DP-16QAM相干光通信系统关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于高阶调制码型、相干检测和数字信号处理技术的相干光通信,由于其能够实现高频谱效率、在电域实现传输损伤补偿等优势,成为下一代高速光通信系统发展方向。本论文结合国家863项目“160Gb/s一泵多纤光传输技术的研究”以及加拿大自然科学基金战略基金项目‘'Digital signal processing for fiber optic communication",围绕基于偏振复用16进制正交幅度调制(DP-16QAM)码型、相干检测和数字信号处理技术的相干光通信系统进行了深入的理论和实验研究。取得的主要研究成果如下:
     1.提出一种改进型四电平信号生成方案,实验生成了高质量14Gbaud/s、28Gbaud/s、32Gbaud/s、40Gbaud/s四电平信号。实验研究了基于改进型四电平信号生成方案的DP-16QAM发射机性能,实验结果显示112Gb/s和224Gb/sDP-16QAM发射机性能与理论值分别仅有2.7dB和3.5dB的光信噪比(OSNR)代价。搭建了112Gb/s DP-16QAM实验传输系统,实验研究了其传输性能。实验结果显示,在仅补偿光纤色散情况下单通道112Gb/s DP-16QAM传输系统最优入纤功率点为-3.5dBm;当前向纠错编码(FEC)阈值为3.8×10-时,实验实现了112Gb/sDP-16QAM信号1470km传输。
     2.开发了一套完整的适用于DP-16QAM的相干接收机数字信号处理算法,其中包括基于Gram-Schmidt正交法则的IQ非正交补偿算法;基于频域均衡器的色散补偿算法;数字时钟恢复;偏振复用信号的偏振解复用及动态均衡;载波频偏估计与补偿;载波相位噪声估计与补偿;判决及误码计算。仿真及实验验证了整套数字信号处理算法的性能。首次实验研究了基于Gram-Schmidt正交法则的IQ非正交补偿算法在DP-16QAM系统中的性能。
     3.研究了基于数字反向传输(DBP:Digital Back-Propagation)的光纤非线性补偿技术在DP-16QAM长距离相干光通信系统中的应用。分析了偏振复用传输系统中的光纤非线性效应。仿真与实验研究了该补偿技术中加权系数及补偿步长两个关键参数,结果显示:对于特定的传输系统,DBP的加权系数对补偿步长、入纤功率、传输距离等均不敏感。在综合考虑补偿性能及计算复杂度情况下,DBP的最优补偿步长为传输系统的中继距离。采用该补偿技术,112Gb/s DP-16QAM长传输系统的最优入纤功率被提升了2dB;当FEC阈值为3.8x10-时,实验实现了112Gb/s DP-16QAM信号2400km传输,最远传输距离比未采用该技术情况下提升近63%。
     4.提出三种基于改进型四相移键控分区算法(MP)的级联载波相位噪声估计(CPE)算法。研究了算法线宽容忍度、相位噪声估计性能、线性及非线性传输性能和硬件复杂度。仿真与实验结果表明:三种算法性能均与相位盲搜索(BPS)算法相近,硬件复杂度却比BPS算法分别降低了1.5-10倍。
     5.为了进一步降低硬件复杂度,提出一种基于准零乘法器算法的级联CPE算法。仿真与实验研究结果显示:级联CPE算法的线宽容忍度、相位噪声估计性能、线性及非线性传输性能均与BPS算法相当,但该算法硬件复杂度比BPS算法降低了17倍,是迄今为止报道的针对16QAM调制码型的硬件复杂度最低的前反馈级联CPE算法。
     6.提出将线性插值算法应用于载波相位噪声补偿技术中,提出基于线性相位插值(LPI)的增强型载波相位噪声补偿算法,理论与实验研究了该补偿算法性能。仿真与实验结果表明:LPI算法与滑动窗口(SW)补偿算法性能相当,好于数据块平均(BA)补偿算法;然而LPI算法的硬件复杂度仅与BA算法相近,远远低于SW补偿算法。
Optical coherent communication systems, based on high-order modulation format, coherent detection and digital signal processing, has been considered as a promising technology for next generation high-speed optical communication systems due to its ability for achieving high spectral efficiency and compensation for impairments in electric field. In this thesis, we conduct theoretical and experimental investigation on the high-speed optical coherent communication systems based on dual polarization16ary quadrature amplitude modulation (DP-16QAM) modulation format, coherent detection and digital signal processing. This work is jointly supported by National High Technologies Development Program (863)"Key technologies in160Gb/s optical transmission systems using multi-fiber pump" and Canada Natural Sciences and Engineering Research Council strategic project grants "Digital signal processing for fiber-optic communications". The main contributions of this thesis are listed as follows:
     1. An improved4-level signal generation method is proposed. High quality4-level signal at baud-rates of14Gbaud/s,28Gbaud/s,32Gbaud/s and40Gbaud/s are experimentally demonstrated. With the improved4-level signal generation, Only2.7dB and3.5dB OSNR penalty for the112Gb/s and the224Gb/s DP-16QAM transmitter are investigated, respectively. The performance of a112Gb/s DP-16QAM transmission system is experimentally investigated. The optimal launch power is-3.5dBm. With FEC threshold of3.8×10-3, a maximum transmission distance of1470km is demonstrated for112Gb/s DP-16QAM signal only with linear impairments compensation.
