多功能铁电共聚物微结构的调控及其电性能的调制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电聚合物的卓越性能来自极性晶体结构及其在外加电场中的反转或重新定向。因此,铁电聚合物的极性晶畴是构筑其优异性能的基本单元。而作为一种半结晶型的聚合物,铁电聚合物在晶体生长过程中链的排列和堆砌会受到多重因素的影响,从而造成了其结构的复杂性、多样性和不完备性。而正是因为其复杂性,为人们调制其微结构提供了可能性,使不同晶相的晶畴在几纳米至几百纳米的尺寸范围内可以被调制。而PVDF基铁电高分子与其他铁电材料一样,在多场耦合下具有多功能性。其复杂的结晶微结构与其不同的功能之间有着千丝万缕的联系。如何调制其微结构,从而获得某一功能的优化,是目前研究的热点之一
     本论文以PVDF基多功能铁电共聚物为研究对象,以优化其功能为导向,针对其不同的功能,采取不同的方法和手段进行了处理,并对调制后的共聚物的微结构进行了细致的研究,主要研究内容如下。
     1.针对铁电共聚物在信息存储领域的应用,我们利用简便、高效的纳米压印方法成功的制备了高密度的表面平滑的自支撑铁电共聚物P(VDF-TrFE)纳米点阵。纳米点中聚合物链的择优取向,即:聚合物链平行于基底,聚合物中偶极方向垂直于基底排列,使得单个纳米点中的极化翻转变得更容易,从而使每个纳米点的压电响应都很强而且很均匀。利用基于探针的压电力显微镜技术能够在纳米点阵上直接写入所需要的信息,写入的分辨率小于10nm,存储密度高达75Gb/inch2。我们还以光栅状的压印模板对P(VDF-TrFE-CFE)三元弛豫铁电共聚物进行了纳米压印。压印同样也造成了纳米结构中聚合物链的择优取向。作为一个易变的体系,压印对聚合物的影响还体现在限制加热条件下的分子运动,将弛豫铁电性部分地转变为铁电性。
     2.针对铁电共聚物在储能电容中的应用,我们发展了交联改性铁电共聚物的方法。交联的P(VDF-CTFE)既具有提高的极化值,又保持了其较高的击穿场强,这两方面共同的贡献使其放电能量密度高达22.5J/cm3,约为同等场强下未交联样品的两倍。方面,交联有利于极性构象的生成,将原先稳定存在的α相大尺寸晶体转变为几个相混合存在的多缺陷的极性纳米晶体。另一方面,交联样品的内比表面要大过未交联样品的,同时,界面相的厚度也要比未交联样品小。在性能上则表现为同等场强下更高的极化值和放电能密度,以及更少的能量损耗。
     3.以调制铁电共聚物的电卡效应为目的,我们对P(VDF-TrFE-CFE)三元弛豫铁电共聚物用共混复合的方法进行处理,发现三元弛豫铁电共聚物P(VDF-TrFE-CFE)与二元铁电共聚物P(VDF-TrFE)的共混物的结构和性能有着很强的可调制性。在二元共聚物含量小于15%的时候,三元共聚物中的缺陷通过与二元共聚物的界面相互作用影响其结晶,将其铁电相晶体转变成了具有类似于三元共聚物结晶结构的弛豫体。这种转变改变了体系的低场介电和高场极化的响应特征,使共混物的电卡效应相对于三元共聚物最高提高了30%以上。当二元共聚物含量高于20%之后,铁电相将会逐渐产生,最终导致介于两者中间的铁电性能。共混物体系提供了一个研究无规缺陷如何影响共聚物结构与极化响应的模型体系,并且有助于我们进一步理解共混物中极化响应与电卡效应之间的相互关系。进一步对共混物交联后的研究结果证明了共混物中的能量损耗确实能够降低,但是效果并不明显。相反,交联降低了聚合物的电卡效应。将共混物极化的实验表明,二元共聚物P(VDF-TrFE)在被极化后,其自发极化能够保持下来,从而构建一个相对稳定的内建电场。内建电场的存在可以使聚合物在较低的场下产生相对更高的极化从而提高低场下的电卡效应。
     4.制备了弛豫铁电三元共聚物P(VDF-TrFE-CFE)与氧化锆纳米粒子的纳米复合物。纳米粒子作为结晶成核剂,提高了聚合物的结晶度。更重要的是,纳米粒子与聚合物基体之间的界面效应提高了聚合物的极化强度,提供了额外的熵变。因此纳米复合物比纯的聚合物具有更高的电卡效应。该结果第一次证明了铁电聚合物中的电卡效应可以通过纳米复合的方式进行增强。
The superior electric properties of PVDF-based ferroelectric polymers originate in the polar crystalline structures and re-orientation of the dipoles in them caused by electric field. Therefore, the polar crystalline domains are the basis of the superior electric properties. As a kind of semi-crystalline polymer, the arrangement and packing of polymer chains during crystallization is easily affected by many factors, which results in the complication, diversity, and imperfectness of the polymer structure. And it is the complication and diversity that provide us opportunities to tune the microstructure widely and precisely ranging from several nanometers to hundreds of nanometers or even larger. Similar to other ferroelectric materials, PVDF-based ferroelectric polymers are attracting due to its rich cross-coupling phenomena, which is closely related to the complicated microstructure. How to manipulate its microstructure and thus its related electric properties is one of the concerns.
     In this thesis, we aim to optimize certain electric properties of PVDF-based polymers by employing different treatment methods to fine-tune the microstrucutre, and try to establish the structure-property relationships by investigating the microstructure and related electric properties. The main results are listed below.
     1. To facilitate the application of ferroelectric polymers in memory devices, we fabricated ferroelectric polymer poly(vinylidene difluoride-trifluoroethylene), P(VDF-TrFE), nanodot arrays with ultrahigh data storage density through a facile, high-throughput, and cost-effective method of nano-imprinting. The nanodots show a large-area smooth surface morphology, and the piezoresponse in each nanodot is strong and uniform. The preferred orientation of the copolymer chains, which are aligned parallel to the substrate with dipoles perpendicular to the substrate, in the nanodot arrays is favorable for polarization switching of each single nanodot. This approach allows nanometer electronic feature to be written directly in two dimensions by PFM-probe based technology, and can reach a resolution in the order of sub-10nm with storage density as high as75Gb/inch2. We also fabricated ferroelectric relxor polymer poly(vinylidene difluoride-trifluoroethylene chlorofluoroethylene), P(VDF-TrFE-CFE) nano-gratings using the same imprinting method, and also found preferred orientation of the polymer chains. The influence of nanoimprint is also featured by constrained movement of polymer chain segments, which partially retains ferroelectricity in the polymer relaxor.
     2. To facilitate the application of ferroelectric polymers in high energy density capacitors, we developed a photo-crosslinking method to modify the polymer. Photoinitiated cross-linking of poly(vinylidene fluoride-co-chlorotrifluoroethylene), P(VDF-CTFE), can offer a significant increase in polarization while at the same time maintaining high electric breakdown field, both of which contribute a lot to the enhanced electric energy storage capacity (-22.5J/cm3). This improvement is related to the structure changes in the copolymer crystals brought by cross-linking. Cross-linking favors formation of polar crystalline phase, converting the large a crystals into defective polar nanosize crystals with mixed crystallograhpy. Cross-linking also increase inner interface area of copolymers and reduce their interface thickness. This copolymer case demonstrates the greatly enhanced energy storage behavior, including increased discharge energy density at reduced field strength, and improved capacitor efficiency at relatively high degree of cross-linking.
     3. In order to investigate the tunability of electrocaloric effect (ECE) and ferroelectric responses, blends of ferroelectric relaxor P(VDF-TrFE-CFE) terpolymer and normal ferroelectrics P(VDF-TrFE) copolymer are studied. At low copolymer content (<15wt%), the coupling between the relaxor terpolymer and the nano-phase copolymer converts the copolymer into relaxor and causes an increase in the crystallinity compared with neat terpolymer. As a result, the blends exhibit an enhanced relaxor polarization response and a significant increase in the electrocaloric effect (~30%) compared with those in the neat terpolymer. At high copolymer content (>20wt%), the blends exhibit mixed structures of the two components. By varying composition, the dielectric and ferroelectric properties of blends can be tuned in the range between the copolymer and terpolymer. This blend system provides a model system to study how random defects influence the polarization response in the normal ferroelectric copolymer, and to understand the relationship between the polarization response and ECE in the blends.
     4. The electrocaloric effect is enhanced in ferroelectric relaxor terpolymer P(VDF-TrFE-CFE)/ZrO2nanocomposites. It is observed that the interface effects between the polymer matrix and nano-fillers enhance the polarization response and provide additional electrocaloric entropy changes. As a consequence, the nanocomposites exhibit a larger ECE than that of the neat terpolymer. The results, for the first time, demonstrate that ECE can be tailored and enhanced through nanocomposite approach in the ferroelectric polymers.
引文
1. 钟维烈,铁电体物理学1st ed.;北京:科学出版社,1996.
    2. 符春林,铁电薄膜材料及其应用lst ed.;北京:科学出版社,2009.
    3. 王春雷,李吉超,赵明磊,压电铁电物理1st ed.;北京:科学出版社,2009.
