MiR-200a对人胰腺癌干细胞上皮—间质转化(EMT)及体外生物学行为影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究miR-200a对从人胰腺癌细胞系PANC-1分选出的胰腺癌干细胞(Pancreaticcancer stem cells,PCSCs)EMT及体外生物学行为的影响。探索靶向调控胰腺癌干细胞中miR-200a的表达在预防及治疗胰腺癌方面的可行性。
     方法
     (1)细胞培养和流式细胞仪分选
     将人胰腺癌细胞系PANC-1细胞接种于由含10%胎牛血清的DMEM高糖培养基、青霉素(10U/ml)和链霉素(100μg/ml)组成的培养基中,在5%CO2,饱和湿度,恒温37°C培养箱中培养。分散后的细胞进行计数,移至5ml的试管中,用PBS洗涤两次,以1×106/100μl重新悬浮于PBS中。分别加入抗人CD24-PE、抗人CD44-APC和抗人ESA-FITC抗体(稀释度均为1:40),避光冰上孵育20min。根据厂商说明书将各自同型对照抗体配成相同浓度使用。PBS洗涤2次,样本用500μl PBS重悬,进行流式细胞仪分选。细胞常规分选两次,并重新分析的纯度,保证分选后的细胞纯度>97%。数据用BD FACS Diva的软件进行分析。
     (2)转染miR-200模拟物
     将CD24+CD44+ESA+胰腺癌干细胞接种在6孔板中并孵育过夜。将含miR-200模拟物或者阴性对照序列的EntransterTM-R转染液(配制成终浓度25nM)转染细胞。转染6小时后更换培养液以避免细胞死亡。
     (3)实时定量RT-PCR
     根据说明书用Trizol法提取总RNA,使用Power SYBR_green PCR mastermix试剂盒进行实时定量RT-PCR分析E-cadherin、N-cadherin、vimentin、ZEB1、Oct4和Nanog的mRNA表达。以GAPDH为内参照。
     (4) microRNA表达分析
     使用miScript Reverse Transcription Kit逆转录细胞总RNA。使用miScript PCR Kit进行RT-qPCR分析转染组与非转染组、阴性对照组胰腺癌干细胞miR-200a表达水平。以U6为内参照。
     (5) Western blot检测
     用RIPA裂解缓冲液裂解细胞并测定蛋白质浓度。SDS-PAGE分离总蛋白并转移到聚偏氟乙烯膜。配制含5%脱脂奶粉、0.1%Tween20的TBST缓冲溶液封闭膜,加一抗(兔抗人Oct4, l:2000;兔抗人Nanog,1:2000;兔抗人N-cadherin,1:1000;鼠抗人Vimentin,1:500;兔抗人E-cadherin,1:1000;兔抗人ZEB1,1:1000)室温孵育2小时。再加入HRP-偶联的二抗(HRP-羊抗兔IgG抗体,1:5000;HRP-羊抗小鼠IgG抗体,1:5000)室温孵育1小时,增强化学发光检测系统检测结果。提取未转染和已转染miR-200a模拟物的细胞总蛋白进行Western blot,检测E-cadherin、N-cadherin、ZEB1、vimentin、Oct4和Nanog蛋白表达水平。以β-actin为内参照。
     (6) Transwell小室迁移实验
     1×105PCSCs被平铺于非涂覆膜的上室,使其可以朝向下室中含血清的培养基迁移。孵育48小时后多聚甲醛固定细胞,以0.1%结晶紫(2mg/ml)染色。在光学显微镜下计数通过膜孔迁移的细胞数量。每孔观察3个随机视野。
     (7) Transwell小室侵袭实验
     1×105PCSCs置于Matrigel涂覆膜的上室,检测前每孔涂覆Matrigel60mg。细胞平铺在不含血清或生长因子的培养基中,而添加血清的培养基被用作化学诱导剂置于下室中。将细胞孵育48小时后,用棉签除去未通过膜孔侵入下室的细胞。收集膜下表面的细胞,用多聚甲醛固定和0.1%结晶紫染色。在光学显微镜下计数侵入到膜下表面的细胞数量。每孔观察3个随机视野。
     (8) CCK法检测细胞增殖能力和对吉西他滨敏感性
     调整各组细胞密度,按照每孔1000-3000个细胞/100μl培养基接种于96孔板中,各孔在不同时间点(24h、48h、72h、96h)或者在加入不同浓度(50ng/ml、100ng/ml、200ng/ml、400ng/ml、800ng/ml、2000ng/ml)吉西他滨后72h加入10μl CCK-8,37°C、5%CO2孵育3h。用酶标检测仪(测定波450nm)测定各孔吸光密度值。
     结果
     (1)在PNC-1细胞中有(1.442±0.532)%细胞呈CD44+CD24+,而仅有(0.492±0.334)%细胞呈CD44+CD24+ESA+。Oct4和Nanog基因在CD44+CD24+ESA+细胞中表达显著上升。
     (2)定时RT-PCR显示miR-200a、 E-cadherin在PCSCs中表达显著下调,而N-cadherin、vimentin和ZEB1表达则显著上调。
     (3)在PCSCs中过表达miR-200a导致在mRNA水平上上皮表型标志物E-cadherin表达上调,而间质表型标志物N-cadherin、Vimentin和ZEB1和胚胎干性基因Oct4和Nanog表达下调。Western blot检测结果显示PCSCs过表达miR-200a后E-cadherin蛋白表达上调,ZEB1、N-cadherin、Oct4和Nanog蛋白表达下调,而Vimentin蛋白表达未见下调。
     (4) Transwell实验显示转染组相比非转染组或阴性对照组迁移和侵袭至膜下表面的细胞数目显著减少,分别下降了0.33倍和0.22倍。
     (5) CCK-8法检测结果显示转染组胰腺癌干细胞增殖能力下降,对吉西他滨的敏感性增强。
     结论
     在本研究中,我们发现miRNA在调控肿瘤干细胞EMT特征方面发挥了重要的作用,通过过表达miR-200a能够逆转胰腺癌干细胞的EMT表型和抑制胰腺癌干细胞的体外恶性生物学行为,为未来设计以miRNA为基础的胰腺癌靶向治疗方法提供了重要的理论和实验依据。
Objective To evaluate the role of miR-200a in the epithelial-mesenchymal transitioncharacteristics and biological characteristics in vitro of pancreatic cancer stem cells(PCSCs) isolated from human pancreatic cancer cell line PANC-1and to confer thepossibility of regulation of miR-200a in PCSCs as a new approach for prevention and/ortreatment of pancreatic cancer.
     Methods
     (1) Cell Culture and Flow cytometry
     Human pancreatic adenocarcinoma cell line, PANC-1was cultured in DMEMsupplemented with10%fetal bovine serum (FBS),100U/ml penicillin G, and100Ug/mlstreptomycin. Dissociated cells were counted and transferred to a5ml tube, washed twicewith PBS, counted and resuspended in PBS at1×106cell/100μl. Then, the antibodies APCanti-human CD44, PE anti-human CD24and FITC anti-human ESA (each at a dilution of1:40) were added and incubated for20min on ice in dark. The respective isotype controlantibodies were used at the same concentrations according to the manufacturer'sinstructions. After washing twice with PBS, samples were resuspended in500μl PBS andanalyzed on a flow cytometer. Side-scatter and forward-scatter profiles were used toeliminate cell doublets. Cells were routinely sorted twice, and the cells were reanalyzed forpurity, which typically was>97%.Data were analyzed with BD FACS Diva software.