     2. A complete set of digital signal processing algorithms for DP-16QAM modulation format is developed. Including IQ imbalanced compensation, resampling, fix frequency domain equalizer for dispersion compensation, digital square and filtering clock recovery, polarization recovery and adaptive equalization, carrier frequency offset estimation and compensation, carrier phase noise estimation and compensation, symbol decision and bit error rate calculation. The performance of the digital signal processing algorithms is verified both by simulation and experimental data. The performance of Gram-Schmidt orthogonalization procedure based IQ imbalance compensation algorithm is first experimentally demonstrated in DP-16QAM system.
     3. Digital back-propagation (DBP) based fiber nonlinearity compensation is numerically and experimentally studied in long-haul DP-16QAM transmission systems. The scaling factor and step-size of DBP are fully studied both numerically and experimentally. The results show that the scaling factor is insensitivity to step-size, launch power and transmission distance. Considering the balance between computation complexity and performance, the optimal step-size of DBP is1span/step. Using DBP with a step size of1step/span, a2dB improvement of optimal launch power and a maximum transmission distance of2400km is experimentally demonstrated for a112Gb/s DP-16QAM transmission system, which improves the maximum transmission distance by63%compared to the case only with CD compensation.
     4. A modified QPSK partitioning carrier phase estimation (CPE) algorithm is proposed. Combined with the QPSK partitioning algorithm, simplified QPSK partitioning algorithm or blind phase search (BPS) algorithm, three novel linewidth tolerant, low-complexity two-stage carrier phase estimation algorithms for the16-QAM modulation format are proposed. The linewidth tolerance, estimation performance, linear and nonlinear transmission performance is comparable to the BPS algorithm. Reductions in the hardware complexity by factors of about1.5-10are achieved in comparison to the BPS algorithm.
     5. In order to further reduce the complexity of CPE algorithms, a quasi-multiplier free CPE algorithm for16QAM modulation format is proposed. Combined with simplified QPSK partitioning algorithm, a linewidth-tolerant, low-complexity two-stage feed-forward CPE algorithm is introduced for DP16-QAM. Numeral and experimental results show that the proposed algorithm achieves comparable performance to the BPS algorithm but with reduction in the hardware complexity by a factor of17. To our best knowledge, this is the lowest hardware complexity feed-forward two-stage CPE algorithm for DP-16QAM reported so far.
     6. Linear interpolation is introduced to improving the performance of carrier phase compensation. Linear phase interpolation (LPI) based carrier phase compensation algorithm is proposed. Numeral and experimental results show that the performance of LPI algorithms are better than the block averaging based algorithms, and are comparable to the sliding window based algorithms. However, significant reduction in the hardware complexity is demonstrated for LPI based carrier phase compensation algorithms in comparison to sliding window based algorithms.
引文
[I]R. A. Linke and A. H. Gnauck. High-capacity coherent lighwave systems[J]. Journal of Lightwave Technology,1988,6(10):1750-1769.
    [2]A. W. Davis, M. J. Pettitt, J. P. King, S. Wright. Phase diversity techniques for coherent optical receivers[J]. Journal of Lightwave Technology,1987,5(4):561-572.
    [3]L. G. Kazovsky. Phase and polarization-diversity coherent optical techniques[J]. Journal of Lightwave Technology,1987,7(2):279-292.
    [4]I. Katsushi, N. Takachio. Chromatic dispersion compensation in coherent optical communications[J]. Journal of Lightwave Technology,1990,8(3):367-375.
    [5]S. Ryu, S. Yamamoto, H. Taga, N. Edagawa, Y. Yoshida, H. Wakabayashi. Long-haul coherent optical fiber communication systems using optical amplifiers[J]. Journal of Lightwave Technology,1991,9(2):251-260.
    [6]A. D. Kersey, A. M. Yurek, A. Dandridge, J. F. Weller. Newpolarization insensitive detection technique for coherent optical fibre heterodyne communications[J]. Electronics Letters,1987, 23(18):924-926.
    [7]K. Kikuchi, T. Okoshi, M. Nagamatsu, H. Henmi. Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator[J]. Journal of Lightwave Technology,1984.2(6):1024-1033.
    [8]D. N. Payne and R.1. Laming, Optical amplifiers-a telecommunications revolution[C]. Electron Devices Meeting,1991.3-4.
    [9]I. Ezra, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn. Coherent detection in optical fiber systems[J]. Opt. Express,2008,16(1):753-791.
    [10]G. F. Li. Recent advances in coherent optical communication[J]. Adv. Opt. Photon,2009,1(1): 279-307.
