相移键控信号的数字相干解调与偏振解复用算法研究.光学学报,2010, Vol.30(5):1268~1273
    [22] S. Chandrasekhar, Xiang Liu. Experimental investigation on the performance of closelyspaced multi-carrier PDM-QPSK with digital coherent detection. OPTICS EXPRESS,2009,Vol.17(24):21350~21361
    [23] IEEE Computer Society. IEEE Std802.3ba-2010. IEEE Standard for InformationTechnology. New York:IEEE LAN/WAN Standard Committee,2010
    [24] Seb J. Savory. Digital filters for coherent optical receivers. OPTICS EXPRESS,2008,Vol.16(2):804~817
    [25] Chongjin Xie. Nonlinear polarization effects and mitigation inpolarization-division-multiplexed coherent transmission systems (Invited Paper). Chinese OpticsLetters,2010, Vol.8(9):844~851
    [26] Chongjin Xie. Impact of nonlinear and polarization effects in coherent systems. OPTICSEXPRESS,2011, Vol.19(26): B915~B930
    [27] T. Kupfer, S. Langenbach, N. Stojanovic, et al. Performance of MLSE in OpticalCommunication Systems. European Conference on Optical Communication. Berlin, Germany,2007
    [28] S. Langenbach, G. Bosco, P. Poggiolini, et al. Parametric versus Non-Parametric BranchMetrics for MLSE based Receivers with ADC and Clock Recovery. Conference on Optical FiberCommunication. San Diego, CA,2008
    [29] Kang Yang, Jianfei Liu, Xiangye Zeng. Electronic Dispersion Compensation for PMDin40-GB/s Optical Links. Asia Communications and Photonics Conference and Exhibition (ACP),Shanghai, China,2009
    [30] J. Whiteaway, C. Fludger, S. Langenbach, et al. Review of Recent Progress in MLSEReceiver Technologies. IEEE Lasers and Electro-Optics Society (LEOS) meetings. Portland, USA,2007
    [31] A. Farbert, S. Langenbach, N. Stojanovic, et al. Performance of a10.7Gb/s Receiverwith Digital Equaliser using Maximum Likelihood Sequence Estimation. European Conference onOptical Communication. Stockholm,2004
    [32] T. Kupfer, C. Dorschky, M. Ene, et al. Measurement of the Performance of16-StatesMLSE Digital Equalizer with Different Optical Modulation Formats. Conference on Optical FiberCommunication. San Diego, CA,2008
    [33] R.I. Killey, P.M. Watts, V. Mikhailov, et al. Electronic dispersion compensation bysignal predistortion using digital Processing and a dual-drive Mach-Zehnder Modulator. IEEEPHOTONICS TECHNOLOGY LETTERS,2005, Vol.17(3):714~716
    [34] Michel Joindot, Stephane Gosselin. Optical fiber transport systems and networks:fundamentals and prospects. C. R. Physique,2008(9):914~934
    [35] Robert W. Chang. Sythesis of band-limited orthogonal signals for multichannel datatransmission. Bell System Technical Journal,1966(45):1775~1796
    [36] Qi Pan, Green R.J. Bit-error-rate performance of lightwave hybrid AM/OFDM systemswith comparison with AM/QAM systems in the presence of clipping impulse noise. IEEEPHOTONICS TECHNOLOGY LETTERS,1996, Vol.8(2):278~280
    [37] Bryn J. Dixon, Roger D. Pollard, Stavros Iezekiel. Orthogonal Frequency-DivisionMultiplexing in Wireless Communication Systems With Multimode Fiber Feeds. IEEETRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,2001, Vol.49(8):1404~1409
    [38] Arthur James Lowery, Jean Armstrong.10Gbit/s multimode fiber link usingpower-efficient orthogonal-frequency-division multiplexing. OPTICS EXPRESS,2005,Vol.13(25):10003~10009
    [39] Arthur James Lowery, Jean Armstrong. Orthogonal-frequency-division multiplexing fordispersion compensation of long-haul optical systems. OPTICS EXPRESS,2006, Vol.14(6):2079~2084
    [40] Ivan B. Djordjevic and Bane Vasic, Orthogonal frequency division multiplexing forhigh-speed optical transmission. OPTICS EXPRESS,2006, Vol.14(9):3767~3775