     (2) MiR-200a mimic Transfection
     The CD24+CD44+ESA+populations of PANC-1cells were plated in6well plates andincubated overnight. Cells were transfected with either control or miR-200a mimic at afinal concentration of25nM using EntransterTM-R transfection reagent. After6h oftransfection the medium was changed to avoid cell death during transfection.
     (3) Real-Time Reverse Transcriptase-PCR
     Total RNA was extracted using Trizol according to the manufacturer’s instructions.E-cadherin, N-cadherin, vimentin and ZEB1, Oct4and Nanog mRNA were analysed byreal-time PCR with Power SYBR_green PCR master mix and datas were normalized toGAPDH expression.
     (4) miR expression analysis
     Total RNA was reverse transcribed using the miScript Reverse Transcription KitMiR-200a, miR-200b, miR-200c were analysed by RT-qPCR using the miScript PCR Kit.Experiments were normalized to U6.
     (5) Western Blot Analysis
     Cells were lysed in RIPA lysis buffer and the protein concentration was determined.Total proteins were fractionated using SDS-PAGE and transferred onto a polyvinylidenefluoride membrane. The membranes were blocked in5%skim milk in TBST buffercontaining0.1%Tween20and then incubated with indicated primary antibodies (Rabbitanti Oct4, l:2000; Rabbit anti Nanog,1:2000; Rabbit anti-N-cadherin,1:1000; Mouseanti-Vimentin,1:500; Rabbit anti-E-cadherin,1:1000; Rabbit Anti-ZEB1,1:1000) for2hat room temperature. HRP-conjugated secondary antibodies (HRP Goat anti-Rabbit IgGAntibody,1:5000; HRP Goat anti-Mouse IgG Antibody,1:5000) were incubated at roomtemperature for1h and detected using the enhanced chemiluminesence detectionsystem.Total protein was extracted from untreated and the cells treated by transfectingmiR-200a and subjected to western blot analysis as described to evaluate the expression ofE-cadherin, N-cadherin, ZEB1and vimentin. The data was adjusted against loading controlusing β-actin.
     (6) Transwell migration assay
     1×105PCSCs were plated in the top chamber onto the noncoated membrane andallowed to migrate toward serum-containing medium in the lower chamber. Cells werefixed after48hours of incubation with methanol and stained with0.1%crystal violet (2mg/ml). The number of cells invading through the membrane was counted under a lightmicroscope (three random fields per well)
     (7) Transwell invasion assay
     1×105cells were plated in the top chamber onto the Matrigel coated Membrane. Eachwell was coated freshly with Matrigel (60mg) before the invasion assay. Cells were platedin medium without serum or growth factors, and medium supplemented with serum wasused as a chemo-attractant in the lower chamber. The cells were incubated for48hours.Cells which did not invade through the pores were removed by a cotton swab. Cells on thelower surface of the membrane were fixed with methanol and stained with0.1%crystalviolet. The number of cells invading through the membrane was counted under a lightmicroscope (three random fields per well)
     (8) Cell Counting Kit-8(CCK-8)assay for cell proliferation and chemotherapysensitivity to gemcitabine
     The cells of each group were planted at a density of1000-3000cells per well in96-well plates.10μl CCK-8solution was added into each well at a given time point (24h、48h、72h、96h) or at72h after different concentrations (50ng/ml、100ng/ml、200ng/ml、400ng/ml、800ng/ml、2000ng/ml) of gemcitabine added in. Then all groups were incubatedat37°C,5%CO2for3h. Absorbance was measured at450nm on a microplate reader.
     Results
     (1) In PANC-1,(1.442±0.532)%of cells were CD44+CD24+, and (0.492±0.334)%of cells were CD44+CD24+ESA+. The results showed that Oct4and Nanog expressionssignificantly increased in CD44+CD24+ESA+cells.
     (2) Real time RT-PCR result showed that miR-200a was significantly downregulated in PCSCs. The expressions of N-cadherin, vimentin and ZEB1were up-regulated, whilethe expression of E-cadherin exhibited down-regulation at mRNA levels in PCSCs.
     (3) It suggested that the overexpression of miR-200a in the PCSCs resulted in theup-regulation of epithelial marker E-cadherin while down-regulation of mesenchymalmarkers ZEB1, N-cadherin, Vimentin and human embryonic stem cell genes Oct4, Nanogat mRNA leve. By westernblot analysis, the results showed that the overexpression ofmiR-200a in the PCSCs had led to the up-regulation of E-cadherin and down-regulation ofZEB1, N-cadherin and Oct4, Nanog, but not Vimentin at protein level.
     (4) The Transwell inserts results showed that the number of PCSCs transfected withmiR-200a mimic which invaded and migrated to the lower side of the membrane wassignificantly decreased than PCSCs without transfection or transfected with NC mimic byabout0.33fold in invasion and0.22fold in migration, respectively.
     (5) The CCK-8assays demonstrated that the PCSCs treated by transfection ofmiR-200a mimic displayed decreasing cell proliferation and increasing sensitivity togemcitabine.
     Conclusions
     In this study, we found that miRNA played an important role in regulating thecharacteristics of cancer stem cells with EMT signatures. To up-regulate miR-200a maylead to the reversal of EMT phenotype and inhibit malignant biological characteristics ofPCSCs in vitro. It will provide theoretical and experimental evidence for designingmiRNA-based target therapies for pancreatic cancer in the future.
引文
1. Klein A P. Identifying people at a high risk of developing pancreatic cancer[J]. NatureReviews Cancer,2013,13(1):66-74.
    2..郝捷,陈万青.中国肿瘤登记年报(2012).北京:军事医学科学出版社,2012.
    3. Siegel R, Naishadham D, Jemal A. Cancer statistics,2013[J]. CA: a cancer journal forclinicians,2013,63(1):11-30.
    4. Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: an overviewand new approaches for their isolation and characterization[J]. The FASEB Journal,2013,27(1):13-24.
    5. Li C, Heidt D G, Dalerba P, et al. Identification of pancreatic cancer stem cells[J].Cancer research,2007,67(3):1030-1037.
    6. Hermann P C, Huber S L, Herrler T, et al. Distinct populations of cancer stem cellsdetermine tumor growth and metastatic activity in human pancreatic cancer[J]. Cellstem cell,2007,1(3):313-323.
    7. Coghlin C, Murray G I. Current and emerging concepts in tumour metastasis[J]. TheJournal of pathology,2010,222(1):1-15.
    8. Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition[J]. TheJournal of clinical investigation,2009,119(6):1420.
    9. Yang J, Weinberg R A. Epithelial-mesenchymal transition: at the crossroads ofdevelopment and tumor metastasis[J]. Developmental cell,2008,14(6):818-829.
    10. Brabletz T, Jung A, Spaderna S, et al. Migrating cancer stem cells—an integratedconcept of malignant tumour progression[J]. Nature Reviews Cancer,2005,5(9):744-749.
    11. Hollier B G, Evans K, Mani S A. The epithelial-to-mesenchymal transition and cancerstem cells: a coalition against cancer therapies[J]. Journal of mammary gland biologyand neoplasia,2009,14(1):29-43.
    12. Sarkar F H, Li Y, Wang Z, et al. The role of nutraceuticals in the regulation of Wnt andHedgehog signaling in cancer[J]. Cancer and Metastasis Reviews,2010,29(3):383-394.
