氧化镁基吸附材料的成型与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了四种氧化镁基吸附材料:六硅酸镁、海泡石、凹凸棒石、层状氢氧化镁铝的成型和它们对水体污染物亚甲基蓝、氟离子、钴离子和生物柴油中游离脂肪酸的吸附性能,克服了粉末吸附剂流动性大、易堵塞、难回收等缺陷。
     利用傅里叶红外光谱仪(FT-IR)、冷场发射扫描电子显微镜(SEM)、差热-热重分析仪(TG-DTA)、扫描探针显微镜(AFM)等现代分析仪器和手段对成型前后的吸附材料进行表征,研究了它们的表面形态和分散程度,评价了它们对水体污染物和游离脂肪酸的吸附脱除性能,并通过动力学的讨论,初步探讨了吸附机理。主要研究结果如下:
     1.用焙烧法活化氧化镁基吸附材料,通过吸附性能的考察找出最佳焙烧温度,采用现代分析仪器和多种化学分析手段对活化前后的氧化镁基吸附材料的结构形貌进行了表征。分析结果表明,随着焙烧温度的升高,吸附材料表面发生了相应的变化,从而影响其吸附性能。
     2.将焙烧后的六硅酸镁、海泡石、凹凸棒石、层状氢氧化镁铝分别与聚醚砜用共混法制备成膜吸附材料,并通过吸附实验得出最佳吸附剂添加量分别为:吸附亚甲基蓝,六硅酸镁添加量为18%;吸附生物柴油中的游离脂肪酸,氧化镁基吸附材料添加量均为18%;吸附钴离子,海泡石添加量为14%,凹凸棒石为18%;吸附氟离子,层状氢氧化镁铝添加量为18%。
     将焙烧后的六硅酸镁、海泡石、凹凸棒石、层状氢氧化镁铝分别与聚偏氟乙烯用挤出法造粒,制备得到颗粒吸附材料,并通过吸附实验得出合适的吸附剂添加量分别为:吸附亚甲基蓝,六硅酸镁添加量为23%;吸附生物柴油中的游离脂肪酸,氧化镁基吸附材料添加量均为23%;吸附钴离子,海泡石添加量为19%,凹凸棒石为23%。
     3.对成型吸附材料进行分析和表征,发现这四种氧化镁基吸附剂均匀地分散在成型后的吸附材料中,高分子网络起到固定吸附剂颗粒的作用,随着吸附剂含量的增加,成型吸附剂单位质量的吸附能力也有所变化。
     4.六硅酸镁成型吸附材料用于吸附亚甲基蓝,考察了吸附时间、温度、污染物初始浓度及吸附剂投加量对吸附性能的影响。结果表明,在实验温度范围内,分别达到亚甲基蓝的最大吸附量为:六硅酸镁膜吸附材料157mg/g,六硅酸镁颗粒吸附材料85mg/g。对亚甲基蓝的吸附均遵循伪二级动力学模型,吸附过程可用Frendlich吸附等温式描述。
     5.氧化镁基成型吸附材料用于吸附生物柴油中的游离脂肪酸,在最佳吸附条件下游离脂肪酸的最大吸附量分别为:六硅酸镁膜吸附材料:210mg/g,海泡石膜吸附材料:250mg/g,凹凸棒石膜吸附材料:210mg/g,层状氢氧化镁铝膜吸附材料:455mg/g,六硅酸镁颗粒吸附材料:175mg/g,海泡石颗粒吸附材料:185mg/g,凹凸棒石颗粒吸附材料:145mg/g,层状氢氧化镁铝颗粒吸附材料:218mg/g。在实验温度范围内,Freundlich吸附模型可以较好地描述氧化镁基成型吸附材料对游离脂肪酸的吸附行为。对于六硅酸镁吸附材料,无论是膜状还是颗粒状,伪一级动力学数据都能较好地描述其对游离脂肪酸的吸附;对于层状氢氧化镁铝,无论是膜状还是颗粒状,伪二级动力学数据都能较好地描述其对游离脂肪酸的吸附;海泡石和凹凸棒石的膜吸附材料对游离脂肪酸的吸附均符合伪一级动力学模型,它们的颗粒吸附材料均符合伪二级动力学模型。对于氧化镁基颗粒吸附材料吸附游离脂肪酸来说,吸附过程主要受颗粒内扩散控制,但颗粒内扩散不是唯一的速率控制步骤。
     6.考察了海泡石、凹凸棒石的成型吸附材料对水溶液中钴离子的吸附性能,在最佳吸附条件下,钴离子的最大吸附量分别为:海泡石膜吸附材料13mg/g,凹凸棒石膜吸附材料12.7mg/g,海泡石颗粒吸附材料16.1mg/g,凹凸棒石颗粒吸附材料12.4mg/g。Langmuir吸附等温方程能够很好的描述凹凸棒石颗粒吸附材料对钴离子的吸附,Freundlich吸附等温方程能够很好的描述海泡石膜吸附材料和凹凸棒石膜吸附材料对钴离子的吸附,海泡石颗粒吸附材料吸附过程较为复杂,Langmuir和Freundlich等温式均不适用于描述其吸附行为。伪二级动力学方程能够很好地描述海泡石、凹凸棒石的成型吸附材料对水溶液中钴离子的吸附过程。颗粒内扩散方程的拟合说明颗粒内扩散不是唯一的控速步骤。
     7.考察了层状氢氧化镁铝膜吸附材料对水溶液中氟离子的吸附性能,发现随着膜吸附材料投加量的增加、时间延长,氟离子的脱除率随之增加。在最佳吸附条件下达到氟离子最大吸附量为2.65mg/g。Langmuir吸附等温方程能够很好的描述层状氢氧化镁铝膜吸附材料对氟离子的吸附,随着溶液pH值的升高,吸附能力下降。伪二级动力学方程能很好地描述层状氢氧化镁铝膜吸附材料对氟离子的吸附行为。颗粒内扩散方程的拟合说明吸附过程主要受颗粒内扩散控制,但颗粒内扩散不是唯一的速率控制步骤。
     上述研究结果表明,利用氧化镁基吸附材料成型制备的一系列吸附材料具有较好的吸附性能和广阔的应用前景。本研究中将有机聚合物作为载体固定吸附材料成型,并应用于生物柴油精制和污染物脱除领域,为粉末状吸附剂的大规模使用提供了新思路。
Four kinds of Magnesium Oxide based adsorption materials (magnesium silicate,sepiolite, palygorskite, layered double hydroxides(LDHs)’) have been investigated inthe shaping and their adsorption performance on water pollutants such as methyleneblue, cobalt ion, fluorinion and free fatty acids in biodiesel, which can solve thedefects of powder adsorbent such as high dispersibility, cannot be recycled and tend tobecome clogged.
     The physicochemistry properties of the obtained samples were characterizedwith FT-IR spectrometers, Scanning electron microscope, thermogravimetry andatomic force microscope. Their adsorption properties of water contaminants and freefatty acid were determined, moreover, the principle of kinetics in the adsorptionprocess was also studied, and the adsorption mechanism was discussed. The mainresearch contents and results are as follows:
     1. Prepared activated Magnesium Oxide based adsorption material by calcination,determined the suitable calcinate temperature after the investigation of adsorptionproperties, the physicochemistry properties of the obtained samples werecharacterized with modern analysis instruments, the results show that with theincrease of calcination temperature, the material surface changed, thus affecting theadsorption performance.