    [41] Darko Zibar, Julio Cesar R. F. de Olivera, Vittor Bedotti Ribeiro, et al. Experimentalinvestigation and digital compensation of DGD for112Gb/s PDM-QPSK clock recovery.OPTICS EXPRESS,2011, Vol.19(26): B429~B437
    [42] W. Shieh, C. Athaudage. Coherent optical orthogonal frequency division multiplexing.ELECTRONICS LETTERS,2006, Vol.42(10):587~589
    [43] W. Shieh, X. Yi, Y. Ma, et al. Theoretical and experimental study on PMD-supportedtransmission using polarization diversity in coherent optical OFDM systems. OPTICS EXPRESS,2007, Vol.15(16):9936~9947
    [44] Ivan Djordjevic, Hussam G. Batshon, Lei Xu, et al. Four-dimensional opticalmultiband-OFDM for beyond1.4Tb/s serial optical transmission. OPTICS EXPRESS,2011,Vol.19(2):876~882
    [45] Ivan Djordjevic, Murat Arabaci, Lei Xu, et al. Generalized OFDM (GOFDM) forultra-high-speed optical transmission. OPTICS EXPRESS,2011, Vol.19(7):6969~6979
    [46] J. Armstrong, A.J. Lowery. Power efficient optical OFDM. ELECTRONICS LETTERS,2006, Vol.42(6):370~372
    [47] Arthur James Lowery. Fiber nonlinearity pre-and post-compensation for long-hauloptical links using OFDM. OPTICS EXPRESS,2007, Vol.15(20):12965~12970
    [48] Liang Du, Brendon Schmidt, Arthur Lowery. Efficient Digital Backpropagation forPDM-CO-OFDM Optical Transmission Systems. Conference on Optical Fiber Communication.San Diego, CA,2010
    [49] Liang B. Du, Arthur J. Lowery. Improved single channel backpropagation forintra-channel fiber nonlinearity compensation in long-haul optical communication systems.OPTICS EXPRESS,2010, Vol.18(16):17075~17088
    [50] W. Shieh, H. Bao, and Y. Tang. Coherent optical OFDM: theory and design. OPTICSEXPRESS,2008, Vol.16(2):841~859
    [51] Yiran Ma, Qi Yang, Yan Tang, et al.1-Tb/s single-channel coherent optical OFDMtransmission over600-km SSMF fiber with subwavelength bandwidth access. OPTICS EXPRESS,2009, Vol.17(11):9421~9427
    [52] Qi Yang, Abdullah Al Amin, Xi Chen, et al.428-Gb/s single-channel coherent opticalOFDM transmission over960-km SSMF with constellation expansion and LDPC coding.OPTICS EXPRESS,2010, Vol.18(16):16883~16889
    [53] Xi Chen, William Shieh. Closed-form expressions for nonlinear transmissionperformance of densely spaced coherent optical OFDM systems. OPTICS EXPRESS,2010,Vol.18(18):19039~19054
    [54] An Li, Abdullah Al Amin, Xi Chen, et al. Transmission of107-Gb/s mode andpolarization multiplexed CO-OFDM signal over a two-mode fiber. OPTICS EXPRESS,2011,Vol.19(9):8808~8814
    [55] Cheng Lei, Hongwei Chen, Minghua Chen, et al. A high spectral efficiency opticalOFDM scheme based on interleaved multiplexing. OPTICS EXPRESS,2010, Vol.18(25):26149~26154
    [56] Christian R. Berger, Yannis Benlachtar, Robert I. Killey, et al. Theoretical andexperimental evaluation of clipping and quantization noise for optical OFDM. OPTICSEXPRESS,2011, Vol.19(18):17713~17728
    [57] Evgeny Vanin. Performance evaluation of intensity modulated optical OFDM systemwith digital baseband distortion. OPTICS EXPRESS,2011, Vol.19(5):4280~4293
    [58] Abdullah Al Amin, Sander L. Jansen, Hidenori Takahashi, et al. A hybrid IQ imbalancecompensation method for optical OFDM transmission. OPTICS EXPRESS,2010, Vol.18(5):4859~4866
    [59] Hidenori Taga. A theoretical study of OFDM system performance with respect tosubcarrier numbers. OPTICS EXPRESS,2009, Vol.17(21):18638~18642
    [60] Chun-Ting Lin, Chia-Chien Wei, Ming-I Chao. Phase noise suppression of opticalOFDM signals in60-GHz RoF transmission system. OPTICS EXPRESS,2011, Vol.19(11):10423~10428
    [61] Chia Chien Wei, Jason (Jyehong) Chen. Study on dispersion-induced phase noise in anoptical OFDM radio-over-fiber system at60-GHz band. OPTICS EXPRESS,2010, Vol.18(20):20774~20785