    [11]R. A. Griffin, R. I. Johnstone, R. G. Walker, J. Hall, S. D. Wadsworth, K. Berry, A. C. Carter, M. J. Wale, J. Hughes, P. A. Jerram, N. J. Parsons.10 Gb/s optical differential quadrature phase shift key (DQPSK) transmission using GaAs/AlGaAs integration[C]. OFC2002.2002. FD6-1-3.
    [12]M. G. Taylor. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments[J]. Photonics Technology Letters,2004, 16(2):674-676.
    [13]F. Derr. Coherent optical QPSK intradyne system:concept and digital receiver realization[J]. Journal of Lightwave Technology,1992,10(9):1290-1296.
    [14]R. Noe. Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery[J]. Journal of Lightwave Technology,2005,23(2): 802-808.
    [15]D. S. Ly-Gagnon, K. Katoh, K. Kikuchi. Unrepeatered optical transmission of 20 Gbit/s quadrature phase-shift keying signals over 210 km using homodyne phase-diversity receiver and digital signal processing[J]. Electronics Letters,2005,41(4):206-207.
    [16]D. S. Ly-Gagnon, K. Katoh, K. Kikuchi. Coherent demodulation of differential 8-phase-shift keying with optical phase diversity and digital signal processing[C]. LEOS2004.2004. 607-608.
    [17]G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, and S. Bigo. Transmission of 40Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation[C]. ECOC 2006.2006.
    [18]T. Pfau, S. Hoffmann, R. Pveling, S. Bhandare, S. K. Ibrahim, O. Adamczyk, M. Porrmann, R. Noe, and Y. Achiam. First real-time data recovery for synchronous QPSK transmission with standard DFB lasers[J]. Photonics Technologu Letters,2006.18(18):1907-1909.
    [19]H. Sun, K. T. Wu, and K. Roberts. Real-time measurements of a 40 Gb/s coherent system[J]. Opt. Express,2008,16(2):873-879.
    [20]M. Birk, P. Gerard, R. Curto, L. Nelson, X. Zhou, P. Magill, T. J. Schmidt, C. Malouin, B. Zhang, E. Ibragimov, S. Khatana, M. Glavanovic, R. Lofland, R. Marcoccia, G. Nicholl, M. Nowell, and F. Forghieri. Field Trial of a Real-Time, Single Wavelength, Coherent 100 Gbit/s PM-QPSK Channel Upgrade of an Installed 1800km Link[C]. OFC2010.2010. PDPD1.
    [21]A. H. Gnauck, P. J. Winzer, C. R. Doerr, L. L. Buhl.10 x 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency[C]. OFC2009.2009. PDPB8.
    [22]A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham.10 x 224-Gb/s WDM Transmission of 28-Gbaud PDM 16-QAM On A 50-GHz Grid Over 1,200 Km of Fiber[C]. OFC 2010.2010. PDPB8.
    [23]A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii.69.1-Tb/s (432 x 171-Gb/s) C-and Extended L-Band Transmission over 240 Km Using PDM-16-QAM Modulation and Digital Coherent Detection[C]. OFC2010.2010. PDPB7.
    [24]M. Huang, Y. Huang, E. Ip, Y. Shao, and T. Wang. WDM Transmission of 152-Gb/s Polarization Multiplexed RZ-16QAM Signals with 25-GHz Channel Spacing over 15x80-km of SSMF[C]. OFC2011.2011. OThX2.
    [25]X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham.8x450Gb/s,50GHz Spaced,PDM-32QAM transmission over 400km and one 50GHz grid ROADM[C]. OFC2011. 2011.PDPB3.
    [26]F. Buchali, K. Schuh, L. Schmalen, W. Idler, E. Lach, and A. Leven.1-Tbit/s dual-carrier DP 64QAM transmission at 64Gbaud with 40% overhead soft-FEC over 320km SSMF[C]. OFC2013.2013.OTh4E.3.
    [27]S. Yan, D. Wang, Y. Gao, C. Lu, A. P. T. Lau, Y. Zhu, Y. Dai, and X. Xu. Generation of 64-QAM Signals Using a Single Dual-Drive IQ Modulator Driven by 4-level and Binary Electrical Signals[C]. OFC2013.2013. OM3C.5.
    [28]G. Lu, T. Sakamoto, and T. Kawanishi. Optical 64QAM Transmitter using Tandem IQ Modulators with Balanced Complexity in Electronics and Optics[C]. OFC2013.2013. OM3C.2.
    [29]D. Y. Qian, M. F. Huang, I. Ezra, Y. K. Huang, Y. Shao, J. Q. Hu, and T. Wang. High Capacity/Spectral Efficiency 101.7-Tb/s WDM Transmission Using PDM-128QAM-OFDM Over 165-km SSMF Within C-and L-Bands[J]. Journal of Lightwave Technology,2012, 30(9):1540-1548.
    [30]R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bauerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold.512QAM Nyquist sine-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz[J]. Optics Express,2012,20: 6439-6447.
    [31]X. Zhou, L. Nelson, P. Magill, R. Issac, B. Zhu, D. Peckham, P. Borel, and K. Carlson. 4000km Transmission of 50GHz spaced,10x494.85-Gb/s Hybrid 32-64QAM using Cascaded Equalization and Training-Assisted Phase Recovery[C]. OFC2013.2013. PDP5C.6.
