100Gbps PM-(D)QPSK相干光传输系统DSP算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着以高清视频、IPTV、P2P等为代表的高速率高质量视频、数据业务的日益流行,电信骨干网络的传输带宽需求迅猛增长,实现单波长信道100Gbps信号的高效传输,为超大容量DWDM光传输网的建设提供支撑技术,对国家信息基础设施的建设意义重大。100Gbps PM-(D)QPSK相干光传输系统结合了偏振复用技术、多进制调制技术、相干检测技术,具有较高的频谱效率、OSNR灵敏度,在满足当前50GHz DWDM波长间隔链路设计规则的同时,可以利用DSP算法灵活地补偿信号传输损伤,成为了100Gbps传输系统商业部署最具可行性的技术方案之一。本文对100Gbps PM-(D)QPSK相干光传输系统的电域DSP核心算法进行了深入研究,并取得了一定的创新性研究成果。本文的主要创新点和研究工作包括:
     1、针对目前相干光接收机中前馈式全数字时钟同步算法复杂度高、对ADC采样率要求高,而混合时钟同步环路非全数字实现、用于偏振复用系统存在同频不同相等问题,本文将Gardner提出的反馈式全数字时钟同步算法运用于112Gbps PM-(D) QPSK相干光传输系统中,并通过仿真分析了光传输系统中各种效应对算法同步性能的影响。为使该算法易于硬件实现,解决在对符号速率高达28Gsym/s的信号进行实时处理时所面临的电子速率瓶颈问题,本文在上述研究基础上,提出了一种基于并行处理的反馈式全数字时钟同步算法,仿真结果表明该算法可支持160个并行处理单元同时对320个异步采样值进行定时同步调整,使硬件时钟频率从串行处理时的56GHz下降到175MHz左右。
     2、针对Gardner定时误差检测算法的低色散容限极大限制112Gbps PM-(D)QPSK相干光传输系统实用性这一问题,本文提出了一种高色散容限的全数字时钟同步与自适应均衡解复用联合处理方案,通过仿真验证了该联合方案能够将系统残留色散容限从±200ps/nm增大到±800ps/nm以上,且在不增加任何额外计算复杂度情况下,同时完成时钟同步,CD、PMD补偿和偏振解复用。同样为克服电子速率瓶颈问题,本文在提出一种支持大规模并行处理自适应均衡解复用器的基础上,设计了基于并行处理的时钟同步与均衡联合处理方案。仿真结果表明该方案可以在处理性能基本保持不变的情况下,对硬件处理时钟频率要求下降到百MHz量级。
     3、为抑制残留频偏所造成的信号相位跳变,本文提出一种基于训练序列的频偏估计算法。该算法利用训练序列准确地去除了估偏符号的调制相位,提高了频偏估计精度,避免了传统频偏估计算法中的M次方运算,在降低算法复杂度的同时,使频偏估计范围与信号相位调制方式和调制级数无关,理论估偏范围达到[-RS/2;+RS/2] (RS为符号速率)。仿真结果表明,基于训练序列频偏估计算法对于112Gb/s PM-(D)QPSK信号实际频偏估计范围可达[-13GHz,+13GHz],而且训练符号开销仅为0.000011%以下。
     4、本文利用VPItransmissionMaker8.5和MATLAB软件搭建了112Gbps PM-(D)QPSK相干光传输系统仿真平台,并对传输系统整体性能进行了综合性仿真分析。在仿真验证DSP核心算法可行性的基础上,进行了112Gbps PM-(D)QPSK相干光传输系统的背靠背实验和1240km传输实验。在1240km长距离传输实验中,光纤链路上没有进行光域色散补偿,链路累计色散完全依靠电域DSP算法进行补偿,实现的色散补偿量超过20000ps/nm,且在信号入纤光功率小于+2dBm时,系统BER性能优于1E-3所需要的OSNR低于17dB。
With the rising popularity of high-speed and high-quality videos, data traffics such as HDTV, IPTV and P2P, the bandwidth requirement for the backbone network has increased dramatically. The implementation of 100Gbps efficient transmission per wavelength channel can provide supporting technologies for the construction of super capacity DWDM transmission network and is significant to the construction of national information infrastructure. The 100 Gbps PM-(D)QPSK optical coherent transimission system combines the polarization multiplexing, multi-level modulation and coherent detection technologies, which not noly has the high OSNR sensitivity and frequency spectrum efficiency for the 50GHz wavelength interval of current DWDM link design, but also can employ digital signal processing (DSP) algorithms to compensate for transmission impairments. Therefore it is a suitable candidate for future high-speed optical transmission system. This paper mainly researches on the key DSP algorithms for 100Gbps PM-(D)QPSK optical coherent transmission system and gains a number of innovative research achievements. The main work and innovative contributions are listed as follows.