    13. Santisteban M, Reiman J M, Asiedu M K, et al. Immune-induced epithelial tomesenchymal transition in vivo generates breast cancer stem cells[J]. Cancer research,2009,69(7):2887-2895.
    14. Takebe N, Harris P J, Warren R Q, et al. Targeting cancer stem cells by inhibiting Wnt,Notch, and Hedgehog pathways[J]. Nature reviews Clinical oncology,2011,8(2):97-106.
    15. Lee K L, Lim S K, Orlov Y L, et al. Graded Nodal/Activin signaling titratesconversion of quantitative phospho-Smad2levels into qualitative embryonic stem cellfate decisions[J]. PLoS genetics,2011,7(6): e1002130.
    16. Blick T, Hugo H, Widodo E, et al. Epithelial mesenchymal transition traits in humanbreast cancer cell lines parallel the CD44HI/CD24lO/-stem cell phenotype in humanbreast cancer[J]. Journal of mammary gland biology and neoplasia,2010,15(2):235-252.
    17. Mani S A, Guo W, Liao M J, et al. The epithelial-mesenchymal transition generatescells with properties of stem cells[J]. Cell,2008,133(4):704-715.
    18. Zimmerman A L, Wu S. MicroRNAs, cancer and cancer stem cells[J]. Cancer letters,2011,300(1):10-19.
    19. Sayed D, Abdellatif M. MicroRNAs in development and disease[J]. Physiologicalreviews,2011,91(3):827-887.
    20. Gibbons D L, Lin W, Creighton C J, et al. Contextual extracellular cues promote tumorcell EMT and metastasis by regulating miR-200family expression[J]. Genes&development,2009,23(18):2140-2151.
    21. Wang Z, Li Y, Ahmad A, et al. Targeting miRNAs involved in cancer stem cell andEMT regulation: An emerging concept in overcoming drug resistance[J]. DrugResistance Updates,2010,13(4):109-118.
    22. Feng X, Wang Z, Fillmore R, et al. MiR-200, a new star miRNA in human cancer[J].Cancer letters,2013.
    23. Tryndyak V P, Beland F A, Pogribny I P. E-cadherin transcriptional down-regulationby epigenetic and microRNA-200family alterations is related to mesenchymal anddrug‐resistant phenotypes in human breast cancer cells[J]. International Journal ofCancer,2010,126(11):2575-2583.
    24. Rangwala F, Omenetti A, Diehl A M. Cancer stem cells: repair gone awry?[J]. Journalof oncology,2010,2011.
    25. Lee H J, You D D, Choi D W, et al. Significance of CD133as a cancer stem cellmarkers focusing on the tumorigenicity of pancreatic cancer cell lines[J]. Journal ofthe Korean Surgical Society,2011,81(4):263-270.
    26. Li C, Wu J J, Hynes M, et al. c-Met is a marker of pancreatic cancer stem cells andtherapeutic target[J]. Gastroenterology,2011,141(6):2218-2227. e5.
    27. Ma I, Allan A L. The role of human aldehyde dehydrogenase in normal and cancerstem cells[J]. Stem Cell Reviews and Reports,2011,7(2):292-306.
    28. Asiedu M K, Ingle J N, Behrens M D, et al. TGFβ/TNFα-mediatedepithelial–mesenchymal transition generates breast cancer stem cells with aclaudin-low phenotype[J]. Cancer research,2011,71(13):4707-4719.
    29. Bao B, Wang Z, Ali S, et al. Notch-1induces epithelial–mesenchymal transitionconsistent with cancer stem cell phenotype in pancreatic cancer cells[J]. Cancer letters,2011,307(1):26-36.
    30. Xie J, Epstein E. Activation of Hedgehog Signaling in Human Cancer[M]//Hedgehogsignaling activation in human cancer and its clinical implications. Springer New York,2011:85-104.
    31. Lonardo E, Hermann P C, Mueller M T, et al. Nodal/Activin signaling drivesself-renewal and tumorigenicity of pancreatic cancer stem cells and provides a targetfor combined drug therapy[J]. Cell Stem Cell,2011,9(5):433-446.
    32. Bao B, Wang Z, Ali S, et al. Over‐expression of FoxM1leads toepithelial–mesenchymal transition and cancer stem cell phenotype in pancreaticcancer cells[J]. Journal of cellular biochemistry,2011,112(9):2296-2306.
    33. Croce C M. Causes and consequences of microRNA dysregulation in cancer[J]. NatureReviews Genetics,2009,10(10):704-714.
    34. Vierbuchen T, Wernig M. Molecular roadblocks for cellular reprogramming[J].Molecular cell,2012,47(6):827-838.
    35. Subramanyam D, Lamouille S, Judson R L, et al. Multiple targets of miR-302andmiR-372promote reprogramming of human fibroblasts to induced pluripotent stemcells[J]. Nature biotechnology,2011,29(5):443-448.
    36. Sengupta S, Nie J, Wagner R J, et al. MicroRNA92b controls the G1/S checkpointgene p57in human embryonic stem cells[J]. Stem cells,2009,27(7):1524-1528.
    37. Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34inhibits human pancreatic cancertumor-initiating cells[J]. PloS one,2009,4(8): e6816.
    38. Vetter G, Saumet A, Moes M, et al. miR-661expression in SNAI1-induced epithelialto mesenchymal transition contributes to breast cancer cell invasion by targetingNectin-1and StarD10messengers[J]. Oncogene,2010,29(31):4436-4448.
    39. Ma L, Teruya-Feldstein J, Weinberg R A. Tumour invasion and metastasis initiated bymicroRNA-10b in breast cancer[J]. Nature,2007,449(7163):682-688.
    40. Brabletz S, Bajdak K, Meidhof S, et al. The ZEB1/miR‐200feedback loop controlsNotch signalling in cancer cells[J]. The EMBO journal,2011,30(4):770-782.
    41. Li Y, VandenBoom T G, Kong D, et al. Up-regulation of miR-200and let-7by naturalagents leads to the reversal of epithelial-to-mesenchymal transition ingemcitabine-resistant pancreatic cancer cells[J]. Cancer research,2009,69(16):6704-6712.
    42. Lim Y Y, Wright J A, Attema J L, et al. Epigenetic modulation of the miR-200familyis associated with transition to a breast cancer stem-cell-like state[J]. Journal of cellscience,2013,126(10):2256-2266.
    43.李小华,姜红,丁永斌,等.胃癌组织中miRNA-200家族的表达[J].江苏医药,2011,37(3):304-306.
    44.王小军,周良芬,张华. miR-200c在肝细胞癌组织中的表达及其临床意义[J].中国现代医生,2013,51(28):1-3.
    45. Yu Y, Wu J, Guan L, et al. Kindlin2promotes breast cancer invasion via epigeneticsilencing of the microRNA200gene family[J]. International Journal of Cancer,2013,133(6):1368-1379.
    46.江建新,高珊,王敏,等.胰腺癌干细胞差异microRNAs的表达及生物信息学[J].世界华人消化杂志,2012,20(34):3354-3360.
    47.陆俊杰,陆玉华,朱慧,等. Oct4和Nanog在胰腺癌干细胞中表达的研究[J].实用医学杂志,2011,27(16):2900-2904.