    [62] Wei-Ren Peng, Kai-Ming Feng, Sien Chi. Joint compensation of CD and PMD indirect-detected OFDM transmission using polarization-time coding. OPTICS EXPRESS,2010,Vol.18(3):1916~1926
    [63] Tiago M. F. Alves, Adolfo V. T. Cartaxo. Semi-analytical approach for performanceevaluation of direct-detection OFDM optical communication systems. OPTICS EXPRESS,2009,Vol.17(21):18714~18729
    [64] P. Poggiolini, A. Carena1, V. Curri, et al. Evaluation of the computational effort forchromatic dispersion compensation in coherent optical PM-OFDM and PM-QAM systems.OPTICS EXPRESS,2009, Vol.17(3):1385~1403
    [65] Mohammad E. Mousa-Pasandi, David V. Plant. Data-aided adaptive weighted channelequalizer for coherent optical OFDM. OPTICS EXPRESS,2010, Vol.18(4):3919~3927
    [66] Mohammad E. Mousa-Pasandi, David V. Plant. Zero-overhead phase noisecompensation via decision-directed phase equalizer for coherent optical OFDM. OPTICSEXPRESS,2010, Vol.18(20):20651~20660
    [67] Chen Chen, Qunbi Zhuge, David V. Plant. Zero-guard-interval coherent optical OFDMwith overlapped frequency-domain CD and PMD equalization. OPTICS EXPRESS,2011,Vol.19(8):7451~7467
    [68] Liang B. Du, Arthur J. Lowery. No-guard-interval coherent optical OFDM withself-tuning receiver. OPTICS EXPRESS,2011, Vol.19(3):2181~2186
    [69] E. Yamada, A. Sano, H. Masuda, et al. Novel No-Guard-Interval PDM CO-OFDMTransmission in4.1Tbs (50x88.8-Gbs) DWDM Link over800km SMF Including50-GHzSpaced ROADM Nodes. Conference on Optical Fiber Communication. San Diego, CA,2008
    [70] Bartlomiej Kozicki, Hidehiko Takara, Yukio Tsukishima, et al. Experimentaldemonstration of spectrum-sliced elastic optical path network (SLICE). OPTICS EXPRESS,2010,Vol.18(21):22105~22118
    [71] Xiang Liu, Fred Buchali. Intra-symbol frequency-domain averaging based channelestimation for coherent optical OFDM. OPTICS EXPRESS,2008, Vol.16(26):21944~21957
    [72] Xiang Liu, Fred Buchali. A Novel Channel Estimation Method for PDM-OFDMEnabling Improved Tolerance to WDM Nonlinearity. Conference on Optical FiberCommunication. San Diego, CA,2009
    [73] Xiang Liu, Qi Yang, S. Chandrasekhar, et al. Transmission of44-Gb/s Coherent OpticalOFDM Signal with Trellis-Coded32-QAM Subcarrier Modulation. Conference on Optical FiberCommunication. San Diego, CA,2010
    [74] Chuanchuan Yang, Feng Yang, Ziyu Wang. Phase Noise Estimation and Mitigation forDCT-based Coherent Optical OFDM systems. OPTICS EXPRESS,2009, Vol.17(19):17052~17059
    [75] Chuanchuan Yang, Feng Yang, Ziyu Wang. Phase noise suppression for coherent opticalblock transmission systems: a unified framework. OPTICS EXPRESS,2011, Vol.19(18):17013~17020
    [76] Chun Ju Youn, Xiang Liu, S. Chandrasekhar, et al. Channel estimation andsynchronization for polarization-division multiplexed CO-OFDM using subcarrier_polarizationinterleaved training symbols. OPTICS EXPRESS,2011, Vol.19(17):16174~16181
    [77] Xingwen Yi, Kun Qiu. Estimation and compensation of sample frequency offset incoherent optical OFDM systems. OPTICS EXPRESS,2011, Vol.19(14):13503~13508
    [78] Wonzoo Chung. Transmitter IQ mismatch compensation in coherent optical OFDMsystems using pilot signals. OPTICS EXPRESS,2010, Vol.18(20):21308~21314
    [79] Xianming Zhu, Shiva Kumar. Nonlinear phase noise in coherent optical OFDMtransmission systems. OPTICS EXPRESS,2010, Vol.18(7):7347~7360
    [80] Hongwei Chen, Minghua Chen, Feifei Yin, et al.100Gb/s PolMux-NRZ-AOS-OFDMtransmission system. OPTICS EXPRESS,2009, Vol.17(21):18768~18773