    [32]O. Bertran-Pardo, J. Renaudier, H. Mardoyan, P. Tran, R. Rios-Muller, A. Konczykowska, J. Dupuy, F. Jorge, M. Riet, B. Duval, J. Godin, S. Randel, G. Charlet, and S. Bigo. Transmission of 50-GHz-Spaced Single-Carrier Channels at 516Gb/s over 600km[C]. OFC2013.2013. OTh4E.2.
    [33]K. Igarashi, Y. Mori, K. Katoh, and K. Kikuchi. Bit-error Rate Performance of Nyquist Wavelength-Division Multiplexed Quadrature Phase-Shift Keying Optical Signals[C]. OFC2011.2011.OMR6.
    [34]X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Y. Zhu, D. W. Peckham, P. I. Borel, K. Carlson. PDM-Nyquist-32QAM for 450-Gb/s Per-Channel WDM Transmission on the 50 GHz ITU-T Grid[J]. Journal of Lightwave Technology,2012,30(4):553-559.
    [35]R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, B. Nebendahl, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold. Real-Time Nyquist Pulse Modulation Transmitter Generating Rectangular Shaped Spectra of 112 Gbit/s 16QAM Signals[C]. Advanced Photonics,2011. SPMA5.
    [36]J. Cai, Y. Cai, C. Davidson, D. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano. Transmission of 96x100G Pre-Filtered PDM-RZ-QPSK Channels with 300% Spectral Efficiency over 10,608km and 400% Spectral Efficiency over 4,368km[C]. OFC2010.2010. PDPB10.
    [37]E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. L. Porta, S. Abrate, P. Poggiolini. Transoceanic PM-QPSK Terabit superchannel transmission experiments at Baud-rate subcarrier spacing[C]. ECOC2010.2010. We.7.C2.
    [38]R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, F. Forghieri. Transmission of 9×138 Gb/s Pre-filtered PM-8QAM Signals Over 4000 km of Pure Silica-Core Fiber[J]. Journal of Lightwave Technology,2011, 29(15):2310-2318.
    [39]J. Yu, Z. Dong, H. Chien, Z. Jia, M. Gunkel, and A. Schippel. Field Trial Nyquist-WDM Transmission of 8><216.4Gb/s PDM-CSRZ-QPSK Exceeding 4b/s/Hz Spectral Efficiency[C]. OFC2012.2012.PDP5D.3.
    [40]R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini. Ultra Long Haul Transmission of 16x112 Gb/s Spectrally Engineered DAC-Generated Nyquist WDM PM-6QAM Channels with 1.05x(Symbol-Rate) Frequency Spacing[C]. OFC2012.2012. OTh3A.3.
    [41]Z. Dong, X. Y. Li, J. J. Yu, and N. Chi.6 × 144Gb/s Nyquist WDM PDM-64QAM Generation and Transmission on a 12GHz WDM Grid Equipped With Nyquist-Band Pre-Equalization[J]. Journal of Lightwave Technology,2012,30:3687-3692.
    [42]P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost. Few-Mode Fiber for Uncoupled Mode-Division Multiplexing Transmissions[C]. ECOC 2011.2011. Tu.5.LeCervin.7.
    [43]E. Ip, M. Li, C. Montero, and Y. Yano.6x28-Gbaud Few-Mode Recirculating Loop Transmission with Gain-Equalized Inline Few-Mode Fiber Amplifier[C]. OFC2013.2013. OW4F.3.
    [44]N. Bai, E. Ip, Y. K. Huang, E. Mateo, F. Yaman, M. J. Li, S. Bickham, S. Ten, J. Linares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. M. Chung, A. P. T. Lau, H. Y. Tam, C. Lu, Y. H. Luo, G. D. Peng, G. F. Li, and T. Wang. Mode-division multiplexed transmission with inline few-mode fiber amplifier[J]. Opt. Express,2012.20:2668-2680.
    [45]E. Gabory, M. Arikawa, Y. Hashimoto, T. Ito, K. Fukuchi. A shared carrier reception and processing scheme for compensating frequency offset and phase noise of space-division multiplexed signals over multicore fibers[C]. OFC2013.2013. OM2C.2.
    [46]X. Chen, J. He, A. Li, J. Ye, and W. Shieh. Characterization of Dynamic Evolution of Channel Matrix in Two-mode Fibers[C]. OFC2013.2013. OM2C.3.
    [47]J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe. Space Division Multiplexed Transmission of 109-Tb/s Data Signals Using Homogeneous Seven-Core Fiber[J]. Journal of Lightwave Technology,2012,30(4):658-665.
    [48]R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Chandrasekhar, A. H. Gnauck, C. Xie, R. Essiambre, P. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Gruner Nielsen, R. V. Jensen, and R. Lingle.32bit/s/Hz Spectral Efficiency WDM Transmission over 177-km Few-Mode Fiber[C]. OFC2013.2013. PDP5A.1.