     1、In optical coherent receiver, the feed-forward digital timing recovery has the high computing complexity and requirement for ADC sampling rate, and the hybrid timing recovery loop can not compensate the sampling phase errors for two polarization signal simultaneously because of non-all-digital implementation. To solve these problems, we propose to use a Gardner back-feed digital timing recovery algorithm in the 112Gbps PM-(D)QPSK optical coherent receiver and analyze the influences of the various effects induced in optical transmission processing to the timing recovery algorithm's performance. Furthermore, in order to make it easy to hardware implementation and break the limitation of electronic processing rate, we propose a parallel digital timing recovery algorithm based on the above research. Simulation results show that this new algorithm can support 160 parallel processing units to adjust time synchronization for 320 asynchronous samples at the same time. Therefore, the hardware clock frequency is reduced from 56GHz in serial processing to 175MHz in parallel.
     2、To solve the problem that the practicability of 112Gbps PM-(D)QPSK optical coherent transmission system is greatly limited by the low dispersion tolerance of Gardner timing error detecting algorithm, we propose a joint scheme that embeds an adaptive equalizer into the all-digital timing recovery loop. The simulation results demonstrate that the joint scheme can not only improve the tolerance of system toward residual dispersion form±200ps/nm to above±800ps/nm, but also accomplish synchronization and compensation linear transmission impairments simultaneously. Furthermore, in order to cope with the speed bottleneck of hardware, we propose an adaptive equalization scheme and design a parallel joint scheme of timing recovery and equalization. Finally, we demonstrate that the proposed parallel scheme allow the hardware to process 112G bit/s POLMUX-DQPSK signal at the hundreds MHz range.
     3、In order to reduce the probability of phase cycle slip caused by residual frequency offset, we propose a carrier frequency offset estimation algorithm based on training sequence. The new algorithm can use training symbol to remove the modulated phase information of estimated signal, which improves the estimation accuracy and avoids the Mth power operation of the classical algorithm. Therefore, the proposed algorithm reduces the computing complexity and has a constant theoretical estimated range for carrier frequency offset ([-RS/2,+RS/2], RS is symbol rate) which is independent of the signal phase modulation level and format. The simulation results demonstrate that its estimated frequency offset range for 112Gb/s PM-(D)QPSK signal can reach [-13GHz,+13GHz] and the training overhead can less than 0.000011%。
     4、We build a simulation platform of 112Gbps PM-(D)QPSK optical coherent transmission system by using VPItransmissionMaker 8.5and MATLAB softwares. Base on the feasibilities of the key DSP algorithms demonstrated by simulation, we carry out the back-to-back and 1240km transmission experiments of 112Gbps PM-(D)QPSK singal. In the 1240km long haul transmission experiment, the dispersion compensating fibers (DCFs) are not employed in transmission link. All the accumulated dispersions are compensated by DSP algorithms in electric field. The compensation quantity of CD is large than 20000ps/nm and BER performance of system can superior to 1E-3 at 17dB of OSNR when the launch power of signal is no more than +2dBm.
引文
[1]I. Kaminow and T. Li, Eds., Optical Fiber Telecommunications Ⅳ (A. Components,& B. Systems and Impairments), San Diego:Academic Press Elsevier,2002.
    [2]R.J.Sanferrare, Terrestrial lightwave systems, AT&T Technology Journal, Feb.1987, pp.95-107.
    [3]Chinlon Lin, H. Kogelnik, and L. G. Cohen. Optical pulse equalization of low dispersion transmission in signal-mode fibers in the 1.3-1.7μm spectral region. Optics Letters, Vol.5, Issue 11,1980, pp.476-478
    [4]Korotky. S., Gnauck. A., Kasper. B., Campbell. J., Veselka. J., Talman. J. and McCormick. A. 8-Gbit/s transmission experiment over 68 km of optical fiber using a Ti:LiNbO3 external modulator. Vol.5, Issue 10, Oct.1987, pp.1505-1509.
    [5]Kogelnik, Herwig. High-speed lightwave transmission in optical fibers. Science, Vol.228, Issue.4703,1985, pp.1043-1048.