    4. Fatuzzo, E.; Merz, W. J., Ferroelectricity. Amsterdam:North-Holland Publishing Company,1967.
    5. Mitsui, T.; Tatsuzaki, I.; Nakamura, E., An introduction to the physics of ferroelectrics. London:Gordon and Breach,1976.
    6. Lines, M. E.; Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon Press,1977.
    7. Gerhard-Multhaupt, R., Less can be more-Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers, leee Transactions on Dielectrics and Electrical Insulation,2002,9 (5): 850-859.
    8. Bauer, S.; Gerhard-Multhaupt, R.; Sessler, G. M., Ferroelectrets:Soft electroactive foams for transducers. Physics Today,2004,57 (2):37-43.
    9. Loidl, A.; Krohns, S.; Hemberger, J.; Lunkenheimer, P., Bananas go paraelectric. Journal of Physics-Condensed Matter,2008,20 (19):191001.
    10. Scott, J. F., Ferroelectrics go bananas. Journal of Physics-Condensed Matter,2008,20 (2):021001.
    11. Merz, W. J., The dielectric behavior of BaTiO3 single-domain crystals. Physical Review,1949,75 (4): 687-687.
    12. Cross, L. E., Relaxor ferroelectrics. Ferroelectrics,1987,76 (3-4):241-267.
    13. Viehland, D.; Jang, S. J.; Cross, L. E.; Wuttig, M., Deviation from Curie-Weiss behavior in relaxor ferroelectrics. Physical Review B,1992,46 (13):8003-8006.
    14. Bokov, A. A.; Ye, Z. G., Recent progress in relaxor ferroelectrics with perovskite structure. Journal of Materials Science,2006,41 (1):31-52.
    15. Tagantsev, A. K., Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. Physical Review Letters,1994,72 (7):1100-1103.
    16. Glazounov, A. E.; Tagantsev, A. K., Direct evidence for Vogel-Fulcher freezing in relaxor ferroelectrics. Applied Physics Letters,1998,73 (6):856-858.
    17. Vugmeister, B. E.; Rabitz, H., Dynamics of interacting clusters and dielectric response in relaxer ferroelectrics. Physical Review B,1998,57 (13):7581-7585.
    18. Pirc, R.; Blinc, R.; Bobnar, V., Dynamics of relaxor ferroelectrics. Physical Review B,2001,63 (5):054203.
    19. Pirc, R.; Blinc, R., Vogel-Fulcher freezing in relaxor ferroelectrics. Physical Review B,2007,76 (2):020101.
    20. Sun, B. Y; Wu, J. T.; Zhang, J.; Qian, M., A new model describing physical effects in crystals:the diagrammatic and analytic methods for macro-phenomenological theory. Journal of Materials Processing Technology,2003,139 (1-3):444-447.
    21.殷之文,电分质物理学.2nd ed.;北京:科学出版社,2003.
    22. Cross, L. E.; Jang, S. J.; Newnham, R. E.; Nomura, S.; Uchino, K., Large electrostrictive effects in relaxor ferroelectrics. Ferroelectrics,1980,23 (3-4):187-191.
    23. Uchino, K.; Nomura, S.; Cross, L. E.; Newnham, R. E.; Jang, S. J., Electrostrictive effect in perovskites and its transducer applications. Journal of Materials Science,1981,16 (3):569-578.
    24. Park, S. E.; Shrout, T. R., Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics,1997,82 (4):1804-1811.
    25. Park, S. E.; Shrout, T. R., Relaxor based ferroelectric single crystals for electro-mechanical actuators. Materials Research Innovations,1997,1 (1):20-25.
    26. Zhang, Q. M.; Bharti, V.; Zhao, X., Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science,1998,280 (5372): 2101-2104.
    27. Lang, S. B., Cryogenic refrigeration utilizing electrocaloric effect in pyroelectric lithium sulfate monohydrate. Ferroelectrics,1976,11 (3-4):519-523.
    28. Turtle, B. A.; Payne, D. A., The effects of microstrucutre on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 Ceramics. Ferroelectrics,1981,37 (1-4):603-606.
    29. Sinyavsky, Y. V.; Pashkov, N. D.; Gorovoy, Y. M.; Lugansky, G. E., The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics,1989,90:213-217.
    30. Mischenko, A. S.; Zhang, Q.; Scott, J. F.; Whatmore, R. W.; Mathur, N. D., Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science,2006,311 (5765):1270-1271.
    31. Neese, B.; Chu, B. J.; Lu, S. G.; Wang, Y.; Furman, E.; Zhang, Q. M., Large electrocaloric effect in ferroelectric polymers near room temperature. Science,2008,321 (5890):821-823.
    32. Peng, B.; Fan, H.; Zhang, Q., A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature. Advanced Functional Materials, 2013:DOI:10.1002/adfm.201202525.
    33. Moya, X.; Stern-Taulats, E.; Crossley, S.; Gonzalez-Alonso, D.; Kar-Narayan, S.; Planes, A.; Manosa, L.; Mathur, N. D., Giant Electrocaloric Strength in Single-Crystal BaTiO3. Advanced Materials,2013,25 (9): 1360-1365.
    34. Lovinger, A. J., Ferroelectric Polymers. Science,1983,220 (4602):1115-1121.
    35. Hasegawa, R.; Tadokoro, H.; Kobayash.M, Molecular conformation and packing of Poly(Vinylidene Fluoride)-stability of 3 crystalline forms and effect of high-pressure. Polymer Journal,1972,3 (5):591-599.
    36. Hasegawa, R.; Takahash.Y; Tadokoro, H.; Chatani, Y., Crystal-structures of 3 crystalline forms of Poly(Vinylidene Fluoride). Polymer Journal,1972,3 (5):600-610.
    37. Lando, J. B.; Olf, H. G.; Peterlin, A., Nuclear magnetic resonance and X-ray determination of structure of Poly(Vinylidene Fluoride). Journal of Polymer Science Part α-1-Polymer Chemistry,1966,4 (4PA1):941-951.
    38. Kawai, H., The Piezoelectricity of Poly(Vinylidene Fluoride). Japanese Journal of Applied Physics,1969,8: 975-976.
    39. Bergman, J. G.; McFee, J. H.; Crane, G. R., Pyroelectricity and optical second harmonic generation in Poly(Vinylidene Fluoride) films. Applied Physics Letters,1971,18 (5):203-205.
    40. Kobayashi, M.; Tashiro, K.; Tadokoro, H., Molecular vibration of 3 crystal forms of Poly(vinylidene fluoride). Macromolecules,1975,8 (2):158-171.
    41. Bachmann, M.; Gordon, W. L.; Weinhold, S.; Lando, J. B., The crystal-structure of phase-IV of Poly(Vinylidene Fluoride). Journal of Applied Physics,1980,51 (10):5095-5099.
    42. Lovinger, A. J., Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules, 1982,15 (1):40-44.
    43. Nalwa, H. S., Ferroelectric polymers:Chemistry, physics, and applications. New York:Marcel Dekker,1995.
    44. Lovinger, A. J., Unit cell of the gama-phase of poly(vinylidene fluoride). Macromolecules,1981,14 (2): 322-325.
    45. Tashiro, K.; Tadokoro, H.; Kobayashi, M., Structure and piezoelectricity of Poly(Vinylidene Fluoride). Ferroelectrics,1981,32 (1-4):167-175.
    46. Karasawa, N.; Goddard, W. A., Force-fields, strcutrues, and properties of Poly(vinylidene fluoride) crystals. Macromolecules,1992,25 (26):7268-7281.
    47. Li, M. Y.; Wondergem, H. J.; Spijkman, M.-J.; Asadi, K.; Katsouras, I.; Blom, P. W. M.; de Leeuw, D. M., Revisiting the δ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nature Materials,2013:DOI:10.1038/nmat3577.
    48. Nakamura, K.; Wada, Y., Piezoelectricity, pyroelectricity, and electrostriction constant of Poly(Vinylidene Fluoride). Journal of Polymer Science Part a-2-Polymer Physics,1971,9 (1):161-173.
    49. Oshiki, M.; Fukada, E., Inverse piezoelectric effect and electrostrictive effect in polarized Poly(Vinylidene Fluoride) films. Journal of Materials Science,1975,10 (1):1-6.
    50. Breger, L.; Furukawa, T.; Fukada, E., Bending piezoelectricity in Polyvinylidene fluoride. Japanese Journal of Applied Physics,1976, 15(11):2239-2240.
    51. Gallantree, H. R.; Quilliam, R. M., Polarized Poly(Vinylidene Fluoride)-application to pyroelectric and piezoelectric devices. Marconi Review,1976,39 (203):189-200.
    52. Tamura, M.; Hagiwara, S.; Matsumoto, S.; Ono, N., Some aspects of piezoelectricity and pyroelectricity in uniaxially stretched poly (vinylidene fluoride). Journal of Applied Physics,1977,48 (2):513-521.
    53. Byutner, O. G.; Smith, G. D., Conformational properties of poly(vinylidene fluoride). A quantum chemistry study of model compounds. Macromolecules,1999,32 (25):8376-8382.