     2. Prepared hybrid membranes through blending calcinated magnesium silicate,sepiolite, palygorskite, layered double and PES/DMF respectively, and determinedsuitable proportion by the adsorption experiments:to adsorb methylene blue, sixmagnesium silicate added18%; to adsorb free fatty acid in biodiesel, magnesiumoxide based adsorption material adding amount is18%. To adsorb cobalt, sepiolitecontent is14%and attapulgite was18%; fluoride ion adsorption, Mg-Al layereddouble hydroxide added18%.
     Prepared molded particles through blending magnesium silicate, sepiolite, palygorskite, layered double and PVDF by extrusion granulation, and determinedsuitable proportion by the adsorption experiments: to adsorb methylene blue, sixmagnesium silicate added23%; to adsorb free fatty acid in biodiesel, magnesiumoxide based adsorption material adding amount is23%. To adsorb cobalt, sepiolitecontent is19%and attapulgite was23%.
     3. Through characterized with modern analysis instruments, we can foundmagnesium silicate, sepiolite, palygorskite and layered double hydroxides aredispersed in the adsorption material uniformly. The polymer plays the role of networkto fix adsorbent granules and with the increase of content of adsorbent, adsorptioncapacity changed accordingly.
     4. MB is selected as adsorption object to investigate the magnesium silicatemolded adsorbent’s adsorption, the effects of time, temperature, initial concentrationof MB and adsorbent dosage on adsorption properties were investigated. The resultsshow that, in the temperature range of the experiments, respectively, methylene blueadsorption maximum is: six magnesium silicate membrane:157mg/g, six magnesiumsilicate particles:85mg/g. The adsorption thermodynamics showed Frendlichadsorption model could describe the adsorption process and the studies of kineticsproved Pseudo second-dynamics equation could describe the adsorption behavior inthe experimental temperature range.
     5. Magnesium Oxide based molded adsorbent for the adsorption of free fattyacids in biodiese were investigated, we studied the effects of adsorption time,temperature, and adsorbent dosage on adsorption properties. Under the bestexperimental conditions, the maximum adsorption capacity is, respectively: sixmagnesium silicate membrane:210mg/g, sepiolite membrane:250mg/g, attapulgitemembrane:210mg/g, Mg-Al layered double membrane:455mg/g, six magnesiumsilicate particles:175mg/g, sepiolite particles:185mg/g, attapulgite particles:145mg/g, Mg-Al layered double hydroxide particles:218mg/g.The adsorptionthermodynamics showed Frendlich adsorption model could describe the adsorptionprocess. For magnesium silicate, both the hybrid membrane and shaped particles canbe described their adsorption behavior by Pseudo first-dynamics equation, and for LDHs, both the hybrid membrane and shaped particles can be described theiradsorption behavior by Pseudo second-dynamics equation. For sepiolite andpalygorskite, their hybrid membranes can be described by Pseudo first-dynamicsequation, and their shaped particles can be described their adsorption behavior byPseudo second-dynamics equation. Particle dispersion was the major controlling stepof adsorption rate but intra-particles diffusion was not the unique control step.