    [6]Govind P. Agrawal. Fiber-optic communication systems.3rd Edition,2002, NewYork:Wilry.
    [7]A. R. Chraplyvy, A. H. Gnauck, R.W. Tkach and R. M. Derosier.8×10Gb/s transmission through 280km of dispersion- managed fiber. Photonics Technology. Letters IEEE, vol.5, no.10,1993, pp.1233-1235.
    [8]Kogelnik. H. High-capacity optical communications:Personal recollections. Vol.6, Issue.6, Dec.2000, pp.1279-1286.
    [9]赵永鹏,40G商用部署拉开序幕,http://wave.lusterinc.com/episteme/40G-11.html.
    [10]张宾,胡庚强,开启大容量传送网的新纪元—烽火通信40G DWDM解决方案,电信网技术,第01期,2009
    [11]蔡涛王凯,如何应对后摩尔时代骨干网的挑战,华为技术,第52期,2011.
    [12]黎原平(著),朱勇,项鹏,王永强等(译),数字光通信,电子工业出版社,2011.
    [13]Charlet.G., Corbel. E, et al. Comparison of system performance at 50,62.5 and 100 GHz channel spacing over transoceanic distances at 40 Gbit/s channel rate using RZ-DPSK. vol.41 no.3, Feb.2005, pp.145-146
    [14]P.S. Cho, V.S. Grigoryan, Y.A. Godin, A. Salamon and Y. Achiam, Transmission of 25-Gb/s RZ-DQPSK signals with 25-GHz channel spacing over 1000 km of SMF-28 fiber, Vol.15, Issue.3, Mar.2003, pp.473-475.
    [15]赵永鹏,构建100G网络,http://www.lusterinc.com/episteme/100G.html.
    [16]Jianjun Yu, Xiang Zhou, Ultra-High-Capacity DWDM transmission system for 100G and beyond, IEEE Communications Magazine, vol.48, no.3, Mar.2010, pp.S56-S64.
    [17]Dirk van den Borne, Vincent A. J. M. Sleiffer and Mohammad S. Alfiad.etc. POLMUX-QPSK modulation and coherent detection:the challenge of long-haul 100G transmission, ECOC 2009, Vienna, Austria, Paper 3.4.1.
    [18]Xia T.J., Wellbrock G., Pollock M.,92-Gb/s field trial with ultra-high PMD tolerance of 107-ps DGD, OFC/NFOEC2009, paper NThB3.
    [19]Geyer J.C., Bisplinghoff A., Duthel T., etc., Optimization of the chromatic dispersion equalizer of a 43Gb/s realtime coherent receiver, OFC/NFOEC2010, OWV8.
    [20]Fischer J.K, Ludwig R, Molle L., etc., High-Speed Digital Coherent Receiver Based on Parallel Optical Sampling, Journal of Lightwave Technology, vol.29, no.4,2011, pp.378-385.
    [21]Woodward S.L., Nelson, L.E., Magill, P.D. etc., A Shared PMD and Chromatic Dispersion Monitor Based on a Coherent Receiver, IEEE Photonics Technology Letters, Volume:22, Issue:10,2010,pp.706-708.
    [22]Matiss A., Ludwig R., Fischer J.-K., Novel integrated coherent receiver module for 100G serial transmission, OFC/NFOEC2010, PDPB3
    [23]Zhenning Tao, Lei Li, Ling Liu, etc., Improvements to Digital Carrier Phase Recovery Algorithm for High-Performance Optical Coherent Receivers, IEEE Journal of Selected Topics in Quantum Electronics, vol.16, no.5,2010, pp.1201-1209.
    [24]Fice M.J., Chiuchiarelli A., Ciaramella E.,etc., Homodyne Coherent Optical Receiver Using an Optical Injection Phase-Lock Loop, Journal of Lightwave Technology, vol.29, no.8,2011, pp.1152-1164.
    [25]Akihide Sano, Eiichi Yamada, Hiroji Masuda, etc., No-Guard-Interval Coherent Optical OFDM for 100-Gb/s Long-Haul WDM Transmission, Lightwave Technol., vol.27, no.16, Aug,2009, pp.3705-3717.
    [26]T. Kobayashi, A. Sano, E. Yamada, Y. Miyamoto, etc., "Electro-optically multiplexed 110Gb/s optical OFDM signal transmission over 80 km SMF without dispersion compensation," Electron. Lett., vol.44, no.3, Jan.2008, pp.225-226.