    48.范向军,陆玉华,王雷,等.沉默Oct4和Nanog基因抑制胰腺癌干细胞的生物学特征[J].江苏医药,2013,39(18):2109-2113.
    49. Wu K J, Yang M H. Epithelial-mesenchymal transition and cancer stemness: theTwist1-Bmi1connection[J]. Bioscience reports,2011,31(6):449-455.
    1. Abel E V, Simeone D M. Biology and clinical applications of pancreatic cancer stemcells[J]. Gastroenterology,2013,144(6):1241-1248.
    2. Visvader J E, Lindeman G J. Cancer stem cells in solid tumours: accumulatingevidence and unresolved questions[J]. Nature Reviews Cancer,2008,8(10):755-768.
    3. Proctor E N, Simeone D M. Pancreatic Cancer Stem Cells[M]//Advances in CancerStem Cell Biology. Springer New York,2012:197-209
    4. Li C, Heidt D G, Dalerba P, et al. Identification of pancreatic cancer stem cells[J].Cancer research,2007,67(3):1030-1037.
    5. Hermann P C, Huber S L, Herrler T, et al. Distinct populations of cancer stem cellsdetermine tumor growth and metastatic activity in human pancreatic cancer[J]. Cellstem cell,2007,1(3):313-323.
    6. Li C, Wu J J, Hynes M, et al. c-Met is a marker of pancreatic cancer stem cells andtherapeutic target[J]. Gastroenterology,2011,141(6):2218-2227. e5.
    7. Jimeno A, Feldmann G, Suárez-Gauthier A, et al. A direct pancreatic cancer xenograftmodel as a platform for cancer stem cell therapeutic development[J]. Molecularcancer therapeutics,2009,8(2):310-314.
    8. Nitsche C, Simon P, Weiss F U, et al. Environmental risk factors for chronicpancreatitis and pancreatic cancer[J]. Digestive Diseases,2011,29(2):235-242.
    9. Zavoral M, Minarikova P, Zavada F, et al. Molecular biology of pancreatic cancer[J].World journal of gastroenterology: WJG,2011,17(24):2897.
    10. Williams J L. Cancer stem cells[J]. Clinical laboratory science: journal of theAmerican Society for Medical Technology,2011,25(1):50-57.
    11. Yu Z, Pestell T G, Lisanti M P, et al. Cancer stem cells[J]. The international journal ofbiochemistry&cell biology,2012,44(12):2144-2151.
    12. Zhang S, Balch C, Chan M W, et al. Identification and characterization of ovariancancer-initiating cells from primary human tumors[J]. Cancer research,2008,68(11):4311-4320.
    13. Haraguchi N, Ohkuma M, Sakashita H, et al. CD133+CD44+population efficientlyenriches colon cancer initiating cells[J]. Annals of surgical oncology,2008,15(10):2927-2933.
    14. Phillips T M, McBride W H, Pajonk F. The response of CD24/low/CD44+breastcancer–initiating cells to radiation[J]. Journal of the National Cancer Institute,2006,98(24):1777-1785.
    15. Al-Hajj M, Wicha M S, Benito-Hernandez A, et al. Prospective identification oftumorigenic breast cancer cells[J]. Proceedings of the National Academy of Sciences,2003,100(7):3983-3988.
    16. Huang P, Wang C Y, Gou S M, et al. Isolation and biological analysis of tumor stemcells from pancreatic adenocarcinoma[J]. World journal of gastroenterology: WJG,2008,14(24):3903.
    17. van der Voort R, Taher T E I, Wielenga V J M, et al. Heparan sulfate-modified CD44promotes hepatocyte growth factor/scatter factor-induced signal transduction throughthe receptor tyrosine kinase c-Met[J]. Journal of Biological Chemistry,1999,274(10):6499-6506.
    18. Xu Y, Stamenkovic I, Yu Q. CD44attenuates activation of the hippo signalingpathway and is a prime therapeutic target for glioblastoma[J]. Cancer research,2010,70(6):2455-2464.
    19. Draper J S, Fox V. Human embryonic stem cells: multilineage differentiation andmechanisms of self-renewal[J]. Archives of medical research,2003,34(6):558-564.
    20. Tay Y, Zhang J, Thomson A M, et al. MicroRNAs to Nanog, Oct4and Sox2codingregions modulate embryonic stem cell differentiation[J]. Nature,2008,455(7216):1124-1128.
    21. Atlasi Y, Mowla S J, Ziaee S A M, et al. OCT‐4, an embryonic stem cell marker, ishighly expressed in bladder cancer[J]. International Journal of Cancer,2007,120(7):1598-1602.
    22. Ezeh U I, Turek P J, Reijo R A, et al. Human embryonic stem cell genes OCT4,NANOG, STELLAR, and GDF3are expressed in both seminoma and breastcarcinoma[J]. Cancer,2005,104(10):2255-2265.
    23. Chen Z, Xu W R, Qian H, et al. Oct4, a novel marker for human gastric cancer[J].Journal of surgical oncology,2009,99(7):414-419.
    24. Klarmann G J, Hurt E M, Mathews L A, et al. Invasive prostate cancer cells are tumorinitiating cells that have a stem cell-like genomic signature[J]. Clinical&experimental metastasis,2009,26(5):433-446.
    25. Wen J, Park J Y, Park K H, et al. Oct4and Nanog expression is associated with earlystages of pancreatic carcinogenesis[J]. Pancreas,2010,39(5):622-626.
    26. Chiou S H, Wang M L, Chou Y T, et al. Coexpression of Oct4and Nanog EnhancesMalignancy in Lung Adenocarcinoma by Inducing Cancer Stem Cell–Like Propertiesand Epithelial–Mesenchymal Transdifferentiation[J]. Cancer research,2010,70(24):10433-10444.
    27. Kumar S M, Liu S, Lu H, et al. Acquired cancer stem cell phenotypes throughOct4-mediated dedifferentiation[J]. Oncogene,2012,31(47):4898-4911.
    28. Li J M. Overexpression of nanog predicts tumor progression and poor prognosis incolorectal cancer[J]. Cancer biology&therapy,2010,9(4):295-30
    1. Liu C, Tang D G. MicroRNA regulation of cancer stem cells[J]. Cancer research,2011,71(18):5950-5954.
    2. Liu X, Fortin K, Mourelatos Z. MicroRNAs: biogenesis and molecular functions[J].Brain Pathology,2008,18(1):113-121.
    3. Gangaraju V K, Lin H. MicroRNAs: key regulators of stem cells[J]. Nature ReviewsMolecular Cell Biology,2009,10(2):116-125.
    4. Judson R L, Babiarz J E, Venere M, et al. Embryonic stem cell–specific microRNAspromote induced pluripotency[J]. Nature biotechnology,2009,27(5):459-461..
    5. Iorio M V, Croce C M. MicroRNAs in cancer: small molecules with a huge impact[J].Journal of Clinical Oncology,2009,27(34):5848-5856.
    6. Backofen R, Bernhart S H, Flamm C, et al. RNAs everywhere: genome‐wideannotation of structured RNAs[J]. Journal of Experimental Zoology Part B: Molecularand Developmental Evolution,2007,308(1):1-25.
    7. Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation ofmicro-RNA genes miR15and miR16at13q14in chronic lymphocytic leukemia[J].Proceedings of the National Academy of Sciences,2002,99(24):15524-15529.