     6. Cobalt ion is selected as adsorption object to observe the molded adsorbent’sadsorption of sepiolite and palygorskite. Under the best experimental conditions, theadsorption of cobalt is, respectively: sepiolite membrane:13mg/g, attapulgitemembrane:12.7mg/g, sepiolite particles:16.1mg/g, attapulgite particles:12.4mg/g.The adsorption thermodynamics showed Langmuir adsorption model coulddescribe the adsorption process of palygorskite shaped particles and Frendlichadsorption model could describe the adsorption process of sepiolite and palygorskitehybrid membranes. For sepiolite, neither Langmuir nor Frendlich adsorption modelcould describe t the shaped particles for its complicated adsorption process. Thestudies of kinetics proved Pseudo second-dynamics equation could describe theadsorption behavior in the experimental temperature range and intra-particlesdiffusion was not the unique control step.
     7. Fluorinion adsorption on LDHs hybrid membranes was investigated. Theresults proved the rate of removal increased with increasing adsorbent dosage andadsorb time, and it was decreased with increasing pH value. Under the bestexperimental conditions, the maximum adsorption capacity of fluoride ions is2.65mg/g. The studies of kinetics proved Pseudo second-dynamics equation coulddescribe the adsorption behavior in the experimental temperature range andintra-particles diffusion was not the unique control step.
     The results of the study show that, a series of shaped Magnesium Oxide basedadsorption materials were prepared and they have good adsorption performance andwide application prospect. The organic polymer employed as network to fix theadsorption material, and the shaped Magnesium Oxide based adsorption materialsused to biodiesel refining and pollutant removal, which provides a new idea for the widely utilized of powder adsorbent.
引文
[1] Lin S, Akoh C C, Reynolds A E.Recovery of used frying oils with adsorbent combinations:refrying and frequent oil replenishment[J].Food Research International,2001,34(2-3):159-166.
    [2] Lee K T, Foglia T A, Chang K S.Production of alkyl ester as biodiesel from fractionatedlard and restaurant grease[J].Journal of the American Oil Chemists’Society,2002,79(2):191-195.
    [3] Farag R S, El-Anany A M.Improving the quality of fried oils by using different filteraids[J].Journal of the Science of Food and Agricolture,2006,86(13):2228-2240.
    [4] Yongqiang Wang,Dr.Guozhong Wang, Prof.,Hongqiang Wang, et a1.Chemical-TemplateSynthesis of Micro/Nanoscale Magnesium Silicate Hollow Spheres for Waste-WaterTreatment[J].Chemistry-A European Journal,2010,16(11):3497-3503.
    [5]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社,2004:95-150.
    [6]宜昌弘林华镁矿业投资有限公司.利用橄榄石尾矿制备高纯氢氧化镁及六硅酸镁的方法:中国,ZL:200910063283[P]2011-6-8.
    [7]陶华西、何建丽、张华湘、冯军.一种六硅酸镁的制备方法:中国,ZL:02160378[P]2005-3-16.
    [8] Filip Ciesielczyk, Andrzej Krysztafkiewicz, Teofil Jesionowski, Magnesium silicates–adsorbents of organic compounds[J]. Applied Surface Science.2007,253(20):8435–8442.
    [9] M.A. Varela, S.B. Driscoll, C.P. Grolman, N.R. Mehta. Synthetic magnesium silicate: Asingle-component/multi-functional modifier[J]. Journal of Vinyl Technology.1986,8(3):116-119.
    [10] Z. Acimovic, L. Pavlovic, L. Trumbulovic, L. Andric, M. Stamatovic. Synthesis andcharacterization of the cordierite ceramics from nonstandard raw materials for applicationin foundry[J]. Materials Letters.2003,57(18):2651-2656.
    [11] Haydn H Murray. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview[J]. Applied Clay Science.2000,17(5-6):207-221.
    [12] E. Galan. Properties and applications of palygorskite–sepiolite clays[J]. Clay Minerals.,1996,31:443–445。
    [13] H.H. Murray. Clays in industry and the environment[J].Proc.10th International ClayConference Adelaide, Australia.1995:49–55.
    [14]段雪,张法智等,插层组装与功能材料[M].北京:化学工业出版社,2007.
    [15] Kok-Hui Goh, Teik-Thye Lim, Zhili Dong. Application of layered double hydroxides forremoval of oxyanions: A review[J]. Water Research.2008,42(6-7):1343-1368.
    [16] Morel-Desrosiers, N., Pisson, J., Israeli, Y., Taviot-Gue′ho, C., Besse,J.P., Morel, J.P.Intercalation of dicarboxylate anions into a Zn–Al–Cl layered double hydroxide:microcalorimetric determination of the enthalpies of anion exchange[J]. Journal ofMaterials Chemistry.2003,13:2582–2585.