    54. Farmer, B. L.; Hopfinger, A. J.; Lando, J. B., Polymorphism of poly(vinylidene fluoride):potential energy calculations of the effects of head-to-head units on the chain conformation and packing of poly(vinylidene fluoride). Journal of Applied Physics,1972,43 (11):4293-4303.
    55. Su, H. B.; Strachan, A.; Goddard, W. A., Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers:PVDF and P(VDF-TrFE). Physical Review B,2004,70 (6): 064101.
    56. Lando, J. B.; Doll, W. W., The polymorphism of poly(vinylidene fluoride). Ⅰ. The effect of head-to-head structure. Journal of Macromolecular Science, Part B,1968,2 (2):205-218.
    57. Hicks, J. C.; Jones, T. E.; Logan, J. C., Ferroelectric properties of poly (vinylidene fluoride-tetrafluoroethylene). Journal of Applied Physics,1978,49 (12):6092-6096.
    58. Kepler, R. G.; Anderson, R. A., Ferroelectric polymers. Advances in Physics,1992,41 (1):1-57.
    59. Yagi, T.; Tatemoto, M.; Sako, J., Transition behavior and dielectric-properties in trifluoroethylene and vinylidene fluoride co-polymers. Polymer Journal,1980,12 (4):209-223.
    60. Furukawa, T.; Date, M.; Fukada, E.; Tajitsu, Y.; Chiba, A., Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene. Japanese Journal of Applied Physics,1980,19 (2):L109-L112.
    61. Yamada, T.; Ueda, T.; Kitayama, T., Ferroelectric-to-paraelectric phase transition of vinylidene fluoride-trifluoroethylene copolymer. Journal of Applied Physics,1981,52 (2):948-952.
    62. Furukawa, T.; Johnson, G. E., Dielectric relaxations in a co-polymer of vinylidene fluoride and trifluoroethylene. Journal of Applied Physics,1981,52 (2):940-943.
    63. Tajitsu, Y.; Chiba, A.; Furukawa, T.; Date, M.; Fukada, E., Crystalline Phase Transition in the Copolymer of Vinylidene fluoride and Trifluoroethylene. Applied Physics Letters,1980,36 (4):286-288.
    64. He, X. J.; Yao, K.; Gan, B. K., Ferroelectric poly(vinylidene fluoride-hexafluoropropylene) thin films on silicon substrates. Sensors and Actuators a-Physical,2007,139 (1-2):158-161.
    65. Wegener, M.; Kunstler, W.; Richter, K.; Gerhard-Multhaupt, R., Ferroelectric polarization in stretched piezo- and pyroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer films. Journal of Applied Physics,2002,92 (12):7442-7447.
    66. Tanaka, H.; Yukawa, H.; Nishi, T., Effect of crystallization condition on the ferroelectric phase transition in vinylidene fluoride/trifluoroethylene (VF2/F3E) copolymers. Macromolecules,1988,21 (8):2469-2474.
    67. Lovinger, A. J., Polymorphic transformations in ferroelectric copolymers of vinylidene fluoride induced by electron irradiation. Macromolecules,1985,18 (5):910-918.
    68. Nabata, Y., Dielectric properties of gamma-ray irradiated Poly(Vinylidene fluoride). Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1990,29 (12):2755-2760.
    69. Daudin, B.; Legrand, J. F.; Macchi, F., Microscopic and macroscopic effects of electron irradiation on ferroelectric poly (vinylidene fluoride-TrFe) copolymers. Journal of Applied Physics,1991,70 (8):4037-4044.
    70. Chung, T. C.; Petchsuk, A., Synthesis and properties of ferroelectric fluoroterpolymers with Curie transition at ambient temperature. Macromolecules,2002,35 (20):7678-7684.
    71. Xia, F.; Cheng, Z. Y.; Xu, H. S.; Li, H. F.; Zhang, Q. M.; Kavarnos, G. J.; Ting, R. Y; Abdul-Sedat, G.; Belfield, K. D., High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Advanced Materials,2002,14 (21):1574-1577.
    72. Bune, A. V.; Fridkin, V. M.; Ducharme, S.; Blinov, L. M.; Palto, S. P.; Sorokin, A. V.; Yudin, S. G.; Zlatkin, A., Two-dimensional ferroelectric films. Nature,1998,391 (6670):874-877.
    73. Kimura, K.; Ohigashi, H., Polarization behavior in Vinylidene Fluoride-Trifluoroethylene copolymer thin-films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1986,25 (3): 383-387.
    74. Tajitsu, Y, Effects of thickness on ferroelectricity in Vinylidene Fluoride and Trifluoroethylene copolymers. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes& Review Papers,1995,34 (9B): 5418-5423.
    75. Naber, R. C. G.; Blom, P. W. M.; Marsman, A. W.; de Leeuw, D. M., Low voltage switching of a spin cast ferroelectric polymer. Applied Physics Letters,2004,85 (11):2032-2034.
    76. Xu, H. S.; Zhong, J. H.; Liu, X. B.; Chen, J. H.; Shen, D., Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface. Applied Physics Letters,2007,90 (9):092903.
    77. Nakajima, T.; Abe, R.; Takahashi, Y.; Furukawa, T., Intrinsic switching characteristics of ferroelectric uitrathin vinylidene fluoride/trifluoroethylene copolymer films revealed using Au electrode. Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2005,44 (42-45):L1385-L1388.
    78. Furukawa, T.; Nakajima, T.; Takahashi, Y, Factors governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13 (5):1120-1131.
    79. Naber, R. C. G.; Asadi, K.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B., Organic Nonvolatile Memory Devices Based on Ferroelectricity. Advanced Materials,2010,22 (9):933-945.
    80. Tayebi, N.; Yanguas-Gil, A.; Kumar, N.; Zhang, Y.; Abelson, J. R.; Nishi, Y.; Ma, Q.; Rao, V. R., Hard HfB2 tip-coatings for ultrahigh density probe-based storage. Applied Physics Letters,2012,101 (9):091909.
    81. Bonnell, D. A.; Kalinin, S. V.; Kholkin, A. L.; Gruverman, A., Piezoresponse Force Microscopy:A Window into Electromechanical Behavior at the Nanoscale. Mrs Bulletin,2009,34 (9):648-657.
    82. Han, H.; Kim, Y.; Alexe, M.; Hesse, D.; Lee, W., Nanostructured Ferroelectrics:Fabrication and Structure-Property Relations. Advanced Materials,2011,23 (40):4599-4613.
    83. Chou, S. Y; Krauss, P. R.; Renstrom, P. J., Imprint of sub-25nm vias and trenches in polymers. Applied Physics Letters,1995,67 (21):3114-3116.
    84. Austin, M. D.; Ge, H. X.; Wu, W.; Li, M. T.; Yu, Z. N.; Wasserman, D.; Lyon, S. A.; Chou, S. Y, Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters,2004,84 (26): 5299-5301.
    85. Li, Z. W.; Gu, Y N.; Wang, L; Ge, H. X.; Wu, W.; Xia, Q. F.; Yuan, C. S.; Chen, Y; Cui, B.; Williams, R. S., Hybrid Nanoimprint-Soft Lithography with Sub-15 nm Resolution. Nano Letters,2009,9 (6):2306-2310.
    86. Tripathi, A. K.; van Breemen, A.; Shen, J.; Gao, Q.; Ivan, M. G.; Reimann, K.; Meinders, E. R.; Gelinck, G. H., Multilevel Information Storage in Ferroelectric Polymer Memories. Advanced Materials,2011,23 (36): 4146-4151.
    87. Di, C. A.; Yu, G.; Liu, Y.; Zhu, D., High-performance organic field-effect transistors:Molecular design, device fabrication, and physical properties. Journal of Physical Chemistry B,2007,111 (51):14083-14096.
    88. Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; De Leeuw, D. M., High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Materials,2005,4 (3):243-248.
    89. Naber, R. C. G.; de Boer, B.; Blom, P. W. M.; de Leeuw, D. M., Low-voltage polymer field-effect transistors for nonvolatile memories. Applied Physics Letters,2005,87 (20):203509.
    90. Naber, R. C. G.; Mulder, M.; de Boer, B.; Blom, P. W. M.; de Leeuw, D. M., High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric. Organic Electronics,2006,7 (3):132-136.
    91. Kang, S. J.; Bae, I.; Shin, Y. J.; Park, Y. J.; Huh, J.; Park, S. M.; Kim, H. C.; Park, C., Nonvolatile Polymer Memory with Nanoconfinement of Ferroelectric Crystals. Nano Letters,2011,11 (1):138-144.
    92. Nguyen, C. A.; Lee, P. S.; Mhaisalkar, S. G., Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric. Organic Electronics,2007,8 (4):415-422.
    93. Khan, M. A.; Bhansali, U. S.; Alshareef, H. N., High-Performance Non-Volatile Organic Ferroelectric Memory on Banknotes. Advanced Materials (Weinheim, Germany),2012,24 (16):2165-2170.
    94. Kang, S. J.; Park, Y. J.; Bae, I.; Kim, K. J.; Kim, H. C; Bauer, S.; Thomas, E. L; Park, C., Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory. Advanced Functional Materials,2009,19 (17):2812-2818.