    8. Rachagani S, Kumar S, Batra S K. MicroRNA in pancreatic cancer: pathological,diagnostic and therapeutic implications[J]. Cancer letters,2010,292(1):8-16.
    9. Wang Z, Banerjee S, Ahmad A, et al. Activated K-ras and INK4a/Arf deficiencycooperate during the development of pancreatic cancer by activation of Notch andNF-κB signaling pathways[J]. PloS one,2011,6(6): e20537.
    10. Cano A, Nieto M A. Non-coding RNAs take centre stage in epithelial-to-mesenchymaltransition[J]. Trends in cell biology,2008,18(8):357-359.
    11. Thompson E W, Newgreen D F. Carcinoma invasion and metastasis: a role forepithelial-mesenchymal transition?[J]. Cancer research,2005,65(14):5991-5995.
    12. Bullock M D, Sayan A E, Packham G K, et al. MicroRNAs: critical regulators ofepithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) incancer progression[J]. Biology of the Cell,2012,104(1):3-12.
    13. Shields M A, Dangi-Garimella S, Krantz S B, et al. Pancreatic cancer cells respond totype I collagen by inducing snail expression to promote membrane type1matrixmetalloproteinase-dependent collagen invasion[J]. Journal of Biological Chemistry,2011,286(12):10495-10504.
    14. Polyak K, Weinberg R A. Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits[J]. Nature Reviews Cancer,2009,9(4):265-273.
    15. Santisteban M, Reiman J M, Asiedu M K, et al. Immune-induced epithelial tomesenchymal transition in vivo generates breast cancer stem cells[J]. Cancer research,2009,69(7):2887-2895
    16. Rasheed Z A, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells withmesenchymal features in pancreatic adenocarcinoma[J]. Journal of the NationalCancer Institute,2010,102(5):340-351.
    17. van den Hoogen C, van der Horst G, Cheung H, et al. High aldehyde dehydrogenaseactivity identifies tumor-initiating and metastasis-initiating cells in human prostatecancer[J]. Cancer research,2010,70(12):5163-5173.
    18. Ouyang G, Wang Z, Fang X, et al. Molecular signaling of the epithelial tomesenchymal transition in generating and maintaining cancer stem cells[J]. Cellularand Molecular Life Sciences,2010,67(15):2605-2618.
    19. Thiery J P, Acloque H, Huang R Y J, et al. Epithelial-mesenchymal transitions indevelopment and disease[J]. Cell,2009,139(5):871-890.
    20. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition incancer pathology[J]. Pathology,2007,39(3):305-318.
    21. Aigner K, Dampier B, Descovich L, et al. The transcription factor ZEB1(δEF1)promotes tumour cell dedifferentiation by repressing master regulators of epithelialpolarity[J]. Oncogene,2007,26(49):6979-6988.
    22. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression:an alliance against the epithelial phenotype?[J]. Nature Reviews Cancer,2007,7(6):415-428.
    23. Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition[J]. TheJournal of clinical investigation,2009,119(6):1420.
    24. Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA,regulates E-cadherin and cancer metastasis[J]. Nature cell biology,2010,12(3):247-256.
    25. Kong W, Yang H, He L, et al. MicroRNA-155is regulated by the transforming growthfactor β/Smad pathway and contributes to epithelial cell plasticity by targetingRhoA[J]. Molecular and cellular biology,2008,28(22):6773-6784.
    26. Bartel D P. MicroRNAs: target recognition and regulatory functions[J]. Cell,2009,136(2):215-233.
    27. Korpal M, Kang Y. The emerging role of miR-200family of microRNAs inepithelial-mesenchymal transition and cancer metastasis[J]. RNA Biol,2008,5(3):115-119.
    28. Park S M, Gaur A B, Lengyel E, et al. The miR-200family determines the epithelialphenotype of cancer cells by targeting the E-cadherin repressors ZEB1and ZEB2[J].Genes&development,2008,22(7):894-907.
    29. Zhang H F, Xu L Y, Li E M. A Family of Pleiotropically Acting MicroRNAs in CancerProgression, miR-200: Potential Cancer Therapeutic Targets[J]. Currentpharmaceutical design,2013.
    30. Feng X, Wang Z, Fillmore R, et al. MiR-200, a new star miRNA in human cancer[J].Cancer letters,2013.
    31. Mongroo P S, Rustgi A K. The role of the miR-200family in epithelial-mesenchymaltransition[J]. Cancer Biol Ther,2010,10(3):219-222.
    32. Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesiscorrelate with hallmark capabilities of cancer[J]. Genes&development,2009,23(18):2152-2165.
    33. Gibbons D L, Lin W, Creighton C J, et al. Contextual extracellular cues promote tumorcell EMT and metastasis by regulating miR-200family expression[J]. Genes&development,2009,23(18):2140-2151.
    34. Mani S A, Guo W, Liao M J, et al. The epithelial-mesenchymal transition generatescells with properties of stem cells[J]. Cell,2008,133(4):704-715.
    35. McCoy E L, Iwanaga R, Jedlicka P, et al. Six1expands the mouse mammary epithelialstem/progenitor cell pool and induces mammary tumors that undergoepithelial-mesenchymal transition[J]. The Journal of clinical investigation,2009,119(9):2663.
    36. Evdokimova V, Tognon C, Ng T, et al. Translational activation of snail1and otherdevelopmentally regulated transcription factors by YB-1promotes anepithelial-mesenchymal transition[J]. Cancer cell,2009,15(5):402-415.
    37. Philip A. Gregory, Cameron P. Bracken, Eric Smith, et al. An autocrineTGF-β/ZEB/miR-200signaling network regulates establishment and maintenance ofepithelial-mesenchymal transition[J]. Mol Biol Cell,2011,22(10):1686–1698.
    38. Wellner U, Schubert J, Burk U C, et al. The EMT-activator ZEB1promotestumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nature cell biology,2009,11(12):1487-1495.
    39. Shimono Y, Zabala M, Cho R W, et al. Downregulation of miRNA-200c links breastcancer stem cells with normal stem cells[J]. Cell,2009,138(3):592-603.
    40. Lim Y Y, Wright J A, Attema J L, et al. Epigenetic modulation of the miR-200familyis associated with transition to a breast cancer stem-cell-like state[J]. Journal of cellscience,2013,126(10):2256-2266.
    41. Li Y, VandenBoom T G, Kong D, et al. Up-regulation of miR-200and let-7by naturalagents leads to the reversal of epithelial-to-mesenchymal transition ingemcitabine-resistant pancreatic cancer cells[J]. Cancer research,2009,69(16):6704-6712.
    42. Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced inpancreatic cancer cells through modulation of miR-200and miR-21expression bycurcumin or its analogue CDF[J]. Cancer research,2010,70(9):3606-3617.
    43. Wu K, Zeng J, Li L, et al. Silibinin reverses epithelial-to-mesenchymal transition inmetastatic prostate cancer cells by targeting transcription factors[J]. Oncology reports,2010,23(6):1545-1552.
    44. Menendez J A. Metformin regulates breast cancer stem cell ontogeny bytranscriptional regulation of the epithelial-mesenchymal transition (EMT) status[J].Cell Cycle,2010,9(18):3807-3814.
    1. Nguyen L V, Vanner R, Dirks P, et al. Cancer stem cells: an evolving concept[J].Nature Reviews Cancer,2012,12(2):133-143.