    [49]B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello.112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber[J]. Optics Express,2011,19:16665-16671
    [50]J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe.19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s[C]. OFC2012. 2012.PDP5C.1.
    [51]T. Sakamoto, A. Chiba, and T. Kawanishi.50-km SMF transmission of 50-Gb/s 16QAM generated by quad-parallel MZM[C]. ECOC2008.2008. Tu.1.E.3.
    [52]S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel. Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation[J]. Optics Express,2010,18(12):12939-12947.
    [53]J. Yu, X. Zhou, S. Gupta, Y.-K. Huang, and M.-F. Huang. A novel scheme to generate 112.8Gb/s PM-RZ-64QAM optical signal[J]. Photon. Technol. Lett.2010,22(2):115-117.
    [54]Micram Instruments, http://www.micram-instruments.com/?page_id=350
    [55]Tektronix, http://www.tek.com/signal-generator/awg70000-arbitrary-waveform-Generator.
    [56]A. Konczykowska, J. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, J. Godin.42 GBd 3-bit power-DAC for optical communications with advanced modulation formats in InP DHBT[J]. Electronics Letters,2011,47(6):398-390.
    [57]SHF 611B 32 GBaud 3-Bit DAC, http://www.shf.de/communication/products/high speed_modules/digital_to_analog_converter_dac/
    [58]G. W. Lu, M. Skold, P. Johannisson, J. Zhao, M. Sjodin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson.40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals[J]. Optics Express,2010,18:23062-23069.
    [59]S. Y. Yan, X. Weng, Y. L. Gao, C. Lu, A. P. T. Lau, Y. Ji, L. Liu, and X. G. Xu. Generation of square or hexagonal 16-QAM signals using a dual-drive IQ modulator driven by binary signals[J]. Optics Express 2010,20:29023-29034.
    [60]P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl. Spectrally efficient long-haul optical networking using 112-Gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology,2010,28(4):547-556
    [61]H. Zhang, J. Cai, H. G. Batshon, M. Mazurczyk, O. Sinkin, D. Foursa, A. Pilipetskii, G. Mohs, and N. Bergano.200 Gb/s and Dual Wavelength 400 Gb/s Transmission over Transpacific Distance at 6 b/s/Hz Spectral Efficiency[C]. OFC2013.2013. PDP5A.6.
    [62]T. J. Xia, G. Wellbrock, A. Tanaka, M. Huang, E. Ip, D. Qian, Y. Huang, S. Zhang, Y. Zhang, P. Ji, Y. Aono, S. Murakami, and T. Tajima. High Capacity Field Trials of 40.5 Tb/s for LH Distance of 1,822 km and 54.2 Tb/s for Regional Distance of 634 km[C]. OFC2013.2013. PDP5A.4.
    [63]I. Fatadin, S. J. Savory, and D. Ives. Compensation of quadrature imbalance in an optical QPSK coherent receiver[J]. IEEE Photon. Technol. Lett.,2008,20(20):1733-1735.
    [64]A. Frbert, S. Langenbach, N. Stojanovic. Performance of a 10.7 Gb/s Receiver with Digital Equaliser Using Maximum Likelihood Sequence Estimation[C]. Proceedings of ECOC,2004, Th4.1.5
    [65]G. Goldfarb, G. Li. Chromatic Dispersion Compensation Using Digital IIRFiltering with Coherent Detection[J]. IEEE Photonics Technology Letters,2007,19(3):969-971。
    [66]S. J. Savory. Digital Filters for Coherent Optical Receivers[J]. Optics Express,2008,16(2): 804-817
    [67]S. J. Savory. Compensation of Fibre Impairments in Digital Coherent Systems[C]. Proceedings of ECOC,2008, Mo.3.D.1
    [68]T. H. Xu, G. Jacobsen, S. Popov, J. Li, E. Vanin, K. Wang, A. T. Friberg, and Y. M. Zhang. Chromatic dispersion compensation in coherent transmission system using digital filters[J]. Optics Express 2010,18:16243-16257.
    [69]M. Kuschnerov, F. N. Hauske, K. Piyawanno. Adaptive Chromatic Dispersion Equalization for Non-Dispersion Managed Coherent SystemsfC]. OFC2009,2009, OMT1.
    [70]B. Spinnler, F. N. Hauske, M. Kuschnerov. Adaptive Equalizer Complexity in Coherent Optical Receivers[C]. ECOC2008.2008. We.2.E.4
    [71]D. Godard. Passband timing recovery in an all-digital modem receiver. IEEE Transactions on Communications,1978,26(5):517-523.
    [72]F. Gardner. A BPSK/QPSK timing-error detector for sampled receivers[J]. IEEE Transactions on Communications,1986,34(5):423-429.
    [73]S. J. Lee. A new non-data-aided feedforward symbol timing estimator using two samples per symbol[J]. Communications Letters,2002,6(5):205-207.
    [74]M. Oerde, H. Meyr. Digital filter and square timing recovery. IEEE Transactions on Communications,1988,36(5):605-612.