    95. Kang, S. J.; Bae, I.; Park, Y. J.; Park, T. H.; Sung, J.; Yoon, S. C.; Kim, K. H.; Choi, D. H.; Park, C., Non-volatile Ferroelectric Poly(vinylidene fluoride-co-trifluoroethylene) Memory Based on a Single-Crystalline Tri-isopropylsilylethynyl Pentacene Field-Effect Transistor. Advanced Functional Materials,2009,19 (10): 1609-1616.
    96. Naber, R. C. G.; Massolt, J.; Spijkman, M.; Asadi, K.; Blom, P. W. M.; de Leeuw, D. M., Origin of the drain current bistability in polymer ferroelectric field-effect transistors. Applied Physics Letters,2007,90 (11): 113509.
    97. Asadi, K.; Li, M. Y.; Blom, P. W. M.; Kemerink, M.; de Leeuw, D. M., Organic ferroelectric opto-electronic memories. Materials Today,2011,14 (12):592-599.
    98. Blom, P. W. M.; Wolf, R. M.; Cillessen, J. F. M.; Krijn, M. P. C. M., Ferroelectric Schottky Diode. Physical Review Letters,1994,73 (15):2107-2110.
    99. Asadi, K.; De Leeuw, D. M.; De Boer, B.; Blom, P. W. M., Organic non-volatile memories from ferroelectric phase-separated blends. Nature Materials,2008,7 (7):547-550.
    100. McNeill, C. R.; Asadi, K.; Watts, B.; Blom, P. W. M.; de Leeuw, D. M., Structure of Phase-Separated Ferroelectric/Semiconducting Polymer Blends for Organic Non-volatile Memories. Small,2010,6 (4):508-512.
    101. Asadi, K.; Wondergem, H. J.; Moghaddam, R. S.; McNeill, C. R.; Stingelin, N.; Noheda, B.; Blom, P. W. M.; de Leeuw, D. M., Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymers. Advanced Functional Materials,2011,21 (10):1887-1894.
    102. Kemerink, M.; Asadi, K.; Blom, P. W. M.; de Leeuw, D. M., The operational mechanism of ferroelectric-driven organic resistive switches. Organic Electronics,2012,13 (1):147-152. 103. Asadi, K.; Li, M. Y.; Stingelin, N.; Blom, P. W. M.; de Leeuw, D. M., Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage. Applied Physics Letters,2010,97 (19):193308. 104. Asadi, K.; Blom, P. W. M.; de Leeuw, D. M., The MEMOLED:Active Addressing with Passive Driving. Advanced Materials,2011,23 (7):865-868.
    105. Ho, J.; Ramprasad, R.; Boggs, S., Effect of alteration of antioxidant by UV treatment on the dielectric strength of BOPP capacitor film, leee Transactions on Dielectrics and Electrical Insulation,2007,14 (5): 1295-1301.
    106. Chu, B. J.; Zhou, X.; Ren, K. L.; Neese, B.; Lin, M. R.; Wang, Q.; Bauer, F.; Zhang, Q. M., A dielectric polymer with high electric energy density and fast discharge speed. Science,2006,313 (5785):334-336.
    107. Huang, C.; Zhang, Q. M., High dielectric constant polymers as high-energy-density (HED) field effect actuator and capacitor materials. In Smart Structures and Materials 2004 Electroactive Polymer Actuators and Devices (EAPAD), BarCohen, Y., Ed. Spie-int Soc Optical Engineering:Bellingham,2004; Vol.5385, pp 87-98.
    108. Zhou, X.; Chu, B. J.; Neese, B.; Lin, M. R.; Zhang, Q. M., Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer. leee Transactions on Dielectrics and Electrical Insulation,2007,14 (5):1133-1138.
    109. Ranjan, V.; Yu, L.; Nardelli, M. B.; Bernholc, J., Phase equilibria in high energy density PVDF-Based polymers. Physical Review Letters,2007,99 (4):047801.
    110. Ranjan, V.; Yu, L.; Nakhmanson, S.; Bernholc, J.; Nardelli, M. B., Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers. Acta Crystallographica Section A,2010,66: 553-557.
    111. Zhang, Z. C.; Chung, T. C. M., The structure-property relationship of poly(vinylidene difluoride)-based polymers with energy storage and loss under applied electric fields. Macromolecules,2007,40 (26):9391-9397.
    112. Zhang, Z. C.; Chung, T. C. M., Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss. Macromolecules,2007,40 (4):783-785.
    113. Zhang, Z. C.; Meng, Q. J.; Chung, T. C. M., Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Polymer,2009,50(2):707-715.
    114. Zhou, X.; Chu, B. J.; Wang, Y.; Zhang, Q. M.; leee, Polyvinylidene Fluoride based polymeric dielectrics for high energy density capacitor application. New York:leee,2009; p 15-19.
    115. Zhou, X.; Zhao, X. H.; Suo, Z. G.; Zou, C.; Runt, J.; Liu, S.; Zhang, S. H.; Zhang, Q. M., Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Applied Physics Letters,2009,94 (16):162901.
    116. Guan, F. X.; Pan, J. L.; Wang, J.; Wang, Q.; Zhu, L., Crystal Orientation Effect on Electric Energy Storage in Poly(vinylidene fluoride-co-hexafluoropropylen) Copolymers. Macromolecules,2010,43 (1):384-392.
    117. Guan, F. X.; Wang, J.; Pan, J. L.; Wang, Q.; Zhu, L., Effects of Polymorphism and Crystallite Size on Dipole Reorientation in Poly(vinylidene fluoride) and Its Random Copolymers. Macromolecules,2010,43 (16): 6739-6748.
    118. Li, W. J.; Meng, Q. J.; Zheng, Y. S.; Zhang, Z. C.; Xia, W. M.; Xu, Z., Electric energy storage properties of poly(vinylidene fluoride). Applied Physics Letters,2010,96 (19):192905.
    119. Xia, W. M.; Xu, Z.; Wen, F.; Li, W. J.; Zhang, Z. C., Crystalline properties dependence of dielectric and energy storage properties of poly(vinylidene fluoride-chlorotrifluoroethylene). Applied Physics Letters,2010,97 (22):222905.
    120. Guan, F. X.; Wang, J.; Zhu, L.; Pan, J. L.; Wang, Q., Effects of Film Processing Conditions on Electric Energy Storage for Pulsed Power Applications, leee Transactions on Dielectrics and Electrical Insulation,2011,18 (4): 1293-1300.
    121. Su, R.; Tseng, J. K.; Lu, M. S.; Lin, M. R.; Fu, Q.; Zhu, L., Ferroelectric behavior in the high temperature paraelectric phase in a poly(vinylidene fluoride-co-trifluoroethylene) random copolymer. Polymer,2012,53 (3): 728-739.
    122. Guan, F.; Wang, J.; Yang, L.; Tseng, J.-K.; Han, K.; Wang, Q.; Zhu, L., Confinement-Induced High-Field Antiferroelectric-like Behavior in a Poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene Graft Copolymer. Macromolecules, 2011,44 (7):2190-2199.
    123. Guan, F. X.; Yang, L. Y.; Wang, J.; Guan, B.; Han, K.; Wang, Q.; Zhu, L., Confined Ferroelectric Properties in Poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene Graft Copolymers for Electric Energy Storage Applications. Advanced Functional Materials,2011,21 (16):3176-3188.
    124. Li, J. J.; Claude, J.; Norena-Franco, L. E.; II Seok, S.; Wang, Q., Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles. Chemistry of Materials, 2008,20 (20):6304-6306.
    125. Kim, P.; Doss, N. M.; Tillotson, J. P.; Hotchkiss, P. J.; Pan, M. J.; Marder, S. R.; Li, J. Y.; Calame, J. P.; Perry, J. W., High Energy Density Nanocomposites Based on Surface-Modified BaTiO3 and a Ferroelectric Polymer. Acs Nano,2009,3 (9):2581-2592.
    126. Tang, H. X.; Lin, Y. R.; Andrews, C.; Sodano, H. A., Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology,2011,22 (1):015702.
    127. Wang, Q.; Zhu, L., Polymer Nanocomposites for Electrical Energy Storage. Journal of Polymer Science Part B-Polymer Physics,2011,49 (20):1421-1429.
    128. Tang, H. X.; Lin, Y. R.; Sodano, H. A., Ultra High Energy Density Nanocomposite Capacitors Using Surface-functionalized BaTiO3 Nanowires and PVDF-TrFE-CFE. In Behavior and Mechanics of Multifunctional Materials and Composites 2012, Goulbourne, N. C.; Ounaies, Z., Eds. Spie-lnt Soc Optical Engineering: Bellingham,2012; Vol.8342.
    129. Tang, H. X.; Lin, Y. R.; Sodano, H. A., Enhanced Energy Storage in Nanocomposite Capacitors through Aligned PZT Nanowires by Uniaxial Strain Assembly. Advanced Energy Materials,2012,2 (4):469-476.
    130. Xia, W. M.; Xu, Z.; Wen, F.; Zhang, Z. C., Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceramics International,2012,38 (2):1071-1075.
    131. Hu, P. H.; Song, Y.; Liu, H. Y.; Shen, Y.; Lin, Y. H.; Nan, C. W., Largely enhanced energy density in flexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. Journal of Materials Chemistry A, 2013,1 (5):1688-1693.