    2. Gupta P B, Chaffer C L, Weinberg R A. Cancer stem cells: mirage or reality?[J].Nature medicine,2009,15(9):1010-1012.
    3. Magee J A, Piskounova E, Morrison S J. Cancer stem cells: impact, heterogeneity, anduncertainty[J]. Cancer cell,2012,21(3):283-296.
    4. Takebe N, Harris P J, Warren R Q, et al. Targeting cancer stem cells by inhibiting Wnt,Notch, and Hedgehog pathways[J]. Nature reviews Clinical oncology,2011,8(2):97-106.
    5. Fasano C A, Dimos J T, Ivanova N B, et al. shRNA Knockdown of Bmi-1Reveals aCritical Role for p21-Rb Pathway in NSC Self-Renewal during Development[J]. Cellstem cell,2007,1(1):87-99.
    6. Okamoto O K. Molecular Biology of Cancer Stem Cells[M]//Advances in CancerStem Cell Biology. Springer New York,2012:33-43.
    7. Guessous F, Zhang Y, Kofman A, et al. microRNA-34a is tumor suppressive in braintumors and glioma stem cells[J]. Cell cycle,2010,9(6):1031.
    8. Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stemcells and metastasis by directly repressing CD44[J]. Nature medicine,2011,17(2):211-215
    9. Shi L, Zhang J, Pan T, et al. MiR-125b is critical for the suppression of human U251glioma stem cell proliferation[J]. Brain research,2010,1312:120-126.
    10. Iliopoulos D, Lindahl-Allen M, Polytarchou C, et al. Loss of miR-200inhibition ofSuz12leads to polycomb-mediated repression required for the formation andmaintenance of cancer stem cells[J]. Molecular cell,2010,39(5):761-772.
    11. Tryndyak V P, Beland F A, Pogribny I P. E-cadherin transcriptional down-regulationby epigenetic and microRNA‐200family alterations is related to mesenchymal anddrug‐resistant phenotypes in human breast cancer cells[J]. International Journal ofCancer,2010,126(11):2575-2583.
    12. Soubani O, Ali A S, Logna F, et al. Re-expression of miR-200by novel approachesregulates the expression of PTEN and MT1-MMP in pancreatic cancer[J].Carcinogenesis,2012,33(8):1563-1571.
    13. Pannuti A, Foreman K, Rizzo P, et al. Targeting Notch to target cancer stem cells[J].Clinical Cancer Research,2010,16(12):3141-3152
    14. Vallejo D M, Caparros E, Dominguez M. Targeting Notch signalling by the conservedmiR-8/200microRNA family in development and cancer cells[J]. The EMBO journal,2011,30(4):756-769.
    15.. Uhlmann S, Zhang J D, Schw ger A, et al. mir-200bc/429cluster targets plcγ1anddifferentially regulates proliferation and egf-driven invasion than mir-200a/141inbreast cancer[J]. Oncogene,2010,29(30):4297-4306.
    16. Schickel R, Park S M, Murmann A E, et al. miR-200c regulates induction of apoptosisthrough CD95by targeting FAP-1[J]. Molecular cell,2010,38(6):908-915.
    17. Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced inpancreatic cancer cells through modulation of miR-200and miR-21expression bycurcumin or its analogue CDF[J]. Cancer research,2010,70(9):3606-3617.
    18. Pogribny I P, Filkowski J N, Tryndyak V P, et al. Alterations of microRNAs and theirtargets are associated with acquired resistance of MCF‐7breast cancer cells tocisplatin[J]. International Journal of Cancer,2010,127(8):1785-1794.
    19. Chen J, Tian W, Cai H, et al. Down-regulation of microRNA-200c is associated withdrug resistance in human breast cancer[J]. Medical Oncology,2012,29(4):2527-2534.
    20. Adam L, Zhong M, Choi W, et al. miR-200expression regulatesepithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance toepidermal growth factor receptor therapy[J]. Clinical Cancer Research,2009,15(16):5060-5072.
    21. Anokye-Danso F, Trivedi C M, Juhr D, et al. Highly efficient miRNA-mediatedreprogramming of mouse and human somatic cells to pluripotency[J]. Cell stem cell,2011,8(4):376-388.
    22. Zhang Z, Li Z, Gao C, et al. miR-21plays a pivotal role in gastric cancer pathogenesisand progression[J]. Laboratory investigation,2008,88(12):1358-1366.
    23. Si M L, Zhu S, Wu H, et al. miR-21-mediated tumor growth[J]. Oncogene,2007,26(19):2799-2803.
    24. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclearreprogramming[J]. Cell,2008,132(4):567-582.
    25. Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells fromprimary human fibroblasts with only Oct4and Sox2[J]. Nature biotechnology,2008,26(11):1269-1275.
    26. Tay Y, Zhang J, Thomson A M, et al. MicroRNAs to Nanog, Oct4and Sox2codingregions modulate embryonic stem cell differentiation[J]. Nature,2008,455(7216):1124-1128.
    27. Xu N, Papagiannakopoulos T, Pan G, et al. MicroRNA-145regulates OCT4, SOX2,and KLF4and represses pluripotency in human embryonic stem cells[J]. Cell,2009,137(4):647-658.
    28. Peter M E. Let-7and miR-200microRNAs[J]. Cell Cycle,2009,8(6):843-852.
    29. Card D A G, Hebbar P B, Li L, et al. Oct4/Sox2-regulated miR-302targets cyclin D1in human embryonic stem cells[J]. Molecular and cellular biology,2008,28(20):6426-6438.
    30. Kashyap V, Rezende N C, Scotland K B, et al. Regulation of stem cell pluripotencyand differentiation involves a mutual regulatory circuit of the NANOG, OCT4, andSOX2pluripotency transcription factors with polycomb repressive complexes andstem cell microRNAs[J]. Stem cells and development,2009,18(7):1093-1108.
    31. Wang G, Guo X, Hong W, et al. Critical regulation of miR-200/ZEB2pathway inOct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stemcell generation[J]. Proceedings of the National Academy of Sciences,2013,110(8):2858-2863.
    32. Wellner U, Schubert J, Burk U C, et al. The EMT-activator ZEB1promotestumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nature cell biology,2009,11(12):1487-1495.
    1. Croce C M, Calin G A, Volinia S. Methods for diagnosing pancreatic cancer usingMicroRNAs: U.S. Patent8,507,202[P].2013-8-13.
    2. Chen C Z. MicroRNAs as oncogenes and tumor suppressors[J]. New England Journalof Medicine,2005,353(17):1768.
    3. Pritchard C C, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: acautionary note for cancer biomarker studies[J]. Cancer Prevention Research,2012,5(3):492-497.
    4. Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profilesin normal human tissues[J]. BMC genomics,2007,8(1):166.
    5. Anglicheau D, Sharma V K, Ding R, et al. MicroRNA expression profiles predictiveof human renal allograft status[J]. Proceedings of the National Academy of Sciences,2009,106(13):5330-5335.
    6. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer [J]. Annu RevMed,2009;60:167-179
    7. Volinia S, Calin G A, Liu C G, et al. A microRNA expression signature of human solidtumors defines cancer gene targets[J]. Proceedings of the National Academy ofSciences of the United States of America,2006,103(7):2257-2261.
    8. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation anddeep-sequencing data[J]. Nucleic acids research,2011,39(suppl1): D152-D157.