    [27]A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, etc. "30×100 GB/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes," presented at the ECOC2007, Sep. 2007, paper PD1.7.
    [28]E. Yamada, A. Sano, H. Masuda, T. Kobayashi, etc. "Novel no-guard-interval PDM CO-OFDM transmission in 4.1 Tb/s (55×88.8-Gb/s) DWDM link over 800 km SMF including 50-GHz spaced ROADM nodes," presented at the OFC/NFOEC2008, Feb.2008, paper PDP8.
    [29]E. Yamada, A. Sano, H. Masuda, E. Yamazaki, etc.1 Tb/s (111 Gbit/s/ch×10 Ch)no-guard-interval CO-OFDM transmission over 2100 km DSF, Electron. Lett., vol.44, no.24, Nov.2008, pp.1417-1418.
    [30]A. Sano, E. Yamada, H. Masuda, E. Yamazaki, etc.,13.4-Tb/s (134×111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 3 600 km of SMF with 19-ps average PMD, ECOC2008, Sep.2008, paper Th.3.E.1.
    [31]H. Masuda, E. Yamazaki, A. Sano, T. Yoshimatsu, etc,13.5-Tb/s (135×111-Gb/s/ch) no-guard-interval coherent OFDM transmission over 6 248 km using SNR maximized second-order DRA in the extended L-band, OFC/NFOEC2009, Mar.2009,paper PDPB5.
    [32]A. H. Gnauck, etc.25.6 Tb/s C+L-band Transmission of Polarization-Multiplexed RZ-DQPSK Signals, OFC/NFOEC 2007, paper PDP19.
    [33]M. Salsi, H. Mardoyan, P. Tran, C. Koebele, etc.,155x100Gbit/s coherent PDM-QPSK transmission over 7,200km, ECOC, Sep.2009, paper PD2.5.
    [34]Chongjin Xie, Polarization-dependent loss induced penalties in PDM-QPSK coherent optical communication systems, OFC/NFOEC 2010, paper OWE6.
    [35]Detwiler T.F., Stark A.J., Hsueh Y.etc., Offset QPSK for 112 Gb/s coherent optical links, Photonics Society Summer Topical Meeting Series,2010, pp.48-49.
    [36]M. Salsi, H. Mardoyan, P. Tran, C. Koebele, etc.,155xl00Gbit/s coherent PDM-QPSK transmission over 7,200km, ECOC, Sep.2009, paper PD2.5.
    [37]G. Charlet, Renaudier J., Mardoyan H.,etc., Transmission of 16.4 Tbit/s Capacity over 2550 km using PDM QPSK Modulation Format and Coherent Receiver, OFC/NFOEC 2008, paper PDP3.
    [38]C. Laperle, B. Villeneuve, Z. Zhang, etc., WDM Performance and PMD tolerance of a coherent 40-Gbit/s dual-polarization QPSK transceiver, J. Lightw. Technol., vol.26, no.1, Jan.2008, pp.168-175.
    [39]A. Vgenis, C. Petrou, C. Papadias, etc., Nonsingular constant modulus equalizer for PDM-QPSK coherent optical receivers, IEEE Photon. Technol. Lett., vol.22, no.1, Jan.1, 2010, pp.45-47.
    [40]Sander L. Jansen, Itsuro Morita, Kamyar Forozesh, etc., Optical OFDM, a hype or is it for real?, ECOC 2008, paper Mo.3.E.3.
    [41]Arthur James Lowery, Shunjie Wang and Malin Premaratne, Calculation of power limit due to fiber nonlinearity in optical OFDM systems, Optics Express, vol.15, no.20, Oct.2007, pp.13282-13287.
    [42]Van den Borne Dirk, Sleiffer Vincent A. J. M., Alfiad, Mohammad S., Jansen Sander L, Wuth, Torsten, Polmux-QPSK modulation and coherent detection:The challenge of long-haul 100G transmission, ECOC 2009, Paper 3.4.1.
    [43]M. Birk, P. Gerard, R. Curto, L. Nelson, etc. Field trial of a real-time, single wavelength, coherent 100 Gbit/s PM-QPSK channel upgrade of an installed 1800km link, OFC/NFOEC 2010, paper PDPD1.