    132. Tang, H. X.; Sodano, H. A., Ultra High Energy Density Nanocomposite Capacitors with Fast Discharge Using Ba0.2Sr0.8TiO3 Nanowires. Nano Letters,2013,13 (4):1373-1379.
    133. Chu, B. J.; Lin, M. R.; Neese, B.; Zhou, X.; Chen, Q.; Zhang, Q. M., Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites. Applied Physics Letters,2007,91 (12):122909.
    134. Chu, B. J.; Lin, M. R.; Neese, B.; Zhang, Q. M., Interfaces in poly(vinylidene fluoride) terpolymer/ZrO2 nanocomposites and their effect on dielectric properties. Journal of Applied Physics,2009,105 (1):014103.
    135. Li, J. J.; Seok, S. I.; Chu, B. J.; Dogan, F.; Zhang, Q. M.; Wang, Q., Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Advanced Materials,2009, 21 (2):217-221.
    136. Li, J. J.; Khanchaitit, P.; Han, K.; Wang, Q., New Route Toward High-Energy-Density Nanocomposites Based on Chain-End Functionalized Ferroelectric Polymers. Chemistry of Materials,2010,22 (18):5350-5357.
    137. Tomer, V.; Manias, E.; Randall, C. A., High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene). Journal of Applied Physics,2011,110 (4):044107.
    138. Tang, H. X.; Sodano, H. A., High energy density nanocomposite capacitors using non-ferroelectric nanowires. Applied Physics Letters,2013,102 (6):063901.
    139. Claude, J.; Lu, Y.; Wang, Q., Effect of molecular weight on the dielectric breakdown strength of ferroelectric poly(vinylidene fluoride-chlorotrifluoroethylene)s. Applied Physics Letters,2007,91 (21):212904.
    140. Claude, J.; Lu, Y. Y.; Li, K.; Wang, Q., Electrical storage in poly(vinylidene fluoride) based ferroelectric polymers:Correlating polymer structure to electrical breakdown strength. Chemistry of Materials,2008,20 (6): 2078-2080.
    141. Xiao, J.; Zhou, X.; Zhang, Q. M.; Dowben, P. A., The effect of defects on the electronic structure of long chain ferroelectric polymers. Journal of Applied Physics,2009,106 (4):044105.
    142. Chu, B. J.; Neese, B.; Lin, M. R.; Lu, S. G.; Zhang, Q. M., Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends. Applied Physics Letters,2008,93 (15):152903.
    143. Rahimabady, M.; Chen, S. T.; Yao, K.; Tay, F. E. H.; Lu, L., High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films. Applied Physics Letters,2011, 99 (14):142901.
    144. Rahimabady, M.; Yao, K.; Arabnejad, S.; Lu, L.; Shim, V. P. W.; Chet, D. C. W., Intermolecular interactions and high dielectric energy storage density in poly(vinylidene fluoride-hexafluoropropylene)/poly(vinylidene fluoride) blend thin films. Applied Physics Letters,2012,100 (25):252907.
    145. Zhou, Z.; Mackey, M.; Carr, J.; Zhu, L.; Flandin, L.; Baer, E., Multilayered polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) for high energy density capacitors with enhanced lifetime. Journal of Polymer Science Part B-Polymer Physics,2012,50 (14):993-1003.
    146. Chen, Q.; Chu, B. J.; Zhou, X.; Zhang, Q. M., Effect of metal-polymer interface on the breakdown electric field of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Applied Physics Letters, 2007,91 (6):062907.
    147. Chen, Q.; Wang, Y.; Zhou, X.; Zhang, Q. M.; Zhang, S. H., High field tunneling as a limiting factor of maximum energy density in dielectric energy storage capacitors. Applied Physics Letters,2008,92 (14):142909.
    148. Guan, F. X.; Yuan, Z. Z.; Shu, E. W.; Zhu, L., Fast discharge speed in poly(vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity. Applied Physics Letters,2009,94 (5):052907.
    149. Li, J. J.; Tan, S. B.; Ding, S. J.; Li, H. Y.; Yang, L. J.; Zhang, Z. C., High-field antiferroelectric behaviour and minimized energy loss in poly(vinylidene-co-trifiuoroethylene)-graft-poly(ethyl methacrylate) for energy storage application. Journal of Materials Chemistry,2012,22 (44):23468-23476.
    150. Li, J. J.; Hu, X.; Gao, G. X.; Ding, S. J.; Li, H. Y.; Yang, L. J.; Zhang, Z. C., Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains. Journal of Materials Chemistry C,2013,1 (6):1111-1121.
    151. Wu, S.; Lin, M. R.; Lu, S. G.; Zhu, L.; Zhang, Q. M., Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications. Applied Physics Letters,2011,99 (13):132901.
    152. Zhou, X.; Chen, Q,; Zhang, Q, M.; Zhang, S. H., Dielectric Behavior of Bilayer Films of P(VDF-CTFE) and Low temperature PECVD Fabricated Si3N4. leee Transactions on Dielectrics and Electrical Insulation,2011,18 (2): 463-470.
    153. Zhang, S. H.; Zou, C.; Kushner, D. I.; Zhou, X.; Orchard, R. J.; Zhang, N. Y.; Zhang, Q. M., Semicrystalline Polymers with High Dielectric Constant, Melting Temperature, and Charge-Discharge Efficiency, leee Transactions on Dielectrics and Electrical Insulation,2012,19 (4):1158-1166.
    154. Pan, J. L.; Li, K.; Li, J. J.; Hsu, T.; Wang, Q., Dielectric characteristics of poly(ether ketone ketone) for high temperature capacitive energy storage. Applied Physics Letters,2009,95 (2):022902.
    155. Pan, J. L.; Li, K.; Chuayprakong, S.; Hsu, T.; Wang, Q., High-Temperature Poly(phthalazinone ether ketone) Thin Films for Dielectric Energy Storage. ACS Applied Materials & Interfaces,2010,2 (5):1286-1289.
    156. Wang, Y.; Zhou, X.; Lin, M. R.; Lu, S. G.; Lin, J. H.; Zhang, Q.. M., Aromatic Polyurea for High Temperature
    High Energy Density Capacitors. In Polymer-Based Smart Materials - Processes, Properties and Application, Bauer, S.; Cheng, Z.; Wrobleski, D. A.; Zhang, Q., Eds. Materials Research Society:Warrendale,2009; Vol.1134, pp 179-184.
    157. Wang, Y.; Zhou, X.; Lin, M. R.; Zhang, Q. M., High-energy density in aromatic polyurea thin films. Applied Physics Letters,2009,94 (20):202905.
    158. Wu, S.; Li, W. P.; Lin, M. R.; Burlingame, Q.; Chen, Q.; Payzant, A.; Xiao, K.; Zhang, Q. M., Aromatic Polythiourea Dielectrics with Ultrahigh Breakdown Field Strength, Low Dielectric Loss, and High Electric Energy Density. Advanced Materials,2013,25 (12):1734-1738.
    159. Gschneidner, K. A.; Pecharsky, V. K.; Tsokol, A. O., Recent developments in magnetocaloric materials. Reports on Progress in Physics,2005,68 (6):1479-1539.
    160. Pecharsky, V. K.; Gschneidner, K. A., Giant magnetocaloric effect in Gd5(Si2Ge2). Physical Review Letters, 1997,78 (23):4494-4497.
    161. Pecharsky, V. K.; Gschneidner, K. A., Magnetocaloric effect and magnetic refrigeration. Journal of Magnetism and Magnetic Materials,1999,200 (1-3):44-56.
    162. Tegus, O.; Bruck, E.; Buschow, K. H. J.; de Boer, F. R., Transition-metal-based magnetic refrigerants for room-temperature applications. Nature,2002,415 (6868):150-152.
    163. Wada, H.; Tanabe, Y., Giant magnetocaloric effect of MnAs1-xSb. Applied Physics Letters,2001,79 (20): 3302-3304.
    164. Neese, B. Investigations of structrue-property relationships to ehance the multifunctional properties of PVDF-based polymers. The Pennsylvania State University, University Park,2009.
    165. Lu, S. G.; Zhang, Q. M., Electrocaloric Materials for Solid-State Refrigeration. Advanced Materials,2009,21 (19):1983-1987.
    166. Kobeko, P.; Kurtschatov, J., Pielectric properties of Rochelle salt crystals. Zeitschrift Fur Physik,1930,66 (3-4):192-205.
    167. Wiseman, G. G.; Kuebler, J. K., Electrocaloric effect in ferroelectric rochelle salt. Physical Review,1963,131 (5):2023-2027.
    168. Wood, M. E.; Potter, W. H., General analysis of magnetic refrigeration and its optimization using a new concept-maximization of refrigerant capacity. Cryogenics,1985,25 (12):667-683.
    169. Provenzano, V.; Shapiro, A. J.; Shull, R. D., Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature,2004,429 (6994):853-857.
    170. Lu, S. G.; Rozic, B.; Zhang, Q. M.; Kutnjak, Z.; Neese, B., Enhanced electrocaloric effect in ferroelectric poly(vinylidene-fluoride/trifluoroethylene) 55/45 mol % copolymer at ferroelectric-paraelectric transition. Applied Physics Letters,2011,98 (12):122906.