    [17] Marchi, A.J., Apestegu′a, C.R.. Impregnation-induced memory effect of thermallyactivated layered double hydroxides[J]. Applied Clay Science.1998,13(1):35–48.
    [18] Rocha, J., Del Arco, M., Rives, V., Ulibarri, M.A. Reconstruction of layered doublehydroxides from calcined precursors: a powder XRD and27A1MAS NMR study[J].Journal of Materials Chemistry.1999,9(10):2499–2503.
    [19] Erickson, K.L., Bostrom, T.E., Frost, R.L. A study of structural memory effects insynthetic hydrotalcites using environmental SEM[J]. Materials Letters.2005,59(2–3):226–229.
    [20] Carnes, C.L., Kapoor, P.N., Klabunde, K.J., Bonevich, J. Synthesis, characterization, andadsorption studies of nanocrystalline aluminum oxide and a bimetallic nanocrystallinealuminum oxide/magnesium oxide[J]. Chemistry of Materials.2002,14(7):2922–2929.
    [21] Choudary, B.M., Jaya, V.S., Reddy, B.R., Kantam, M.L., Rao, M.M.,Madhavendra, S.S.Synthesis, characterization, ion exchange, and catalytic properties of nanobinary andternary metal oxy/hydroxides[J]. Chemistry of Materials.2005,17(10):2740–2743.
    [22]赵芸,梁吉,李峰,段雪.纳米LDH作为热稳定剂在PMMA中的应用[J].应用化学,2003,20(4):382.
    [23]戴冬坡.银锌基防霉杀菌材料的制备和性能研究[学士学位论文].北京:北京化工大学,2005.
    [24]路燕罗.超分子结构层状锂锰氧化物的组装及其电化学性能研究[博士学位论文].北京:北京化工大学近代化学研究所,2005.
    [25] Yuan Q, Wei M, Evans D G, Duan X. Preparation and investigation of thermolysis ofL-aspartic acid-intercalated layered double hydroxide[J]. The Journal of PhysicalChemistry. B.2004,108(33):12381-12387.
    [26] Wei M,Shi S X, Wang J, Li Y, Duan X. Studies on the intercalation of naproxen intolayered double hydroxide and its thermal decomposition by in situ FT-IR and in situHT-XRD[J]. Journal of Solid State Chemistry.2004,177(7):2534-2541.
    [27] Wei M, Yuan Q, Evans D G, Wang Z Q, Duan X. Layered solids as a “molecular container”for pharmaceutical agents: L-tyrosine-intercalated layered double hydroxides[J]. Journalof Materials Chemistry.2005,15:1197-1203.
    [28]毛纡冰.表面原位合成法制备高分散镍催化剂及其催化加氢脱氯性能研究[硕士学位论文].北京:北京化工大学近代化学研究所,2005.
    [29] Miyata S. Anion-Exchange Properties of Hydrotalcite-Like Compounds[J]. Clays andClay Minerals.1983,31(4):305-311.
    [30] Kang, M.J., Chun, K.S., Rhee, S.W., Do, Y., Comparison of sorption behavior of I–andTcO4–on Mg/Al layered double hydroxide[J]. Radiochim. Acta.1999,85(1-2):57–63.
    [31] Toraishi, T., Nagasaki, S., Tanaka, S. Adsorption behavior of IO–3by CO2–3and NO–3-hydrotalcite[J]. Applied Clay Science.2002,22(1–2):17–23.
    [32] Zhang, M., Reardon, E.J. Removal of B, Cr, Mo, and Se from wastewater byincorporation into hydrocalumite and ettringite[J]. Environmental Science&Technology.2003,37(13):2947–2952.
    [33] Wang, S.L., Hseu, R.J., Chang, R.R., Chiang, P.N., Chen, J.H., Tzou, Y.M. Adsorptionand thermal desorption of Cr(VI) on Li/Al layered double hydroxide[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects.2006,277(1–3):8–14.
    [34] Yang, L., Dadwhal, M., Shahrivari, Z., Ostwal, M., Liu, P.K.T.,Sahimi, M., Tsotsis, T.T.Adsorption of arsenic on layered double hydroxides: effect of the particle size[J].Industrial&Engineering Chemistry Research.2006,45(13):4742–4751.
    [35] Ay, A.N., Zu¨ mreoglu-Karan, B., Temel, A. Boron removal by hydrotalcite-like,carbonate-free Mg–Al–NO3-LDH and a rationale on the mechanism[J]. Microporous andMesoporous Materials.2007,98(1–3):1–5.
    [36] Liu M., Yang J J., Wu G Q, et al. Performance and mechanism of Mg, Al layered doublehydroxides and layered double oxides for sulfide anion (S2–) removal[J]. Chinese JournalInorganic Chemistry.2006,22(10):1771–1777.
    [37] Lv L., He J., Wei, M., et al.. Factors influencing the removal of fluoride from aqueoussolution by calcined Mg–Al–CO3layered double hydroxides [J]. Journal of HazardousMaterials.2006,133(1–3):119–128.