    [44]Carena A, Curri V,Poggiolini P., Bosco G., Forghieri F, Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-QPSK Systems, Photonics Technology Letters, vol 21,2009, pp.1514-1516
    [45]Curri V, Poggiolini P, Bosco G, Carena A, Forghieri F.Performance Evaluation of Long-Haul 111 Gb/s PM-QPSK Transmission Over Different Fiber Types, Photonics Technology Letters, 2010, vol.22,1446-1448.
    [46]Carena A., Curri V., Poggiolini P., Forghieri F., Dynamic Range of Single-Ended Detection Receivers for 100GE Coherent PM-QPSK, Photonics Technology Letters, vol.20,2008, pp.1281-1283.
    [47]Dirk van den Borne, Robust Optical Transmission System -Modulation and Equalization, Borne-Eindhoven:Technische Universiteit Eindhoven,2008.
    [48]T. Mizuochi,"Recent Progress in Forward Error Correction and its Interplay with Transmission Impairments," IEEE J. Sel. Topics Quantum Electron., vol.12, no.4, Jul-Aug. 2006, pp.544-554.
    [49]ITU-T G.975.1, Forward Error Correction for High Bit Rate DWDM Submarine Systems, Feb.2004.
    [50]ITU-T G.975, Forward Error Correction for Submarine Systems, Oct.2000
    [51]顾畹仪,闻和,喻松,张慧剑,WDM超长距离光传输技术,北京邮电大学出版社,2005.
    [52]龚倩、徐荣、叶小华,张民,高速超长距离光传输技术,人民邮电出版社,2005.
    [53]Rene-Jean Essiambre, Gerhard Kramer, Peter J. Winzer, etc., Capacity Limits of Optical Fiber Networks, J. Lightw. Technol., vol.28, no.4, Feb 15,2010, pp.662-701.
    [54]Xingwen Yi, William Shieh and Yiran Ma, Phase Noise Effects on High Spectral Efficiency Coherent Optical OFDM Transmission, J. Lightw. Technol., vol.26, no.10, May 15,2008, pp.1309-1316.
    [55]S. Haykin, Communication Systems,4th Edition. New York:Wiley,2001.
    [56]周炯磐,庞沁华,续大我等编著.通信原理,北京邮电大学出版社.2005.
    [57]J. G. Proakis, Digital Communications,4th Edition. New York:McGraw-Hill,2001.
    [58]B. Sklar, Digital Communications,2nd ed. Englewood Cliffs, NJ:Prentice-Hall,2001.
    [59]M. G Taylor, Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments, IEEE Photon. Technol. Lett., vol.16, no. 2, Feb.2004, pp.674-676.
    [60]D. Crivelli, H. Carter, and M. Hueda, Adaptive digital equalization in the presence of chromatic dispersion, PMD, and phase noise in coherent fiber optic systems, in Proc. IEEE Global Telecommun. Conf. (GLOBECOM), Nov.2003-Dec.2004, vol.4, pp.2545-2551.
    [61]D. Gloge, Dispersion in weakly guiding fibers, Appl. Opt., vol.10, no.11,1971, pp. 2442-2445.
    [62]G. P. Agrawal, Nonlinear Fiber Optics,4th ed. San Diego, CA:Elsevier,2006.
    [63]R. Lundin, Dispersion flattening in a w fiber, Appl. Opt., vol.33, no.6,1994, pp.1011-1014.
    [64]J. Lee, G. H. Song, U.-C. Paek, and Y. G. Seo, Design and Fabrication of a Nonzero-Dispersion Fiber with a Maximally Flat Dispersion Spectrum, IEEE Photon. Technol. Lett., vol.13, no.4,, Apr.2001 pp.317-319.
    [65]ITU-T G.653, Characteristics of a Dispersion-Shifted Single-Mode Optical Fibre and Cable, Dec.2006.
    [66]S. C. Rashleigh and R. Ulrich, Polarization-Mode Dispersion in Single-Mode Fibers, Opt. Lett., vol.3, no.2, Aug.1978, pp.60-62.
    [67]Gordon JP, Kogelnik H.PMD fundamentals:Polarization mode dispersion in optical fibers., Proc. Natl.Acad. Sci, USA 2000,vol.97, pp.4541-4550.
    [68]E. Forestieri and G. Prati, Exact analytical evaluation of second-order PMD impact on the outage probability for a compensated system, J. Lightwave Technol. vol.22,2004, pp.988-996.
    [69]甘民乐,厉鼎毅,光纤通信.卷B.系统篇,北京邮电大学出版社.2006.