    [81] D. Hillerkuss, M. Winter, M. Teschke, et al. Simple all-optical FFT scheme enablingTbit/s real-time signal processing. OPTICS EXPRESS,2010, Vol.18(9):9324~9340
    [82] I. Kang, M. Rasras, X. Liu, et al. All-optical OFDM transmission of7x5-Gb/s dataover84-km standard single-mode fiber without dispersion compensation and time gating using aphotonic-integrated optical DFT device. OPTICS EXPRESS,2011, Vol.19(10):9111~9117
    [83] Qi Yang, Simin Chen, Yiran Ma, et al. Real-time reception of multi-gigabit coherentoptical OFDM signals. OPTICS EXPRESS,2009, Vol.17(10):7985~7992
    [84] Yannis Benlachtar, Philip M. Watts, Rachid Bouziane, et al. Generation of opticalOFDM signals using21.4GS/s real time digital signal processing. OPTICS EXPRESS,2009,Vol.17(20):17658~17668
    [85] X.Q. Jin, R.P. Giddings, J.M. Tang. Real-time transmission of3Gb/s16-QAM encodedoptical OFDM signals over75km SMFs with negative power penalties. OPTICS EXPRESS,2009,Vol.17(17):14574~14585
    [86] R. P. Giddings, X. Q. Jin, J. M. Tang. Experimental demonstration of real-time3Gb/soptical OFDM transceivers. OPTICS EXPRESS,2009, Vol.17(19):16654~16665
    [87] X.Q. Jin, R.P. Giddings, E. Hugues-Salas, et al. Real-time demonstration of128-QAM-encoded optical OFDM transmission with a5.25bit/s/Hz spectral efficiency in simpleIMDD systems utilizing directly modulated DFB lasers. OPTICS EXPRESS,2009, Vol.17(22):20484~20493
    [88] R. P. Giddings, X. Q. Jin, J. M. Tang. First experimental demonstration of6Gb/sreal-time optical OFDM transceivers incorporating channel estimation and variable power loading.OPTICS EXPRESS,2009, Vol.17(22):19727~19738
    [89] R. P. Giddings, X. Q. Jin, E. Hugues-Salas, et al. Experimental demonstration of arecord high11.25Gb/s real-time optical OFDM transceiver supporting25km SMF end-to-endtransmission in simple IMDD systems. OPTICS EXPRESS,2010, Vol.18(6):5541~5555
    [90] X. Q. Jin, R. P. Giddings, E. Hugues-Salas. Real-time experimental demonstration ofoptical OFDM symbol synchronization in directly modulated DFB laser-based25km SMF IMDDsystems. OPTICS EXPRESS,2010, Vol.18(20):21100~21110
    [91] R. P. Giddings, J. M. Tang. Experimental demonstration and optimisation of asynchronous clock recovery technique for real-time end-to-end optical OFDM transmission at11.25Gb/s over25km SSMF. OPTICS EXPRESS,2011, Vol.19(3):2831~2845
    [92] R. Schmogrow, M. Winter, D. Hillerkuss, et al. Real-time OFDM transmitter beyond100Gbit/s. OPTICS EXPRESS,2011, Vol.19(13):12740~12749
    [93] Xiangjun Xin, Lijia Zhang, Bo Liu, et al. Dynamic λ-OFDMA with selective multicastoverlaid. OPTICS EXPRESS,2011, Vol.19(8):7847~7855
    [94] Cheng Lei, Hongwei Chen, Minghua Chen, et al.16×10Gb/s symmetricWDM-FOFDM-PON realization with colorless ONUs. OPTICS EXPRESS,2011, Vol.19(16):15275~15280
    [95]王铁城,姚晓天,万木森,等.偏振相关损耗对偏振复用系统信道正交性的影响.中国激光,2009, Vol.36(4):879~883
    [96] Yong Feng, He Wen, Hanyi Zhang, et al.40-Gb/s PolMux-QPSK transmission usinglow-voltage modulation and single-ended digital coherent detection. Chinese Optics Letters,2010,Vol.8(10):976~978
    [97] Zinan Wang, Chongjin Xie, Xiaomin Ren. PMD and PDL impairments in polarizationdivision multiplexing signals with direct detection. OPTICS EXPRESS,2009, Vol.17(10):7993~8004
    [98] Govind P. Agrawal著.贾东方,余震虹,等译.非线性光纤光学原理及应用(第二版).北京:电子工业出版社,2010.6
    [99] H. Kogelnik, L. E. Nelson, J. P. Gordon. Emulation and Inversion of Polarization-ModeDispersion. JOURNAL OF LIGHTWAVE TECHNOLOGY,2003, Vol.21(2):482~495
    [100] P. K. A. Wai, C. R. Menyuk. Polarization Mode Dispersion, Decorrelation, andDiffusion in Optical Fibers with Randomly Varying Birefringence. JOURNAL OF LIGHTWAVETECHNOLOGY,1996, Vol.14(2):148~157