    171. Lu, S. G.; Rozic, B.; Zhang, Q. M.; Kutnjak, Z.; Pirc, R.; Lin, M. R.; Li, X. Y.; Gorny, L., Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Applied Physics Letters,2010,97 (20):202901.
    172. Pirc, R.; Kutnjak, Z.; Blinc, R.; Zhang, Q. M., Upper bounds on the electrocaloric effect in polar solids. Applied Physics Letters,2011,98 (2):021909.
    173. Pirc, R.; Kutnjak, Z.; Blinc, R.; Zhang, Q. M., Electrocaloric effect in relaxor ferroelectrics. Journal of Applied Physics,2011,110 (7):074113.
    174. Lu, S. G.; Rozic, B.; Zhang, Q. M.; Kutnjak, Z.; Li, X. Y.; Furman, E.; Gorny, L. J.; Lin, M. R.; Malic, B.; Kosec, M.; Blinc, R.; Pirc, R., Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Applied
    Physics Letters,2010,97 (16):162904. 175. Li, X. Y; Qian, X. S.; Lu, S. G.; Cheng, J. P.; Fang, Z.; Zhang, Q. M., Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Applied Physics Letters,2011,99 (5):052907.
    176. Fu, H. X.; Cohen, R. E., Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature,2000,403 (6767):281-283.
    177. Kutnjak, Z.; Petzelt, J.; Blinc, R., The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature,2006,441 (7096):956-959.
    178. Perantie, J.; Hagberg, J.; Uusimaki, A.; Jantunen, H., Electric-field-induced dielectric and temperature changes in a< 011>-oriented Pb(Mg1/3Nb2/3)O3PbTiO3 single crystal. Physical Review B,2010,82 (13):134119. 179. Chukka, R.; Cheah, J. W.; Chen, Z.; Yang, P.; Shannigrahi, S.; Wang, J.; Chen, L., Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries. Applied Physics Letters,2011,98 (24):242902.
    180. Liu, Z. K.; Li, X. Y.; Zhang, Q, M., Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Applied Physics Letters,2012,101 (8): 082904.
    181. Tashiro, K.; Takano, K.; Kobayashi, M.; Chatani, Y.; Tadokoro, H., Structural study on ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers (Ⅲ) dependence of transitional behavior on VDF molar content. Ferroelectrics,1984,57 (1):297-326.
    182. Li, X. Y.; Qian, X. S.; Gu, H. M.; Chen, X. Z.; Lu, S. G.; Lin, M. R.; Bateman, F.; Zhang, Q. M., Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition. Applied Physics Letters,2012,101 (13):132903.
    1. Scott, J. F., Applications of modern ferroelectrics. Science,2007,315 (5814):954-959.
    2. Lee, W.; Han, H.; Lotnyk, A.; Schubert, M. A.; Senz, S.; Alexe, M.; Hesse, D.; Baik, S.; Gosele, U., Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch(-2) density. Nature Nanotechnology, 2008,3 (7):402-407.
    3. Chu, B. J.; Zhou, X.; Ren, K. L.; Neese, B.; Lin, M. R.; Wang, Q.; Bauer, F.; Zhang, Q. M., A dielectric polymer with high electric energy density and fast discharge speed. Science,2006,313 (5785):334-336.
    4. Neese, B.; Chu, B. J.; Lu, S. G.; Wang, Y.; Furman, E.; Zhang, Q. M., Large electrocaloric effect in ferroelectric polymers near room temperature. Science,2008,321 (5890):821-823.
    5. Wang, C. C.; Song, J. F.; Bao, H. M.; Shen, Q. D.; Yang, C. Z., Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Advanced Functional Materials,2008,18 (8):1299-1306.
    6. Zhang, Q. M.; Bharti, V.; Zhao, X., Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science,1998,280 (5372): 2101-2104.
    7. Zhang, Q. M.; Li, H. F.; Poh, M.; Xia, F.; Cheng, Z. Y.; Xu, H. S.; Huang, C., An all-organic composite actuator material with a high dielectric constant. Nature,2002,419 (6904):284-287.
    8. Nalwa, H. S., Ferroelectric polymers:Chemistry, physics, and applications. New York:Marcel Dekker,1995.
    9. Bune, A. V.; Fridkin, V. M.; Ducharme, S.; Blinov, L. M.; Palto, S. P.; Sorokin, A. V.; Yudin, S. G.; Zlatkin, A., Two-dimensional ferroelectric films. Nature,1998,391 (6670):874-877.
    10. Kalinin, S. V.; Gruverman, A., Scanning probe microscopy:electrical and electromechanical phenomena at the nanoscale. Springer:New York,2007.
    11. Bonnell, D. A.; Kalinin, S. V.; Kholkin, A. L.; Gruverman, A., Piezoresponse Force Microscopy:A Window into Electromechanical Behavior at the Nanoscale. Mrs Bulletin,2009,34 (9):648-657.
    12. Han, H.; Kim, Y.; Alexe, M.; Hesse, D.; Lee, W., Nanostructured Ferroelectrics:Fabrication and Structure-Property Relations. Advanced Materials,2011,23 (40):4599-4613.
    13. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Imprint of sub-25nm vias and trenches in polymers. Applied Physics Letters,1995,67 (21):3114-3116.
    14. Austin, M. D.; Ge, H. X.; Wu, W.; Li, M. T.; Yu, Z. N.; Wasserman, D.; Lyon, S. A.; Chou, S. Y., Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters,2004,84 (26): 5299-5301.
    15. Li, Z. W.; Gu, Y. N.; Wang, L.; Ge, H. X.; Wu, W.; Xia, Q. F.; Yuan, C. S.; Chen, Y.; Cui, B.; Williams, R. S., Hybrid Nanoimprint-Soft Lithography with Sub-15 nm Resolution. Nano Letters,2009,9 (6):2306-2310.
    16. Bauer, F.; Fousson, E.; Zhang, Q. M., Recent advances in highly electrostrictive P(VDF-TrFE-CFE) terpolymers. leee Transactions on Dielectrics and Electrical Insulation,2006,13 (5):1149-1154.
    17. Ding, G. Q.; Zheng, M. J.; Xu, W. L.; Shen, W. Z., Fabrication of controllable free-standing ultrathin porous alumina membranes. Nanotechnology,2005,16(8):1285-1289.
    18. Chu, S. Z.; Wada, K.; Inoue, S.; Isogai, M.; Yasumori, A., Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Advanced Materials,2005,17 (17): 2115-2119.
    19. Jessensky, O.; Muller, F.; Gosele, U., Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters,1998,72 (10):1173-1175.
    20. Jessensky, O.; Muller, F.; Gosele, U., Self-organized formation of hexagonal pore structures in anodic alumina. Journal of the Electrochemical Society,1998,145 (11):3735-3740.
    21. Masuda, H.; Asoh, H.; Watanabe, M.; Nishio, K.; Nakao, M.; Tamamura, T., Square and triangular nanohole array architectures in anodic alumina. Advanced Materials,2001,13 (3):189-192.
    22. Chen, S. H.; Chan, D. S.; Chen, C. K.; Chang, T. H.; Lai, Y. H.; Lee, C. C., Nanoimprinting Pre-Patterned Effects on Anodic Aluminum Oxide. Japanese Journal of Applied Physics,2010,49(1):015201.
    23. Thomas, K. R.; Chenneviere, A.; Reiter, G.; Steiner, U., Nonequilibrium behavior of thin polymer films. Physical Review E,2011,83 (2):021804.
    24. Guo, D.; Stolichnov, I.; Setter, N., Thermally Induced Cooperative Molecular Reorientation and Nanoscale Polarization Switching Behaviors of Ultrathin Poly(vinylidene fluoride-trifluoroethylene) Films. Journal of Physical Chemistry B,2011,115 (46):13455-13466.
    25. Liu, Y. M.; Weiss, D. N.; Li, J. Y, Rapid Nanoimprinting and Excellent Piezoresponse of Polymeric Ferroelectric Nanostructures. Acs Nano,2010,4 (1):83-90.
    26. Li, Q.; Liu, Y; Schiemer, J.; Smith, P.; Li, Z. R.; Withers, R. L.; Xu, Z., Fully-inverted piezoresponse hysteresis loops mediated by charge injection in 0.29Pb(ln1/2Nb1/2)O30.44Pb(Mg1/3Nb2/3)O30.27PbTiO3 single crystals. Applied Physics Letters,2011,98 (9):092908.
    27. Baji, A.; Mai, Y. W.; Li, Q.; Liu, Y, Electrospinning induced ferroelectricity in poly(vinylidene fluoride) fibers. Nanoscale,2011,3 (8):3068-3071.
    28. Naber, R. C. G.; Blom, P. W. M.; Marsman, A. W.; de Leeuw, D. M., Low voltage switching of a spin cast ferroelectric polymer. Applied Physics Letters,2004,85 (11):2032-2034.
    29. Xu, H. S.; Zhong, J. H.; Liu, X. B.; Chen, J. H.; Shen, D., Ferroelectric and switching behavior of poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films with polypyrrole interface. Applied Physics Letters,2007,90 (9):092903.