    [70]R.-J. Essiambre, G. Raybon, and B. Mikkelsen,etc., Pseudo-linear transmission of high-speed TDM signals:40 and 160 Gb/s, in Optical Fiber Telecommunications Ⅳ. New York: Academic,2002, pp.232-304.
    [71]G. P. Agrawal, Lightwave Technology:Telecommunication Systems. New York:Wiley,2005.
    [72]J.-P. Elbers, A. Farbert, and C. Scheerer, Reduced Model to Describe SPM-Limited Fiber Transmission in Dispersion-Managed Light Wave Systems, IEEE J. Sel. Topics Quantum Electron., vol.6, no.2, Mar-Apr 2000, pp.276-281.
    [73]L. Rapp, Experimental Investigation of Signal Distortions Induced by Cross-Phase Modulation Combined with Dispersion, IEEE Photon. Technol. Lett., vol.9, no.12, Dec.1997, pp.1592-1594.
    [74]H. J. Thiele, R. I. Killey, and P. Bayvel, Influence of Fibre Dispersion on XPM Pulse Distortion in WDM Systems, ECOC 1998, vol.1, Barcelona, Spain, Sep.1998, pp.593-594.
    [75]F. Forghieri, A. H. Gnauck, R.W. Thach et al., Repeaterless Transmission of eight Channels at 10 Gb/s over 137 km (11 Tb/s-km) of Dispersion-Shifted Fiber using Unequal Channel Spacing, IEEE Photon. Technol. Lett., vol.6, no.11, Nov.1994, pp.1374-1376.
    [76]F. Forghieri, R. W. Thach, and A. R. Chraplyvy, WDM Systems with Unequally Spaced Channels, IEEE Photon. Technol. Lett., vol.13, no.5, May 1995, pp.889-897.
    [77]苏翼凯,冷鹿峰,高速光纤传输系统,上海交通大学出版社,2009.
    [78]A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, Phase Diversity Techniques for Coherent Optical Receivers, J. Lightwave Technol., vol.5, no.4, Apr.1987, pp.561-571.
    [79]Matthias Seimetz and Carl-Michael Weinert, Options, Feasibility, and Availability of 2×4 90° Hybrids for Coherent Optical Systems, Journal of Lightwave Technology, vol.24 no.3, 2006, pp.1317-1321.
    [80]Seb J. Savory, Digital Coherent Optical Receivers:Algorithms and Subsystems, IEEE Journal of selected topics in quantum electronics, vol.16, no.5, Oct.2010, pp.1164-1179.
    [81]U. Koc, A. Leven, Y. Chen, and N. Kaneda, Digital coherent quadrature phase-shift-keying (QPSK), in Proc. Opt. Fiber Conf. (OFC), Anaheim, CA,2006, Paper OThIl.
    [82]Sun Hyok Chang, Hwan Seok Chung, and Kwangjoon Kim, Impact of Quadrature Imbalance in Optical Coherent QPSK Receiver, IEEE Photon. Technol. Lett., vol.21, no.11, Jun.1,2009, pp.709-711.
    [83]Hwan Seok Chung, Sun Hyok Chang, and Kwangjoon Kim,Effect of IQ Mismatch Compensation in an Optical Coherent OFDM Receiver, IEEE Photon. Technol. Lett., vol.22, no.5, Mar.1,2010, pp.308-310.
    [84]I. Fatadin, S. J. Savory, and D. Ives, Compensation of quadrature imbalance in an optical QPSK coherent receiver, IEEE Photon. Technol. Lett., vol.20, no.20, Oct.15,2008, pp. 1733-1735.
    [85]C. S.Petrou, A.Vgenis, I.Roudas, etc., Quadrature Imbalance Compensation for PDM QPSK Coherent Optical Systems, IEEE Photon. Technol. Lett., vol.21, no.24, Dect.15,2009, pp.1876-1878.
    [86]I. Mayer, On Lowdin's method of symmetric orthogonalization, Int. J. Quantum Chem., vol.90, no.1, Oct.5,2002, pp.63-65.
    [87]B. Spinnler, F.N. Hauske, and M. Kuschnerov,Adaptive Equalizer Complexity in Coherent Optical Receivers, ECOC 2008,21-25 Sep.2008, Brussels, Belgium, paper We.2.E.4.
    [88]Seb.J.Savory, Digital filter for coherent optical receivers, Optics Express, vol.16, no.2,2008, pp.804-817.