    [101] C. R. Menyuk, P. K. A. Wai. Polarization evolution and dispersion in fibers withspatially varying birefringence. Journal of the Optical Society of America B,1994, Vol.11(7):1288~1296
    [102] J. P. Gordon, H. Kogelnik. PMD fundamentals: Polarization mode dispersion in opticalfibers. Proceedings of the National Academy of Sciences of USA.2000, Vol.97(9):4541~4550
    [103] H. Dong, P. Shum, M. Yan, et al. Generalized Mueller matrix method for polarizationmode dispersion measurement in a system with polarization-dependent loss or gain. OPTICSEXPRESS,2006, Vol.14(12):5067~5072
    [104] Lynn E. Nelson, Robert M. Jopson, Herwig Kogelnik, et al. Measurement ofpolarization mode dispersion vectors using the polarization-dependent signal delay method.OPTICS EXPRESS,2000, Vol.6(8):158~167
    [105] Frank Bruyere. Impact of First-and Second-Order PMD in Optical DigitalTransmission Systems. OPTICAL FIBER TECHNOLOGY,1996(2):269~280
    [106] Cristian Francia, Frank Bruyere, Denis Penninckx, et al. PMD Second-Order Effectson Pulse Propagation in Single-Mode Optical Fibers. IEEE PHOTONICS TECHNOLOGYLETTERS,1998, Vol.10(12):1739~1741
    [107] A. Eyal, W.K. Marshall, M. Tur, et al. Representation of second-order polarisationmode dispersion. ELECTRONICS LETTERS,1999, Vol.35(19):1658~1659
    [108] Yi Li, A. Eyal, P.-O. Hedekvist, et al. Measurement of High-Order Polarization ModeDispersion. IEEE PHOTONICS TECHNOLOGY LETTERS,2000, Vol.12(7):861~863
    [109] Yi Li, Amnon Yariv. Solutions to the dynamical equation of polarization-modedispersion and polarization-dependent losses. Journal of the Optical Society of America B,2000,Vol.17(11):1821~1827
    [110] A. Eyal, Y. Li, W. K. Marshall, et al. Statistical determination of the length dependenceof high-order polarization mode dispersion. OPTICS LETTERS,2000, Vol.25(12):875~877
    [111] Lynn E. Nelson, Herwig Kogelnik. Coherent crosstalk impairments in polarizationmultiplexed transmission due to polarization mode dispersion. OPTICS EXPRESS,2000,Vol.7(10):350~361
    [112] Ezra Ip, Joseph M. Kahn. Digital Equalization of Chromatic Dispersion andPolarization Mode Dispersion. JOURNAL OF LIGHTWAVE TECHNOLOGY,2007, Vol.25(8):2033~2043
    [113] G. P. Agrawal. Fiber-Optic Communiation Systems (3rd ed). New York: Wiley,2002
    [114] C.E. Shannon. A mathematical theory of communication. Bell. Syst. Tech. J.1948(27):379~423
    [115] John G. Proakis著.张力军,张宗橙,郑宝玉,等译.数字通信(第四版).北京:电子工业出版社,2003.1
    [116] Simon Haykin. Adaptive filter theory (4th edition). London: Prentice Hall,2001
    [117] Burton R. Saltzberg, Performance of an Efficient Parallel Data Transmission System.IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY,1967, Vol.COM-15(6):805~811
    [118] ZENG Xiang-ye, LIU Jian-fei, ZHAO Qi-da. An IIR adaptive electronic equalizer forpolarization multiplexed fiber optic communication systems. OPTOELECTRONICS LETTERS,2011, Vol.7(5):0371~0375
    [119]曾祥烨,刘剑飞,赵启大.偏振复用光纤通信系统色散均衡器及算法的研究.光学学报,2012, Vol.32(2):0206003
    [120] Daniel J. F. Barros, Joseph M. Kahn. Optimized Dispersion Compensation UsingOrthogonal Frequency-Division Multiplexing. JOURNAL OF LIGHTWAVE TECHNOLOGY,2008, Vol.26(16):2889~2898
    [121]曾召华. LTE基础原理与关键技术.西安:西安电子科技大学出版社,2010.5
    [122] Alan V. Oppenheim, Ronald W. Schafer, John R. Buck著;刘树棠,黄建国译.离散时间信号处理.西安:西安交通大学出版社,2001.9
    [123] Mingjun Wang, Jianfei Liu, Xiangye Zeng. Research on equalization based on MLSE.Photonics and Optoelectronics Meetings (POEM): Fiber Optic Communication and Sensors,Wuhan, China,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700