    [38] Paredes, S.P., Fetter, G., Bosch, P., Bulbulian, S. Iodine sorption by microwave irradiatedhydrotalcites[J]. Journal of Nuclear Materials.2006,359(3):155–161.
    [39] Lehmann, M., Zouboulis, A.I., Matis, K.A. Removal of metal ions from dilute aqueoussolutions: a comparative study of inorganic sorbent materials[J]. Chemosphere.1999,39(6):881–892.
    [40] Seida, Y., Nakano, Y. Removal of phosphate in dissolution–coagulation process of layereddouble hydroxide[J]. Journal of Chemical Engineering of Japan.2001,34(7):906–911.
    [41] Lazaridis, N.K. Sorption removal of anions and cations in single batch systems byuncalcined and calcined Mg–Al–CO3hydrotalcite[J]. Water, Air, and Soil Pollution.2003,146(1–4):127–139.
    [42] Zhu, M.X., Li, Y.P., Xie, M., Xin, H.Z. Sorption of an anionic dye by uncalcined andcalcined layered double hydroxides: a case study[J]. Journal of Hazardous Materials.2005,120(1–3):163–171.
    [43] Bruna, F., Pavlovic, I., Barriga, C., Cornejo, J., Ulibarri, M.A. Adsorption of pesticidesCarbetamide and Metamitron on organohydrotalcite [J]. Applied Clay Science.2006,33(2):116–124.
    [44] Li, Y.J., Yang, M., Zhang, X.J., Wu, T., Cao, N., Wei, N., Bi, Y. J.,Wang, J. Adsorptionremoval of thiocyanate from aqueous solution by calcined hydrotalcite[J]. Journal ofEnvironmental Sciences.2006,18(1):23–28.
    [45] Cantu, M., Lopez-Salinas, E., Valente, J.S. SOx removal by calcined MgAIFehydrotalcite-like materials: effect of the chemical composition and the ceriumincorporation method[J]. Environmental Science&Technology.2005,39(24):9715–9720.
    [46]甘琦,周听,赵斌元,等.成型活性炭的制备研究进展[J].材料导报.2006,20(l):61-63.
    [47]彭跃莲,陈娜,沈婷,等.前驱体水解聚合法制备聚偏氟乙烯-硅膜吸附材料(Ⅱ)膜性能变化的原因分析[J].膜科学与技术,2007,27(4):18-25.
    [48] A Bottino, G Capannelli, V D'Asti, P Piaggio. Preparation and properties of novelorganic–inorganic porous membranes[J]. Separation and Purification Technology.2001,21-23(1):269-275.
    [49] A. Bottino, G. Capannelli, A. Comite. Preparation and characterization of novel porousPVDF-ZrO2composite membranes[J]. Desalination.2002,146(2-3):35-40.
    [50] D Panek, K Konieczny. Applying filled and unfilled polyether-block-amide membranes toseparation of toluene from wastewaters by pervaporation[J]. Desalination.2008,222(1-3):280-285.
    [51]李传峰,钟顺和.溶胶凝胶法合成聚酰亚胺二氧化钛膜吸附材料[J].高分子学报,2002,3:326-330.
    [52]张裕卿,张红柳,曲云.填充纳米SiO2对聚偏氟乙烯膜性能的影响[J].膜科学与技术,2007,27(6):47-51.
    [53]艾晓莉,胡小玲.有机-无机膜吸附材料的研究进展[J].化学进展,2004,16(4):654-659.
    [54] R. A. Zoppi, C.R. de Castro, I.V.P. Yoshida, S.P. Nunes. Hybrids of SiO2and poly(amide6-b-ethylene oxide)[J]. Polymer,1997,38(23):5705-5712.
    [55]李传锋,邵怀启,钟顺和.有机无机膜吸附材料材料的制备技术[J].化学进展,2004,16(1):83-89.
    [56] M A Zulfikar, A Wahab Mohammada, A A Kadhum, et al. Synthesis and characterizationof poly(methyl methacrylate)/SiO2hybrid membrane [J]. Materials Science andEngineering A.2007,452-453:422-426.
    [57] M A Zulfikara, A Wahab Mohammada, N Hilalb.Preparation and characterization of novelporous PMMA-SiO2hybrid membranes[J].Desalination.2006,192(1-3):262-270.
    [58]杨亚楠,王鹏,郑庆柱.溶胶-凝胶法制备聚砜/二氧化钛有机-无机杂化超滤膜[J].化学学报,2006,64(6):569-573.
    [59] Baglio, V., Aricò, A.S., Di Blasi, A., et al. Nafion-TiO2composite DMFC membranes:Physico-chemical properties of the filier versus electrochemical performance[J].Electrochimica Acta,2005,50(5):1241-1246.
    [60] Saccà, A., Carbone, A., Passalacqua, E., et al. Nafion-TiO2hybrid membranes for mediumtemperature polymer electrolyte fuel cells (PEFCs)[J]. Journal of Power Sources,2005,152(1-2):16-21.
    [61] Rhee, C.H., Kim, Y., Lee, J.S., et al. Nanocomposite membranes of surface-sulfonatedtitanate and Nafion for direct methanol fuel cells[J]. Journal of Power Sources,2006,159(2):1015-1024.