    9. Zeng Y. Principles of micro-RNA production and maturation[J]. Oncogene,2006,25(46):6156-6162.
    10. Liu Q, Paroo Z. Biochemical principles of small RNA pathways[J]. Annual review ofbiochemistry,2010,79:295-319.
    11. Lin S L, Ying S Y. Gene silencing in vitro and in vivo using intronicmicroRNAs[M]//MicroRNA Protocols. Humana Press,2013:209-229.
    12. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNAprocessing[J]. Nature,2003,425(6956):415-419.
    13. Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. cell,2004,116(2):281-297.
    14. Pillai R S, Bhattacharyya S N, Filipowicz W. Repression of protein synthesis bymiRNAs: how many mechanisms?[J]. Trends in cell biology,2007,17(3):118-126.
    15. Carthew R W, Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs[J].Cell,2009,136(4):642-655.
    16. Valencia-Sanchez M A, Liu J, Hannon G J, et al. Control of translation and mRNAdegradation by miRNAs and siRNAs[J]. Genes&development,2006,20(5):515-524.
    17. Fu L, Wen X, Bao J, et al. MicroRNA-modulated autophagic signaling networks incancer[J]. The International Journal of Biochemistry&Cell Biology,2012,44(5):733-736.
    18. Calin G A, Dumitru C D, Shimizu M, et al. Frequent deletions and down-regulation ofmicro-RNA genes miR15and miR16at13q14in chronic lymphocytic leukemia[J].Proceedings of the National Academy of Sciences,2002,99(24):15524-15529.
    19. Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequentlylocated at fragile sites and genomic regions involved in cancers[J]. Proceedings of theNational Academy of Sciences of the United States of America,2004,101(9):2999-3004.
    20. Cummins J M, He Y, Leary R J, et al. The colorectal microRNAome[J]. Proceedingsof the National Academy of Sciences of the United States of America,2006,103(10):3687-3692.
    21. Johnson S M, Grosshans H, Shingara J, et al. RAS Is Regulated by the let-7MicroRNA Family[J]. Cell,2005,120(5):635-647.
    22. Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221and miR-222, bothoverexpressed in human thyroid papillary carcinomas, regulate p27Kip1protein levelsand cell cycle[J]. Endocrine-Related Cancer,2007,14(3):791-798.
    23. Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation inhuman breast cancer[J]. Cancer research,2005,65(16):7065-7070.
    24. Hermeking H. MicroRNAs in the p53network: micromanagement of tumoursuppression[J]. Nature Reviews Cancer,2012.
    25. Bandi N, Vassella E. miR-34a and miR-15a/16are co-regulated in non-small cell lungcancer and control cell cycle progression in a synergistic and Rb-dependent manner[J].Mol Cancer,2011,10(1):55-65.
    26. Osada H, Takahashi T. let-7and miR-17-92: Small-sized major players in lung cancerdevelopment[J]. Cancer Science,2011,102(1):9-17.
    27. Gregory P A, Bracken C P, Bert A G, et al. MicroRNAs as regulators ofepithelial-mesenchymal transition[J]. Cell Cycle,2008,7(20):3112-3117.
    28. Park S M, Gaur A B, Lengyel E, et al. The miR-200family determines the epithelialphenotype of cancer cells by targeting the E-cadherin repressors ZEB1and ZEB2[J].Genes&development,2008,22(7):894-907.
    29. Moes M, Le B é chec A, Crespo I, et al. A novel network integrating amiRNA-203/SNAI1feedback loop which regulates epithelial to mesenchymaltransition[J]. PloS one,2012,7(4): e35440..
    30. Garofalo M, Di Leva G, Romano G, et al. miR-221/222Regulate TRAIL Resistanceand Enhance Tumorigenicity through PTEN and TIMP3Downregulation[J]. Cancercell,2009,16(6):498-509.
    31. Lee E J, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature inpancreatic cancer[J]. International journal of cancer,2007,120(5):1046-1054.
    32. Roldo C, Missiaglia E, Hagan J P, et al. MicroRNA expression abnormalities inpancreatic endocrine and acinar tumors are associated with distinctive pathologicfeatures and clinical behavior[J]. Journal of Clinical Oncology,2006,24(29):4677-4684.
    33. Olson P, Lu J, Zhang H, et al. MicroRNA dynamics in the stages of tumorigenesiscorrelate with hallmark capabilities of cancer[J]. Genes&development,2009,23(18):2152-2165.
    34. Zhang Y, Li M, Wang H, et al. Profiling of95microRNAs in pancreatic cancer celllines and surgical specimens by real-time PCR analysis[J]. World journal of surgery,2009,33(4):698-709.
    35. Gaur A, Jewell D A, Liang Y, et al. Characterization of microRNA expression levelsand their biological correlates in human cancer cell lines[J]. Cancer research,2007,67(6):2456-2468.
    36. Lu J, Getz G, Miska E A, et al. MicroRNA expression profiles classify humancancers[J]. nature,2005,435(7043):834-838.
    37. Calin G A, Croce C M. MicroRNA signatures in human cancers[J]. Nature ReviewsCancer,2006,6(11):857-866.
    38. Chang T C, Wentzel E A, Kent O A, et al. Transactivation of miR-34a by p53broadlyinfluences gene expression and promotes apoptosis[J]. Molecular cell,2007,26(5):745-752.
    39. Vogt M, Munding J, Grüner M, et al. Frequent concomitant inactivation of miR-34aand miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian,urothelial, and renal cell carcinomas and soft tissue sarcomas[J]. Virchows Archiv,2011,458(3):313-322.
    40. Zhu S, Wu H, Wu F, et al. MicroRNA-21targets tumor suppressor genes in invasionand metastasis[J]. Cell research,2008,18(3):350-359.
    41. Lee K H, Lotterman C, Karikari C, et al. Epigenetic silencing of MicroRNA miR-107regulates cyclin-dependent kinase6expression in pancreatic cancer[J]. Pancreatology,2009,9(3):293-301.
    42. Moriyama T, Ohuchida K, Mizumoto K, et al. MicroRNA-21modulates biologicalfunctions of pancreatic cancer cells including their proliferation, invasion, andchemoresistance[J]. Molecular cancer therapeutics,2009,8(5):1067-1074.
    43. Torrisani J, Bournet B, Du Rieu M C, et al. let-7MicroRNA transfer in pancreaticcancer-derived cells inhibits in vitro cell proliferation but fails to alter tumorprogression[J]. Human gene therapy,2009,20(8):831-844.
    44. Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1andmembers of the miR-200family promotes EMT and invasion in cancer cells[J].EMBO reports,2008,9(6):582-589.
    45. Mees S T, Mardin W A, Wendel C, et al. EP300-A miRNA-regulated metastasissuppressor gene in ductal adenocarcinomas of the pancreas[J]. International journal ofcancer,2010,126(1):114-124.
    46. Mees S T, Mardin W A, Sielker S, et al. Involvement of CD40targeting miR-224andmiR-486on the progression of pancreatic ductal adenocarcinomas[J]. Annals ofsurgical oncology,2009,16(8):2339-2350.
    47. Ma Y, Yu S, Zhao W, et al. miR-27a regulates the growth, colony formation andmigration of pancreatic cancer cells by targeting Sprouty2[J]. Cancer letters,2010,298(2):150-158.
    48. Zhang S, Cai X, Huang F, et al. Effect of trichostatin a on viability and microRNAexpression in human pancreatic cancer cell line BxPC-3[J]. Exp Oncol,2008,30(4):265-268.