    30. Xia, F.; Xu, H. S.; Fang, F.; Razavi, B.; Cheng, Z. Y; Lu, Y; Xu, B. M.; Zhang, Q. M., Thickness dependence of ferroelectric polarization switching in poly(vinylidene fluoride-trifluoroethylene) spin cast films. Applied Physics Letters,2001,78 (8):1122-1124.
    31. Matsushige, K.; Yamada, H.; Tanaka, H.; Horiuchi, T.; Chen, X. Q., Nanoscale control and detection of electric dipoles in organic molecules. Nanotechnology,1998,9 (3):208-211.
    32. Kim, K. J.; Reynolds, N. M.; Hsu, S. L., Spectroscopic analysis of the crystalline and amorphous phases in a vinylidene fluoride trifluoroethylene copolymer. Macromolecules,1989,22 (12):4395-4401.
    33. Bao, H. M.; Song, J. F.; Zhang, J.; Shen, Q. D.; Yang, C. Z.; Zhang, Q. M., Phase transitions and ferroelectric relaxor behavior in P(VDF-TrFE-CFE) terpolymers. Macromolecules,2007,40 (7):2371-2379.
    1. Chu, B. J.; Zhou, X.; Ren, K. L.; Neese, B.; Lin, M. R.; Wang, Q.; Bauer, F.; Zhang, Q. M., A dielectric polymer with high electric energy density and fast discharge speed. Science,2006,313 (5785):334-336.
    2. Chu, B. J.; Zhou, X.; Neese, B.; Zhang, Q. M.; Bauer, F., Relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer for high energy density storage capacitors, leee Transactions on Dielectrics and Electrical Insulation,2006,13 (5):1162-1169.
    3. Guan, F. X.; Pan, J. L.; Wang, J.; Wang, Q.; Zhu, L., Crystal Orientation Effect on Electric Energy Storage in Poly(vinylidene fluoride-co-hexafluoropropylen) Copolymers. Macromolecules,2010,43 (1):384-392.
    4. Guan, F. X.; Yuan, Z. Z.; Shu, E. W.; Zhu, L., Fast discharge speed in poly(vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity. Applied Physics Letters,2009,94 (5):052907.
    5. Zhang, Z. C.; Chung, T. C. M., The structure-property relationship of poly(vinylidene difluoride)-based polymers with energy storage and loss under applied electric fields. Macromolecules,2007,40 (26):9391-9397.
    6. Zhang, Z. C.; Chung, T. C. M., Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss. Macromolecules,2007,40 (4):783-785.
    7. Zhang, Z. C.; Meng, Q. J.; Chung, T. C. M., Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Polymer,2009,50 (2):707-715.
    8. Zhou, X.; Chu, B. J.; Neese, B.; Lin, M. R.; Zhang, Q. M., Electrical energy density and discharge characteristics of a poly(vinylidene fluoride-chlorotrifluoroethylene) copolymer. leee Transactions on Dielectrics and Electrical Insulation,2007,14 (5):1133-1138.
    9. Zhou, X.; Zhao, X. H.; Suo, Z. G.; Zou, C.; Runt, J.; Liu, S.; Zhang, S. H.; Zhang, Q. M., Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride-hexafluoropropylene) copolymer. Applied Physics Letters,2009,94 (16):162901.
    10. Li, J. Y., Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Physical Review Letters,2003,90 (21):217601.
    11. Chu, B. J.; Lin, M. R.; Neese, B.; Zhou, X.; Chen, Q..; Zhang, Q. M., Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites. Applied Physics Letters,2007,91 (12):122909.
    12. Li, J. J.; Claude, J.; Norena-Franco, L. E.; II Seok, S.; Wang, Q., Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles. Chemistry of Materials, 2008,20 (20):6304-6306.
    13. Kim, P.; Doss, N. M.; Tillotson, J. P.; Hotchkiss, P. J.; Pan, M. J.; Marder, S. R.; Li, J. Y.; Calame, J. P.; Perry, J. W., High Energy Density Nanocomposites Based on Surface-Modified BaTiO3 and a Ferroelectric Polymer. Acs Nano,2009,3 (9):2581-2592.
    14. Li, J. J.; Seok, S. I.; Chu, B. J.; Dogan, F.; Zhang, Q. M.; Wang, Q., Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Advanced Materials,2009, 21 (2):217-221.
    15. Li, J. J.; Khanchaitit, P.; Han, K.; Wang, Q., New Route Toward High-Energy-Density Nanocomposites Based on Chain-End Functionalized Ferroelectric Polymers. Chemistry of Materials,2010,22 (18):5350-5357.
    16. Chu, B. J.; Neese, B.; Lin, M. R.; Lu, S. G.; Zhang, Q. M., Enhancement of dielectric energy density in the poly(vinylidene fluoride)-based terpolymer/copolymer blends. Applied Physics Letters,2008,93 (15):152903.
    17. Zhang, Q. M.; Bharti, V.; Zhao, X., Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science,1998,280 (5372): 2101-2104.
    18. Niwa, T.; Hatada, M.; Miyata, H.; Takahashi, T., Studies on the improvement of breakdown strength of polyolefins. leee Transactions on Electrical Insulation,1993,28 (1):30-34.
    19. Barlow, A., The chemistry of polyethylene insulation. IEEE Electrical Insulation Magazine,1991,7 (1):8-19.
    20. Taguet, A.; Ameduri, B.; Boutevin, B., Crosslinking of vinylidene fluoride-containing fluoropolymers. Advances in Polymer Science,2005,184:127-211.
    21. Yasuda, N.; Yamamoto, S.; Wada, Y.; Yanagida, S., Photocrosslinking reaction of vinyl-functional polyphenylsilsesquioxane sensitized with aromatic bisazide compounds. Journal of Polymer Science Part a-Polymer Chemistry,2001,39 (24):4196-4205.
    22. Low, B. T.; Chung, T. S.; Chen, H.; Jean, Y.-C.; Pramoda, K. P., Tuning the Free Volume Cavities of Polyimide Membranes via the Construction of Pseudo-lnterpenetrating Networks for Enhanced Gas Separation Performance. Macromolecules,2009,42 (18):7042-7054.
    23. Nalwa, H. S., Ferroelectric polymers:Chemistry, physics, and applications. New York:Marcel Dekker,1995.
    24. Kobayashi, M.; Tashiro, K.; Tadokoro, H., Molecular vibration of 3 crystal forms of Poly(vinylidene fluoride). Macromolecules,1975,8 (2):158-171.
    25. Tashiro, K.; Kobayashi, M.; Tadokoro, H., Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III. Macromolecules,1981,14 (6):1757-1764.
    26. Han, C. Y.; Ran, X. H.; Su, X.; Zhang, K. Y.; Liu, N. N.; Dong, L S., Effect of peroxide crosslinking on thermal and mechanical properties of poly(epsilon-caprolactone). Polymer International,2007,56(5):593-600.
    27. Abraham, F.; Schmidt, H. W.,1,3,5-Benzenetrisamide based nucleating agents for poly(vinylidene fluoride). Polymer,2010,51 (4):913-921.
    28. Khonakdar, H. A.; Jafari, S. H.; Hassler, R., Glass-transition-temperature depression in chemically crosslinked low-density polyethylene and high-density polyethylene and their blends with ethylene vinyl acetate copolymer. Journal of Applied Polymer Science,2007,104 (3):1654-1660.
    29. Wang, C. C.; Song, J. F.; Bao, H. M.; Shen, Q. D.; Yang, C. Z., Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Advanced Functional Materials,2008,18 (8):1299-1306.
    30. Bharti, V.; Zhao, X. Z.; Zhang, Q. M.; Romotowski, T.; Tito, F.; Ting, R., Ultrahigh field induced strain and polarization response in electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Materials Research Innovations,1998,2 (2):57-63.
    31. Misra, T; Bisoyi, D. K.; Patel, T.; Patra, K. C.; Patel, A., Small-angle X-ray study of cellulose in cotton using correlation-functions. Polymer Journal,1988,20 (9):739-749.
    32. Gemeinhardt, G. C.; Moore, R. B., Characterization of ionomer-compatibilized blend morphology using synchrotron small-angle X-ray scattering. Macromolecules,2005,38 (7):2813-2819.
    33. Mueller, V.; Zhang, Q. M., Nonlinearity and scaling behavior in donor-doped lead zirconate titanate piezoceramic. Applied Physics Letters,1998,72 (21):2692-2694.
    34. Sidorkin, A. S., Domain Structure in Ferroelectrics and Related Materials. Cambridge:Cambridge International Science Publishing,2006.
    35. Su, H. B.; Strachan, A.; Goddard, W. A., Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers:PVDF and P(VDF-TrFE). Physical Review B,2004,70 (6): 064101.
    1. Fatuzzo, E.; Merz, W. J., Ferroelectricity. Amsterdam:North-Holland Publishing Company,1967.
    2. Lines, M. E.; Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon Press,1977.
    3. Mitsui, T.; Tatsuzaki, I.; Nakamura, E., An introduction to the physics of ferroelectrics. London:Gordon and Breach,1976.
    4. Lang, S. B., CRYOGENIC REFRIGERATION UTILIZING ELECTROCALORIC EFFECT IN PYROELECTRIC LITHIUM SULFATE MONOHYDRATE. Ferroelectrics,1976,11 (3-4):519-523.