    [75]M. D. Morelli, A. N. Andrea, U. Mengali. Feedforward ML-based timing estimation with PSK. signals[J]. Communications Letters,1997,1(3):80-82.
    [76]D. Godard. Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems[J]. IEEE Transactions on Communications,1980,28(11): 1867-1875.
    [77]X. Zhou, J. Yu, P. Magill. Cascaded Two-Modulus Algorithm for Blind Polarization De-Multiplexing of 114-Gb/s PDM-8QAM Optical Signals[C]. OFC2009,2009.
    [78]J. Yang, J. J. Werner, G. A. Dumont. The multimodulus blind equalization and its generalized algorithms[J]. IEEE Journal on Selected Areas in Communications,2002,20(5):997-1015.
    [79]H. Louchet, K. Kuzmin, A. Richter. Improved DSP algorithms for coherent 16-QAM transmission[J]. ECOC 2008.2008.
    [80]K. N. Oh, Y. O. Chin. Modified constant modulus algorithm:blind equalization and carrier phase recovery algorithm[C]. IEEE International Conference on Coinmunications, 1995.498-502.
    [81]M. Morelli and U. Mengali. Feedforward frequency estimation for PSK:a tutorial revier[J]. Eur. Trans. Telecommun.1998,9(2):103-116
    [82]I. Fatadin, S. J. Savory. Compensation of frequency offset for 16QAM optical coherent systems using QPSK partitioning[J]. IEEE Photon. Technol. Lett.2011.23(17):1246-1248.
    [83]D. Z. Huang, T. H. Cheng, C. Y. Yu. Accurate Two-Stage Frequency Offset Estimation for Coherent Optical Systems[J]. Photonics Technology Letters,2013,25(2):179-182.
    [84]S. Zhang, L. Xu, J. Yu, M. F. Huang, P. Y. Kam, C. Yu, and T. Wang. Dual-Stage Cascaded Frequency Offset Estimation for Digital Coherent Receivers[J]. Photonics Technology Letters, 2013,22(6):1041-1135.
    [85]L. Li, Z. N. Tao, S. Oda, T. Hoshida, J. C. Rasmussen. Wide-range, Accurate and Simple Digital Frequency Offset Compensator for Optical Coherent Receivers[C]. OFC2008.2008.
    [86]X. Zhou, X. Chen, K. P. Long. Wide-Range Frequency Offset Estimation Algorithm for Optical Coherent Systems Using Training Sequence[J]. Photonics Technology Letters,2012, 24(1):82-84.
    [87]M. Qiu, Q. B. Zhuge, X. Xu, M. Chagnon, M. Morsy-Osman, and D. V. Plant. Simple and efficient frequency offset tracking and carrier phase recovery algorithms in single carrier transmission systems[J]. Optics Express 2013,21:8157-8165.
    [88]N. Jia, T. J. Li, K. P. Zhong, M. G. Wang, J. Li. Suppression intra-channel four-wave mixing by strong dispersion management in 160 Gb/s OTDM RZ 100 km transmission [J]. Chinese Science Bulletin,2011,56(25):2744-2747.
    [89]A. H. Gnauck, S. G. Park, J. M. Wiesenfeld, L. D. Garrett. Highly dispersed pulses for 2×40 Gbit/s transmission over 800 km of conventional singlemode fibre[J]. Electronics Letters, 1999,35(25):2218-2219.
    [90]S. Chandrasekhar, X. Liu. Impact of Channel Plan and Dispersion Map on Hybrid DWDM Transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz Grid[J]. Photonics Technology Letters,2007,19(20):1801-1803.
    [91]S. L. Jansen, D. Van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, H. de Waardt. Long-haul DWDM transmission systems employing optical phase conjugation[J]. Selected Journal of Topics in Quantum Electronics,2006,12(4):505-520.
    [92]S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G.-D. Khoe, and H. de Waardt. Optical Phase Conjugation for Ultra Long-Haul Phase-Shift-Keyed Transmission[J]. Journal of Lightwave Technol.2006,24(1):54-60.
    [93]A. Chowdhury, G. Raybon, R. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, S. Chandrasekhar. Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation[J]. Journal of Lightwave Technology,2005,23(1): 172-177.
    [94]J. D. Reis and A. L. Teixeira. Unveiling nonlinear effects in dense coherent optical WDM systems with Volterra series[J]. Optics Express,2010,18:8660-8670.
    [95]F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto. Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer[J]. Optics Express,2012,20: 1360-1369.
    [96]F. P. Guiomar, J. D. Reis, A. Carena, G. Bosco, A. L. Teixeira, and A. N. Pinto. Experimental demonstration of a frequency domain Volterra series nonlinear equalizer in polarization multiplexed transmission[J]. Optics Express,2013,21:276-288.
    [97]Z. N. Tao, L.Dou, W. Z. Yan, L. Li, T. Hoshida, J. C. Rasmussen. Multiplier-Free Intrachannel Nonlinearity Compensating Algorithm Operating at Symbol Rate[J]. Journal of Lightwave Technology,2011,29(17):2570-2576.