    [62] Huamin Z,Yunfeng Z, Yu Z, Xing D. A novel H3PO4/Nafion–PBI compositemembrane for enhanced durability of high temperature PEM fuel cells[J]. Journal ofPower Sources.2007,169(2):259-264.
    [63] Sairam, M., Patil, M.B., Veerapur, R.S., et al. Novel dense poly(vinylalcohol)-TiO2mixedmatrix membranes for pervaporation separation of water-isopropanol mixtures at30℃[J].Journal of Membrane Science.2006,281(1-2):95-102.
    [64] Kariduraganavar, M.Y., Varghese, J.G., Choudhari, et al. Organic-inorganic hybridmembranes: Solving the trade-off phenomenon between permeation flux and selectivity inpervaporation[J]. Industrial and Engineering Chemistry Research.2009,48(8):4002-4013.
    [65] Liu J S,Ma Y,Zhang Y P,Shao G Q. Novel negatively charged hybrids.3. Removal ofPb2+from aqueous solution using zwitterionic hybrid polymers as adsorbent[J]. Journal ofHazardous Materials.2010,173(1-3):438-444.
    [66] Chiu H C,Liu C H,Chen S C,Suen S Y. Adsorptive removal of anionic dye byinorganic–organic hybrid anion-exchange membranes[J]. Journal of Membrane Science.2009,337(1-2):282-290.
    [67] T. Suzuki, Y. Watanabe, G. Ozawa, S. Ikeda. Removal of soluble organics and manganeseby a hybrid MF hollow fiber membrane system[J]. Desalination.1998,117(1-3):119–129.
    [68]余清,杨运财,罗培军.生物柴油研究与生产中涉及的分析技术概述[J].中国油脂,2011,36:51-56.
    [69] Berrios M, Skeltion R L. Comparison of purification methods for biodiesel[J]. ChemicalEngineering Journal.2008,144(3):459-465.
    [70]刘云,陈文,邓利.生物柴油工艺技术[M].北京:化学工业出版社,2011:4-25.
    [71] Jon Van Gerpen. Biodiesel processing and production[J]. Fuel Processing Technology.2005,86(10):1097–1107.
    [72] Ma, F., Clements, L.D., Hanna, M.A.. The effects of catalyst,free fatty acids and water ontransesterification of beef tallow[J]. Industrial Agricultural Products Center.1998,41(5):1261-1264.
    [73] Berrios M, Martín M A, Chica A F, et al. Purification of biodiesel from used cookingoils[J]. Applied Energy.2011,88(11):3625-3631.
    [74]石富华,黎四芳,王兆守.阳离子交换树脂催化酸性油脂酯化脱酸[J].化学工程,2009,37(6):37-58.
    [75] Faccini CS, Cunha ME, Moraes MSA, Krause LC, Manique MC, Rodrigues MRA,et al.Dry washing in biodiesel purification: A comparative study of adsorbents[J]. Journal ofthe Brazilian Chemical Society.2011,22(3):558–563.
    [76] R. A. Yates, J. D. Caldwell, E. G. Perkins. Diffuse reflectance fourier transform infraredspectroscopy of triacylglycerol and oleic acid adsorption on synthetic magnesiumsilicate[J]. Journal of the American Oil Chemists' Society.1997,74(3):289-292.
    [77] Y. Bayrak. Application of Langmuir isotherm to saturated fatty acid adsorption[J].Microporous and Mesoporous Materials.2006,87(3):203-206.
    [78] D. R. Taylor, C. B. Ungermann, Z. Demidowicz. The adsorption of fatty acids fromvegetable oils with zeolites and bleaching clay/zeolite blends[J]. Journal of the AmericanOil Chemists’Society.1984,61(8):1372-1379.
    [79] A. Proctor,S. Palaniappan. Adsorption of soy oil free fatty acids by rice hull ash[J].Journal of theAmerican Oil Chemists’Society.1990,67(1):15-17.
    [80]美国达拉斯集团公司.通过连续的再生吸附方法纯化生物柴油:中国CN101939068A[P].2009-02-06.
    [81]任树梅.水资源保护[M].北京:中国水利水电出版社,2012.
    [82] G. McKay, G. Ramprasad, P. Pratapa Mowli. Equilibrium studies for the adsorption ofdyestuffs from aqueous solutions by low-cost materials[J]. Water, Air, and Soil Pollution.1986,29(3):273-283.
    [83] G. McKay, H. S. Blair, J. R. GardnerAdsorption of dyes on chitin. I. Equilibriumstudies[J]. Journal of Applied Polymer Science.1982,27(8):3043-3057.
    [84] E.B. Susan, J.O. Trudy, B. Mark, A.D. Dean。 A review of potentially low-cost sorbentfor heavy metals[J]. Water Research.1999,33(11):2469–2479.
    [85] A. Netzer, D.E. Hughes. Adsorption of copper, lead and cobalt by activated carbon[J].Water Research.1984,18(8):927–9331.
    [86] C. Gomez-Lahoz, F. Garcia-Herruzo, J.M. Rodriguez-Maroto, J.J. Rodriguez. Cobalt(II)removal from water by chemical reduction with sodium borohydride[J]. Water Research.1993,27(6):985–992.