    49. Sun M, Estrov Z, Ji Y, et al. Curcumin (diferuloylmethane) alters the expressionprofiles of microRNAs in human pancreatic cancer cells[J]. Molecular cancertherapeutics,2008,7(3):464-473.
    50. Lee K H, Lotterman C, Karikari C, et al. Epigenetic silencing of MicroRNA miR-107regulates cyclin-dependent kinase6expression in pancreatic cancer[J]. Pancreatology,2009,9(3):293-301.
    51. Li Y, VandenBoom T G, Kong D, et al. Up-regulation of miR-200and let-7by naturalagents leads to the reversal of epithelial-to-mesenchymal transition ingemcitabine-resistant pancreatic cancer cells[J]. Cancer research,2009,69(16):6704-6712.
    52. Basu A, Alder H, Khiyami A, et al. MicroRNA-375and MicroRNA-221PotentialNoncoding RNAs Associated with Antiproliferative Activity of Benzyl Isothiocyanatein Pancreatic Cancer[J]. Genes&cancer,2011,2(2):108-119.
    53. Tili E, Michaille J J, Alder H, et al. Resveratrol modulates the levels of microRNAstargeting genes encoding tumor-suppressors and effectors of TGF β signalingpathway in SW480cells[J]. Biochemical pharmacology,2010,80(12):2057-2065.
    54. Bloomston M, Frankel W L, Petrocca F, et al. MicroRNA expression patterns todifferentiate pancreatic adenocarcinoma from normal pancreas and chronicpancreatitis[J]. JAMA: the journal of the American Medical Association,2007,297(17):1901-1908.
    55. Szafranska A E, Doleshal M, Edmunds H S, et al. Analysis of microRNAs inpancreatic fine-needle aspirates can classify benign and malignant tissues[J]. Clinicalchemistry,2008,54(10):1716-1724.
    56. Szafranska A E, Davison T S, John J, et al. MicroRNA expression alterations arelinked to tumorigenesis and non-neoplastic processes in pancreatic ductaladenocarcinoma[J]. Oncogene,2007,26(30):4442-4452.
    57. Habbe N, Koorstra J B M, Mendell J T, et al. MicroRNA miR-155is a biomarker ofearly pancreatic neoplasia[J]. Cancer biology&therapy,2009,8(4):340-346.
    58. Wang J, Chen J, Chang P, et al. MicroRNAs in plasma of pancreatic ductaladenocarcinoma patients as novel blood-based biomarkers of disease[J]. Cancerprevention research,2009,2(9):807-813.
    59. Liu R, Chen X, Du Y, et al. Serum microRNA expression profile as a biomarker in thediagnosis and prognosis of pancreatic cancer[J]. Clinical chemistry,2012,58(3):610-618.
    60. Li A, Omura N, Hong S M, et al. Pancreatic cancers epigenetically silence SIP1andhypomethylate and overexpress miR-200a/200b in association with elevatedcirculating miR-200a and miR-200b levels[J]. Cancer research,2010,70(13):5226-5237.
    61. Hanoun N, Delpu Y, Suriawinata A A, et al. The silencing of microRNA148aproduction by DNA hypermethylation is an early event in pancreatic carcinogenesis[J].Clinical chemistry,2010,56(7):1107-1118.
    62. Cho W. MicroRNAs in cancer—from research to therapy[J]. Biochimica etBiophysica Acta (BBA)-Reviews on Cancer,2010,1805(2):209-217.
    63. Tsuda N, Ishiyama S, Li Y, et al. Synthetic microRNA designed to targetglioma-associated antigen1transcription factor inhibits division and induces lateapoptosis in pancreatic tumor cells[J]. Clinical cancer research,2006,12(21):6557-6564.
    64. Torrisani J, Bournet B, Du Rieu M C, et al. let-7MicroRNA transfer in pancreaticcancer-derived cells inhibits in vitro cell proliferation but fails to alter tumorprogression[J]. Human gene therapy,2009,20(8):831-844.
    65. Park J K, Lee E J, Esau C, et al. Antisense inhibition of microRNA-21or-221arrestscell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreaticadenocarcinoma[J]. Pancreas,2009,38(7): e190-e199.
    66. Weiss F U, Marques I J, Woltering J M, et al. Retinoic acid receptor antagonistsinhibit miR-10a expression and block metastatic behavior of pancreatic cancer[J].Gastroenterology,2009,137(6):2136-2145. e7.
    67. Ji Q, Hao X, Zhang M, et al. MicroRNA miR-34inhibits human pancreatic cancertumor-initiating cells[J]. PLoS One,2009,4(8): e6816.
    68. Yu S, Lu Z, Liu C, et al. miRNA-96suppresses KRAS and functions as a tumorsuppressor gene in pancreatic cancer[J]. Cancer research,2010,70(14):6015-6025.
    69. Li Y, VandenBoom T G, Wang Z, et al. miR-146a suppresses invasion of pancreaticcancer cells[J]. Cancer research,2010,70(4):1486-1495.
    70. Wang F, Xue X, Wei J, et al. hsa-miR-520h downregulates ABCG2in pancreaticcancer cells to inhibit migration, invasion, and side populations[J]. British journal ofcancer,2010,103(4):567-574.
    71. Yan H, Wu J, Liu W, et al. MicroRNA-20a overexpression inhibited proliferation andmetastasis of pancreatic carcinoma cells[J]. Human gene therapy,2010,21(12):1723-1734.
    72. Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced inpancreatic cancer cells through modulation of miR-200and miR-21expression bycurcumin or its analogue CDF[J]. Cancer research,2010,70(9):3606-3617.
    73. Hwang J H, Voortman J, Giovannetti E, et al. Identification of microRNA-21as abiomarker for chemoresistance and clinical outcome following adjuvant therapy inresectable pancreatic cancer[J]. PLoS One,2010,5(5): e10630.
    74. Dillhoff M, Liu J, Frankel W, et al. MicroRNA-21is overexpressed in pancreaticcancer and a potential predictor of survival[J]. Journal of Gastrointestinal Surgery,2008,12(12):2171-2176.
    75. Yu J, Ohuchida K, Mizumoto K, et al. Research MicroRNA, hsa-miR-200c, is anindependent prognostic factor in pancreatic cancer and its upregulation inhibitspancreatic cancer invasion but increases cell proliferation[J]. cancer research,2010,12:13.
    76. Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, miR-17-5p is overexpressed inpancreatic cancer, associated with a poor prognosis, and involved in cancer cellproliferation and invasion[J]. Cancer biology&therapy,2010,10(8):748-757.
    77. Kong X, Du Y, Wang G, et al. Detection of differentially expressed microRNAs inserum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potentialmarker for poor prognosis[J]. Digestive diseases and sciences,2011,56(2):602-609.
    78. Greither T, Grochola L F, Udelnow A, et al. Elevated expression of microRNAs155,203,210and222in pancreatic tumors is associated with poorer survival[J].International Journal of Cancer,2010,126(1):73-80.
    79. Ikenaga N, Kayashima T, Sakai H. MicroRNA-203expression as a new prognosticmarker of pancreatic adenocarcinoma[J]. Annals of surgical oncology,2010,17(12):3120-3128.
    80. Kayashima T. MicroRNA expression as a predictive marker for gemcitabine responseafter surgical resection of pancreatic cancer[J]. Annals of surgical oncology,2011,18(8):2381-2387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700