    [98]W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen. Low Complexity Digital Perturbation Back-propagation[C]. ECOC2011.2011. Tu.3.A.2.
    [99]M. Morsy-Osman, Q. Zhuge, L. R. Chen, and D. V. Plant. Joint mitigation of laser phase noise and fiber nonlinearity for polarization-multiplexed QPSK and 16-QAM coherent transmission systems[J]. Optics Express,2011,19:329-336.
    [100]E. Ip, J. M. Kahn. Compensation of dispersion and nonlinear impairments using digital backpropagation[J]. Journal of Lightwave Technology,2008,26(20):3416-3425.
    [101]X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li. Electronic post compensation of WDM transmission impairments using coherentdetection and digital signal processing^]. Optics Express,2008,16:880-888.
    [102]D. Rafique, J. Zhao, and A.D. Ellis. Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission [J]. Optics Express 2011,19:5219-5224.
    [103]D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. D. Ellis. Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm [J]. Optics Express 2011,19:9453-9460.
    [104]D. Rafique and A. D. Ellis. Impact of longitudinal power budget in coherent transmission systems employing digital back-propagation[J]. Optics Express,2011,19:40-46.
    [105]D. Rafique, M. Mussolin, J. Martensson, M. Forzati, J.K. Fischer, L. Molle, M. Nolle, C. Schubert, and A. D. Ellis. Polarization multiplexed 16QAM transmission employing modified digital back-propagation[J]. Optics Express,2011,19:805-810.
    [106]S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel. Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation[J]. Optics Express,2010,18:12939-12947.
    [107]A. Viterbi. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission[J]. IEEE Transactions on Information Theory,1983,29(4):543-551.
    [108]Z. N. Tao, L. Li, A. Isomura, T. Hoshida, J. C. Rasmussen. Multiplier-free Phase Recovery for Optical Coherent Receivers[C]. OFC2008.2008.
    [109]T. Pfau, S. Hoffmann, R. Noe. Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for M-QAM Constellations[J]. Journal of Lightwave Technology,2009,27(8):989-999.
    [110]I. Fatadin, S. J. Savory. Laser Linewidth Tolerance for 16-QAM Coherent Optical Systems Using QPSK Partitioning[J]. Photon. Technol. Lett.2010,22(9):631-633.
    [111]T. Pfau, R. Noe. Phase Noise Tolerant Two Stage Carrier Recovery Concept for Higher Order QAM Formats[J]. Journal of Selected Topics in Quantum Electronics,2010,16(5): 1210-1216.
    [112]X. Zhou and J. Yu. Two-stage feed-forward carrier phase recovery algorithm for high-order coherent modulation formats[C]. ECOC2010.2010. We.7.A.6.
    [113]J. Li, L. Li, Z. Tao, T. Hoshida, and J. C. Rasmussen. Laser linewidth tolerant feed forward carrier phase estimator with reduced complexity for QAM[J]. Journal of Lightwave Technology,2011,29:2358-2364.
    [114]Q. Zhuge, C. Chen, and D. V. Plant. Low Computation Complexity Two-Stage Feedforward Carrier Recovery Algorithm for M-QAM[C]. OFC2011,2011, OMJ5.
    [115]Y. Gao, A. P. T. Lau, S. Yan. Low-complexity and phase noise tolerant carrier phase estimation for dual polarizatin 16-QAM systems[J]. Optics Express,2011,19(22): 21717-21729.
    [116]K. P. Zhong, J. H. Ke, Y. Gao, and J. C. Cartledge. Linewidth-Tolerant and Low-Complexity Two-Stage Carrier Phase Estimation Based on Modified QPSK Partitioning for Dual-Polarization 16-QAM Systems[J]. J. Lightw. Technol.2013.31:50-57.
    [117]K. P. Zhong, T. J. Li, N. Jia, J. Sun, M. Wang. An improved multiplier free feed forward carrier phase estimation for dual polarization QPSK modulation formatfJ]. Optoelectronics Letters,2013,9(4):305-308.
    [118]钟康平,李唐军,孙剑,贾楠,王目光.基于线性相位插值的增强型载波相位估计算法[J].光学学报,2013,33(9):0906012.
    [119]Ip. Ezra, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, R. Lingle.3×112-Gb/s DP-16QAM transmission over 35×80 km of ULAF with interchannel nonlinearity compensation[C]. Photonics Conference (PHO),2011,654-655.
    [120]V. A. J. M. Sleiffer, Y. Jung, V. Veljanovski, R. G. H. van Uden, M. Kuschnerov, H. Chen, B. Inan, L. Gruner Nielsen, Y. Sun, D. J. Richardson, S. U. Alam, F. Poletti, J. K. Sahu, A. Dhar, A. M. J. Koonen, B. Corbett, R. Winfield, A. D. Ellis, and H. de Waardt.73.7 Tb/s (96 x3x256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA[J]. Optics Express,2012,20:428-438.
    [121]X. Zhou, J. Yu.200-Gb/s PDM-16QAM generation using a new synthesizing method[C]. ECOC2009.2009.