    [87] LB Zhao, GH Liang, DN Zhang, XR Wu. Effect of a high fluoride water supply onchildren's intelligence[J]. Fluoride.1996,29(4):187-260.
    [88] N. Parthasarathy, J. Buffle, W. Haerdi. Combined use of calcium salts and polymericaluminium hydroxide for defluoridation of waste waters[J]. Water Research.1986,20(4):443–448.
    [89] L. Ruixia, G. Jinlong, T. Hongxiao. Adsorption of fluoride, phosphate, and arsenate ionson a new type of ion exchange fiber[J]. Journal of Colloid and Interface Science.2002,248(2):268–274.
    [90] T Wajima, Y Umeta, S Narita, K Sugawara. Adsorption behavior of fluoride ions using atitanium hydroxide-derived adsorbent[J]. Desalination.2009,249(1):323–330.
    [91] M. Tsuji, M. Abe. Possible radiochemical separations of anionic radionuclides byamorphous hydrous titanium dioxide[J]. Journal of Radioanalytical and NuclearChemistry.1986,102(2):283–294.
    [92] M. Tsuji, M. Abe. Selective uptake of toxic elements by an amorphous titanium dioxideion exchanger[J]. Journal of Radioanalytical and Nuclear Chemistry.1991,149(1):109–118.
    [93] S. Tokunaga, M.J. Haron, S.A. Wasay, et al. Removal of fluoride ions from aqueoussolutions by multivalent metal compounds[J]. International Journal of EnvironmentalStudies.1995,48(1):17–28.
    [94] H. Lounici, L. Adour, D. Belhocine, A. Elmidaoui, B. Bariou, N. Mameri. Noveltechnique to regenerate activated alumina bed saturated by fluoride ions[J]. ChemicalEngineering Journal.2001,81(1-3):153–160.
    [95] J.J. Schoeman, H. Macleod.The effect of particle size and interfering ions on fluorideremoval by activated alumina[J]. Water S.A.1987,13(4):229–234.
    [96] M. Kanesato, T. Yokoyama, T.M. Suzuki. Selective adsorption of fluoride ion byLa(III)-loaded chelating resin having phosphonomethylamino groups[J]. ChemistryLetters.1988,17(2):207–210.
    [97] M.J. Haron, W.M.Z. Yunus, S.A. Wasay, et al. Sorption of fluoride ions from aqueoussolutions by a yttrium-loaded poly(hydroxamic acid) resin[J]. International Journal ofEnvironmental Studies.1995,48(3-4):245–255.
    [98] A. Yuchi, K. Matsunaga, T. Niwa, H. Terao, H. Wada. Separation and preconcentration offluoride at the ng ml1level with a polymer complex of zirconium(IV) followed bypotentiometric determination in a flow system[J]. Analytica Chimica Acta.1999,388:201–208.
    [99] J. Nomura, H. Imai, T. Miyake. Removal of Fluoride Ion from Wastewater by a HydrousCerium Oxide Adsorbent.[M]. Emerging Technologies in Hazardous Waste Management,1990.
    [100]张盼.硅酸镁在生物柴油生产过程中的应用:[硕士学位论文].青岛:中国海洋大学,2013.
    [101]杨华.硅镁胶的制备表征及其吸附性能研究:[博士学位论文].青岛:中国海洋大学,2013.
    [102]吴英华,孟杰,任凤莲,等.二甲酚橙分光光度法测定微量钴[J].怀化医专学报,2008,7(1):8~10.
    [103]中华人民共和国国家标准. GB7484-87水质-氟化物的测定-离子选择电极法.北京:中国标准出版社,1987.
    [104] GB/T5530-2005,动植物油脂酸值和酸度的测定[S].
    [105]黄文强.吸附分离材料[M].北京:化学工业出版社,2005.
    [106] Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbonnanomaterials[J]. Environmental Science&Technology,2006,40(6):1855-1861.
    [107] Nestle N F E I, Kimmich R. NMR imaging of heavy metal absorption in alginate,immobilized cells, and kombu algal biosorbents[J]. Biotechnology and Bioengineering,1996,51(5):538-543.
    [108] Guibal E, Saucedo I, Roussy J. Uptake of uranyl ions bynew sorbing polymers:Discussionof adsorption isotherms and pH effect [J]. Reactive Polymer,1994,23(2-3):147-156.
    [109] Jossens L, Prausnitz J M, Fritz W. Thermodynamics of multi-solute adsorption from diluteaqueous-solutions[J]. Chemical Engineering Science,1978,33(8):1097-1106.
    [110] Hill T L. Theory of multimolecular adsorption from a mixture of gases[J]. Journal ofChemical Physics,1946,14:268-275.
    [111] Polanyi M. Adsorption of gases by a non-volatile adsorbent[J]. Verhandlungen derDeutschen Physikalischen Gesellschaft,1916,18(2-3):55-80.
    [112] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum[J].Journal of American Chemistry Society,1918,40:1361-1403.