    [89]S.J. Savory, G. Gavioli, R.I. Killey and P. Bayvel, "Electronic compensation of chromatic dispersion using a digital coherent receiver," Opt. Express, vol.15,2007, pp.2120-2126.
    [90]B.Spinnler, Complexity of Algorithms for Digital Coherent Reciever, ECOC 2009, paper 7.3.6.
    [91]J.C. Geyer, C.R.S. Fludger, T. Duthel, etc. Efficient Frequency Domain Chromatic Dispersion Compensation in a Coherent Polmux QPSK-Receiver, OFC/NFOEC 2010, paper OWV5.
    [92]门爱东,杨波,全子一,数字信号处理,人民邮电出版社,2003.
    [93]S. Haykin, Adaptive Filter Theor. Englewood Cliffs, NJ:Prentice-Hall,2001.
    [94]Kuschnerov M, Hauske F N, Gourdon E,etc., Digital Timing Recovery for Coherent Fiber Optic Systems, Optical Fiber communication/National Fiber Optic Engineers Conference (OFC/NFOEC 2008),2008, paper JThA63.
    [95]Chris R. S. Fludger, etc. Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission, Journal of lightwave technology, January,2008, vol.26, pp.64-72.
    [96]Takahito Tanimura, Takeshi Hoshida, Shoichiro Oda, etc., Digital clock recovery algorithm for optical coherent receivers operating independent of laser frequency offset, European Conference on Optical Communication (ECOC 2008), vol.1, Sep.2008, pp.35-36.
    [97]M.Kuschnerov, F.N. Hauske, K. Piyawanno,etc., Joint Equalization and Timing Recovery for Coherent Fiber Optic Receivers, European Conference on Optical Communication (ECOC 2008), vol.1, Sep.2008, pp.37-38.
    [98]L. Liu, Z. Tao, H. Zhang, T. Tanimura, etc., Controlled adaptive equalization for dual-polarization coherent receivers with simple clock recovery, European Conference on Optical Communication (ECOC 2008), vol.1, Sep.2008, pp.43-44
    [99]Oerder M, Meyr H. Digital filter and square timing recovery, IEEE Transactions on Communications, vol.36, no.5, pp.605-612, May.1998.
    [100]Floyd M. Gardner, A BPSK/QPSK Timing-Error Detector for Sampled Receiver, IEEE Transactions on Communications, vol.com-34, no.5, May.1986, pp.423-429.
    [101]M. T. Core, Cross Polarization Interference Cancellation for Fiber Optics Systems, J. Lightwave Technol., vol.24, no.1, Jan.2006, pp.305-312.
    [102]S. Calabro, T. Dullweber, E. Gottwald et al., An Electrical Polarization-state Controller and Demultiplexerfor Polarization Multiplexed Optical Signals, in Proc. Eur. Conf. Optical Commun. (ECOC), Rimini, Italy, Sep.2003, paper Th2.2.2
    [103]D. N. Godard, Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data CommunicationSystems, IEEE Trans. Commun., vol.28, no.11, Nov.1980, pp. 1867-1875.
    [104]L. Liu, Z. Tao, W. Yan, S. Oda, etc., initial tap setup of constant modulus algorithm for polarization de multiplexing in optical coherent receivers, OFC/NFOEC 2009, paper OMT2.
    [105]H. Zhang, Z. Tao, L. Liu, S. Oda, etc, "Polarization demultiplexing based on independent component analysis in optical coherent receivers,"ECOC 2008, paper Mo.3.D.5.
    [106]N. Benvenuto and G. Cherubini, Algorithms for Communications Systems and their Applications,1st ed.Wiley,2002.
    [107]Ut-Va Koc, Leven A. and Young-Kai Chen, Integrated optical equalizer using opto-electronic least mean square algorithm for chromatic and polarization mode dispersion compensation, LEOS2004, vol.2, pp.751-752.
    [108]Yangyang Fan, Xue Chen, Weiqin Zhou, etc., The Comparison of CMA and LMS Equalization Algorithms in Optical Coherent Receivers,WICOM2010, pp.1-4.
    [109]A. Leven, N. Kaneda, U-V Koc and Y.-K. Chen, Frequency Estimation in Intradyne Reception, IEEE Photonics Technology Letters. vol.19, no.6, Mar.2007, pp.366-368.