    [122]E. Lach, W. Idler. Modulation formats for 100G and beyond[C]. Optical Fiber Technology, 2011,17(5):377-386.
    [123]S. J. Savory. Digital Coherent Optical Receivers:Algorithms and Subsystems [J]. Selected Journal of Topics in Quantum Electronics,2010,16(5):1164-1179.
    [124]Y. Han and G. Li. Coherent optical communication using polarization multiple input multiple output[J]. Optics Express,2005,13:7527-7534.
    [125]M. Seimetz. Laser Linewidth Limitations for Optical Systems with High-Order Modulation Employing Feed Forward Digital Carrier Phase Estimation[C]. OFC2008,2008.OTuM2.
    [126]S. Zhang, P. Y. Kam, C. Yu, and J. Chen. Decision-Aided Carrier Phase Estimation for Coherent Optical Communications[J]. Journal of Lightwave Technol.2010,28:1597-1607.
    [127]D. Sebastien Ly Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi. Coherent Detection of Optical Quadrature Phase Shift Keying Signals With Carrier Phase Estimation[J]. Journal of Lightwave Technol.2006,24:12-18.
    [128]C. Yu, S. Zhang, P. Y. Kam, and J. Chen. Bit-Error Rate Performance of Coherent Optical M-ary PSK/QAM using Decision-Aided Maximum Likelihood Phase Estimation[J]. Optics Express 2010,18:12088-12103.
    [129]X. Yi, W.Shieh, and Y. Ma. Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission[J]. Journal of Lightwave Technol,2008,26:1309-1316.
    [130]C. Xie and G. Raybon. Digital PLL Based Frequency Offset Compensation and Carrier Phase Estimation for 16-QAM Coherent Optical Communication Systems[C]. ECOC2012.2012. Mo.1.A.2.
    [131]E. Ip, J. M. Kahn. Carrier synchronization for 3-and 4-bit-per-symbol optical transmission[J]. Journal of Lightwave Technol,2005,23(12):4110-4124.
    [132]X. Zhou and Y. Sun. Low-Complexity, Blind Phase Recovery for Coherent Receivers Using QAM Modulation[C]. OFC2011.2011.OMJ3.
    [133]S. Zhang, L. Xu, P. Y. Kam, C. Yu, and T. Wang. Study on the Performance of Decision-Aided Maximum Likelihood Phase Estimation with a Forgetting Factor[C]. OFC2011.2011.JWA022.
    [134]S. Zhang, P. Y. Kam, C. Yu, and J. Chen. Decision Aided Carrier Phase Estimation for Coherent Optical Communications. Journal of Lightwave Technol,2010,28(11):1597-1607.
    [135]M. G. Taylor. Phase Estimation Methods for Optical Coherent Detection Using Digital Signal Processing[J]. Journal of Lightwave Technol,2009,27(7):901-914.
    [136]E. Ip, J. M. Kahn. Feedforward Carrier Recovery for Coherent Optical Communications[J]. Journal of Lightwave Technology,2007,25(9):2675-2692.
    [137]C. Yu, P. Y. Kam, S. Zhang, J. Chen. Decision-aided maximum likelihood phase estimation in coherent communication systems[C]. OECC 2010.764-765.
    [138]J. H. Ke, K. P. Zhong, Y. Gao, J. C. Cartledge, A. S. Karar, and M. A. Rezania. Linewidth-Tolerant and Low-Complexity Two-Stage Carrier Phase Estimation for Dual-Polarization 16-QAM Coherent Optical Fiber Communications[J]. Journal of Lightwave Technology,2012,30(24):3987-3992.
    [139]K. P. Zhong, J. H. Ke, Y. Gao, and J. C. Cartledge. Linewidth-Tolerant and Low-Complexity Two-Stage Carrier Phase Estimation Based on Modified QPSK Partitioning for Dual-Polarization 16-QAM Systems[J]. Journal of Lightwave Technology,2013,31(1): 50-57.
    [140]Q. Qi, F. N. Hauske. Multiplier-free Carrier Phase estimation for low-complexity carrier frequency and phase recovery[C]. OFC2012.2012. JW2A.66.
    [141]乔耀军,杜晓,纪越峰.光四相移键控传输系统中的相位估计算法研究[J].光学学报,2010,30(5):1229-1233
    [142]邸雪静,童程,张霞,张晓光,席丽霞.高速相干光通信系统中的自适应步长恒模算法[J].光学学报,2012,32(10),1006004
    [143]X. D. Dong, W. S Lu and A.C.K. Soong. Linear Interpolation in Pilot Symbol Assisted Channel Estimation for OFDM[J]. IEEE Transactions on Wireless Communications,2007, 6(5):1910-1920.
    [144]J. Zhang, H. Zhang, M. D. K. Qiu. Channel estimation based on linear interpolation algorithm in DDO-OFDM system[C]. in Optical Transmission Systems, Switching, and Subsystems VIII, Vol.7988 of Proceedings of SPIE-OSA, paper 79881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700