    5. Lu, S. G.; Zhang, Q. M., Electrocaloric Materials for Solid-State Refrigeration. Advanced Materials,2009,21 (19):1983-1987.
    6. Sinyavsky, Y. V.; Pashkov, N. D.; Gorovoy, Y. M.; Lugansky, G. E., THE OPTICAL FERROELECTRIC CERAMIC AS WORKING BODY FOR ELECTROCALORIC REFRIGERATION. Ferroelectrics,1989,90:213-217.
    7. Tuttle, B. A.; Payne, D. A., THE EFFECTS OF MICROSTRUCTURE ON THE ELECTROCALORIC PROPERTIES OF PB(ZR,SN,TI)O3 CERAMICS. Ferroelectrics,1981,37 (1-4):603-606.
    8. Mischenko, A. S.; Zhang, Q.; Scott, J. F.; Whatmore, R. W.; Mathur, N. D., Giant electrocaloric effect in thin-film PbZrO.95TiO.0503. Science,2006,311 (5765):1270-1271.
    9. Neese, B.; Chu, B. J.; Lu, S. G.; Wang, Y.; Furman, E.; Zhang, Q. M., Large electrocaloric effect in ferroelectric polymers near room temperature. Science,2008,321 (5890):821-823.
    10. Lu, S. G.; Rozic, B.; Zhang, Q. M.; Kutnjak, Z.; Li, X. Y.; Furman, E.; Gorny, L. J.; Lin, M. R.; Malic, B.; Kosec, M.; Blinc, R.; Pirc, R., Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Applied Physics Letters,2010,97 (16):162904.
    11. Moya, X.; Stern-Taulats, E.; Crossley, S.; Gonzalez-Alonso, D.; Kar-Narayan, S.; Planes, A.; Manosa, L.; Mathur, N. D., Giant Electrocaloric Strength in Single-Crystal BaTiO3. Advanced Materials,2013,25 (9): 1360-1365.
    12. Peng, B.; Fan, H.; Zhang,Q.., A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature. Advanced Functional Materials, 2013:DOI:10.1002/adfm.201202525.
    13. Lu, S. G.; Rozic, B.; Zhang, Q. M.; Kutnjak, Z.; Pirc, R.; Lin, M. R.; Li, X. Y; Gorny, L., Comparison of directly and indirectly measured electrocaloric effect in relaxor ferroelectric polymers. Applied Physics Letters,2010,97 (20):202901.
    14. Nalwa, H. S., Ferroelectric polymers:Chemistry, physics, and applications. New York:Marcel Dekker,1995.
    15. Lovinger, A. J., Ferroelectric Polymers. Science,1983,220 (4602):1115-1121.
    16. Bharti, V.; Zhang, Q.. M., Dielectric study of the relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer system. Physical Review 8,2001,6318 (18):184103.
    17. Cheng, Z. Y.; Olson, D.; Xu, H. S.; Xia, F.; Hundal, J. S.; Zhang, Q. M.; Bateman, F. B.; Kavarnos, G. J.; Ramotowski, T., Structural changes and transitional behavior studied from both micro-and macroscale in the high-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Macromolecules,2002, 35 (3):664-672.
    18. Xia, F.; Cheng, Z. Y; Xu, H. S.; Li, H. F.; Zhang, Q. M.; Kavarnos, G. J.; Ting, R. Y.; Abdul-Sedat, G.; Belfield, K. D., High electromechanical responses in a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Advanced Materials,2002,14 (21):1574-1577.
    19. Xu, H. S.; Shanthi, G.; Bharti, V.; Zhang, Q. M.; Ramotowski, T., Structural, conformational, and polarization changes of poly(vinylidene fluoride-trifluoroethylene) copolymer induced by high-energy electron irradiation. Macromolecules,2000,33 (11):4125-4131.
    20. Zhang, Q. M.; Bharti, V.; Zhao, X., Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science,1998,280 (5372): 2101-2104.
    21. Bobnar, V.; Vodopivec, B.; Levstik, A.; Kosec, M.; Hilczer, B.; Zhang, Q. M., Dielectric properties of relaxor-like vinylidene fluoride-Trifluoroethylene-based electroactive polymers. Macromolecules,2003,36 (12):4436-4442.
    22. Li, X. Y.; Qian, X. S.; Lu, S. G.; Cheng, J. P.; Fang, Z.; Zhang, Q. M., Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene terpolymer. Applied Physics Letters,2011,99 (5):052907.
    23. Bao, H. M.; Song, J. F.; Zhang, J.; Shen, Q. D.; Yang, C. Z.; Zhang, Q. M., Phase transitions and ferroelectric relaxor behavior in P(VDF-TrFE-CFE) terpolymers. Macromolecules,2007,40 (7):2371-2379.
    24. Klein, R. J.; Runt, J.; Zhang, Q. M., Influence of crystallization conditions on the microstructure and electromechanical properties of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymers. Macromolecules,2003,36 (19):7220-7226.
    25. Chu, B. J.; Lin, M. R.; Neese, B.; Zhou, X.; Chen, Q.; Zhang, Q. M., Large enhancement in polarization response and energy density of poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) by interface effect in nanocomposites. Applied Physics Letters,2007,91 (12):122909.
    26. Li, J. J.; Claude, J.; Norena-Franco, L. E.; II Seok, S.; Wang, Q., Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles. Chemistry of Materials, 2008,20 (20):6304-6306.
    27. Li, J. J.; Khanchaitit, P.; Han, K.; Wang, Q., New Route Toward High-Energy-Density Nanocomposites Based on Chain-End Functionalized Ferroelectric Polymers. Chemistry of Materials,2010,22 (18):5350-5357.
    28. Li, J. J.; Seok, S. I.; Chu, B. J.; Dogan, F.; Zhang, Q. M.; Wang, Q., Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density. Advanced Materials,2009, 21 (2):217-221.
    29. Chung, T. C.; Petchsuk, A., Ferroelectric fluoro-terpolymers with high dielectric constant and large electromechanical response at ambient temperature. In Smart Structures and Materials 2003:Active Materials: Behavior and Mechanics, Lagoudas, D. C., Ed.2003; Vol.5053, pp 41-50.
    30. Tashiro, K.; Kobayashi, M.; Tadokoro, H.; Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form Ⅲ. Macromolecules,1981,14 (6):1757-1764.
    31. Bharti, V.; Xu, H. S.; Shanthi, G.; Zhang, Q. M.; Liang, K. M., Polarization and structural properties of high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer films. Journal of Applied Physics,2000,87 (1):452-461.
    32. Zhang, S. H.; Klein, R. J.; Ren, K. L.; Chu, B. J.; Zhang, X.; Runt, J.; Zhang, Q. M., Normal ferroelectric to ferroelectric relaxor conversion in fluorinated polymers and the relaxor dynamics. Journal of Materials Science, 2006,41(1):271-280.
    33. Khanchaitit, P. Ferroelectric Polymer Thin Films With High Energy Density And Low Loss. The Pennsylvania State University,2012.
    34. Chen, X. Z.; Li, Z. W.; Cheng, Z. X.; Zhang, J. Z.; Shen, Q. D.; Ge, H. X.; Li, H. T., Greatly Enhanced Energy Density and Patterned Films Induced by Photo Cross-Linking of Poly(vinylidene fluoride-chlorotrifluoroethylene). Macromolecular Rapid Communications,2011,32 (1):94-99.
    35. Wu, S.; Lin, M. R.; Lu, S. G.; Zhu, L.; Zhang, Q. M., Polar-fluoropolymer blends with tailored nanostructures for high energy density low loss capacitor applications. Applied Physics Letters,2011,99 (13):132901.
    36. Zhou, X. High Energy/Capacitance Density Poly(vinylidene fluoride) Based Polymers for Energy Storage Capacitor Applications. The Pennsylvania State University,2009.
    37. Zhang, Q. M.; Li, H. F.; Poh, M.; Xia, F.; Cheng, Z. Y.; Xu, H. S.; Huang, C., An all-organic composite actuator material with a high dielectric constant. Nature,2002,419 (6904):284-287.
    38. Dang, Z. M.; Lin, Y. H.; Nan, C. W., Novel ferroelectric polymer composites with high dielectric constants. Advanced Materials,2003,15 (19):1625-1629.
    39. Chu, B. J.; Lin, M. R.; Neese, B.; Zhang, Q. M., Interfaces in poly(vinylidene fluoride) terpolymer/ZrO2 nanocomposites and their effect on dielectric properties. Journal of Applied Physics,2009,105 (1):014103.
    40. Kim, P.; Doss, N. M.; Tillotson, J. P.; Hotchkiss, P. J.; Pan, M. J.; Marder, S. R.; Li, J. Y.; Calame, J. P.; Perry, J. W., High Energy Density Nanocomposites Based on Surface-Modified BaTiO3 and a Ferroelectric Polymer. Acs Nano,2009,3 (9):2581-2592.
    41. Gao, W.; Dickinson, L.; Grozinger, C.; Morin, F. G.; Reven, L., Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir,1996,12 (26):6429-6435.
    42. Mutin, P. H.; Guerrero, G.; Vioux, A., Hybrid materials from organophosphorus coupling molecules. Journal of Materials Chemistry,2005,15 (35-36):3761-3768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700