    [110]A.J.Viterbi, A.M.Viterbi, Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission, IEEE Transaction on Information Theory, vol. IT-29, no.4, July.1983, pp.543-551.
    [111]Gilad Goldfarb and Li Guifang, BER estimation of QPSK homodyne detection with carrier phase estimation using digital signal processing, Optics Express, vol 14, no.18, 2006,pp.8043-8053.
    [112]Dany-Sebastien Ly-Gagnon, Satoshi Tsukamoto, Kazuhiro Katoh.etc, Coherent Detection of Optical Quadrature Phase-Shift Keying Signals With Carrier Phase Estimation, Journal of lightwave tecenology, vol.24, no.1,2006, pp.12-21.
    [113]E. Ibragimov, B. Zhang, T. J. Schmidt, etc., Cycle Slip Probability in 100G PM-QPSK Systems, Optical Fiber Communication OFC 2010,OWE2.
    [114]J. M. Kahn and K.P. Ho, Spectral Efficiency Limits and Modulation/Detection Techniques for DWDM Systems, IEEE J. Sel. Topics Quantum Electron. vol.10, no.2, Mar/Apr.2004, pp.259-272.
    [115]F.M.Gardner, Interpolation in Digital Modems-Part Ⅰ:Fundamentals, IEEE Transactions on Communications, vol.41, no.3, Mar.1993, pp.501-507.
    [116]张公礼,全数字接收机理论与技术,科学出版社,2005.
    [117]Lars Erup, F.M.Gardner and Robert A. Harris, Interpolation in Digital Modems-Part Ⅱ: Implementation and Performance, IEEE Transactions on Communications, vol.41, no.6, June. 1993, pp.998-1008.
    [118]Armstrong and Strickland D, Symbol synchronization using signal samples and interpolation, IEEE Transactions on Communications, vol.41, no,2,Feb 1993, pp.318-321.
    [119]Floyd M. Gardner(著),陶剑清(译),锁相环技术,第三版,人民邮电出版社.
    [120]Chao Zhang, Yojiro Mori, Koji Igarashi, etc., Ultrafast operation of digital coherent receivers using their time-division demultiplexing function, J. Lightw. Technol. vol.27, no.3, Feb.2009, pp.224-232.
    [121]K. Kikuchi, K. Igarashi, Y. Mori, and C. Zhang, Demodulation of 320-Gbit/s optical quadrature phase-shift keying signal with digital coherent receiver having time-division demultiplexing function, OFC 2008, paper OTuO4.
    [122]C. Zhang, Y. Mori, K. Igarashi, and K. Kikuchi, Demodulation of 640-Gbit/s polarization-multiplexed OTDM QPSK signals using a digital coherent receiver, OFC 2008, paper PDP6.
    [123]K. Fukuchi, D. Ogasahara, J. Hu.etc.,112Gb/s Optical Transponder with PM-QPSK and Coherent Detection Employing Parallel FPGA-based Real-Time Digital Signal Processing, FEC and 100GbE Ethernet Interface, ECOC 2010, Tu.5.A.2.
    [124]C.W. Farrow, A continuously variable digital delay element, in Proc. IEEE Int. Symp. Circuits & Syst., Espoo, Finland, vol.3, June.1988, pp.2641-2645
    [125]T. Pfau, R. Peveling, Towards Real-Time Implementation of Coherent Optical Communication, Optical Fiber Communication,OFC 2010,OTHJ4
    [126]Simon Haykin(著),郑宝玉等(译),自适应滤波器原理 第四版,电子工业出版社,2007,pp.270-299.
    [127]张晓光,光纤偏振模色散自适应补偿系统的研究,北京邮电大学,2004.
    [128]Geert De Jonghe and Marc Moeneclaey, Cycle Slip Analysis of the NDA FF carrier Synchronizer based on the Viterbi & Viterbi Algorithm, SUPERCOMM/ ICC 1994, vol.2, pp.880-884.
    [129]Tadshi Fujino and Yoshiaki Umeda, Effects of Jitter and Cycle Slipping of Phase Reference Upon Unique Word Missed Detection in QPSK Systems, Selected Areas in Communications, IEEE Journal on vol.1, no.1,1983, pp.95-102
    [130]罗仁泽(著),新一代无线移动通信系统关键技术,北京邮电大学出版社.2007,pp.51-87.
    [131]Timothy M. Schmidl, Donald C. Cox. Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications, vol.45, no.12, Dec.1997, pp.1613-1621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700