    [113] Freundlich H. Concerning adsorption in solutions[J]. Zeitschrift fur PhysikalischeChemie-Stochiometrie und Verwandtschaftslehr,1906,57:385-470.
    [114] Giles C H, Mac Evan T H, Nakhawa S W, et al. Studies in adsorption. Part XI. A systemof classification of solution adsorption isotherms, and its use in diagnosis of adsorptionmechanisms and in measurement of specific surface areas of solids[J]. Journal ofChemical Society.1960,3:3973-3993.
    [115] Trivedi H C, Patel V M, Patel R D. Adsorption of cellulose triacetate on calciumsilicate[J]. European Polymer Journal,1973,9(6):525-531.
    [116] Weber Jr W J, Morris J C. Kinetics of adsorption on carbon from solution[J]. Journal ofSanitary Engineering Division-ASCE,1963,89(2):31-59.
    [117] Toylor H A, Thon N. Kinetics of chemisorption[J]. Journal of American ChemistrySociety,1952,74(4):4169-4174.
    [118] Courchesne F, Hendershot W H. Kinetics of sulfate desorption from two spodosols of thelaurentians, Quebec[J]. Soil Science,1990,150(6):858-866.
    [119] Chute J H, Quirk J P. Diffusion of potassium from mica-like clay minerals[J].Nature,1967,213(5081):1156-1157.
    [120] Lagergren S, Svenska B K. Zur theorie der sogenannten adsorption geloester stoffe[J].Veternskapsakad Handlingar,1898,24(4):1-39.
    [121] Ho Y S, McKay G. Sorption of dye from aqueous solution by peat[J]. ChemicalEngineering Journal.1998,70:115~124.
    [122] McKay G, Otterburn M S, Aga J A. Fuller's earth and fired clay as adsorbents fordyestuffs[J]. Water, Air, and Soil Pollution.1985,24(3):307-322.
    [123] Mohana S V, Raoa N C, Karthikeyan J. Adsorptive Removal of Direct Azo Dye fromAqueous Phase onto Coal Based Sorbents: a Kinetic and Mechanistic Study[J]. Journal ofHazardous Materials.2002, B90:189204.
    [124] Lopez T,Marmolejo R,Asomoza M,et a1.Preparation of a Complete Series of SinglePhase Homogeneous Sol-Gels of A12O3and MgO for Basic Catalysts[J]. MaterialsLetters.1997,32(5):325-334.
    [125]王浩水,刘维国,张文郁等.固体碱碱性质对丙二醇甲醚合成反应的影响[J].石油化工,2006,35(6):561-565.
    [126]王芳珠,杨坤,柴永明等.以镁铝水滑石为前驱体制备复合氧化物催化丙酮气相缩合反应[J].无机化学学报,2008,24(9):1417-1423.
    [127] Mu-Tsun Tsai. Synthesis of nanocrystalline enstatite fiber via alkoxide sol-gel process[J].Journal of the American Ceramic Society.2005,88(7):1770-1772.
    [128] Amanpreet Kaur Sandhua, Surinder Singha. Om Prakash Pandeyb. Neutron irradiationeffects on optical and structural properties of silicate glasses[J]. Materials Chemistry andPhysics,2009,115:783-788.
    [129] Elena V. Kalinkina, Alexander M. Kalinkin, Willis Forsling. Sorption of atmosphericcarbon dioxide and structural changes of Ca and Mg silicate minerals during grinding[J].International Journal of Mineral Processing.2001,61:289-299.
    [130] A. Chahi, S. Petit, A. Decarreau. Infrared evidence of dioctahedral-trioctahedral siteoccupancy in palygorskite[J]. Clay Miner.2002,50(3):306-313.
    [131] M. Suarez, E. Garcia-Romero. FTIR spectroscopic study of palygorskite: Influence of thecomposition of the octahedral sheet[J]. Applied clay science.2006,31(1-2):154-163.
    [132] P. Tarte, J. Preudhom. Infrared studies of spinels—V. Lithium spinels of the typeLiXY4O8[J]. Spectrochim. Acta A.1973,29(7):1301-1312.
    [133] A. S. Povarennykh. The use of infrared spectra for the determination of minerals[J].American Mineralogist.1978,63:956-959.
    [134] Maria J. Hernandez-Moreno, María A. Ulibarri, J. L. Rendon, Carlos J. Serna. IRcharacteristics of hydrotalcite-like compounds[J]. Physics and Chemistry of Minerals.1985,12(1):34-38
    [135] D. L. Bish and G. W. Brindley. A reinvestigation of takovite, a nickel aluminumhydroxy-carbonate of the pyroaurite group[J]. American Mineralogist.1977,62:458-464.
    [136]刘德镒.陕西宁强海泡石及其成因的初步研究[J].矿物学报.1986,6(3):273-277.
    [137] Constantino V R L,Pinnavaia T J. Basic Properties of Mg2+3+1-xAlxLayered DoubleHydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions[J].Inorganic Chemistry.1995,34:883-892.
    [138] Duval J M, Folkers B, Mulder M H V, et al. Adsorbent filled membranes for gasseparation. Part1. Improvement of the gas separation properties of polymeric membranesby incorporation of microporous adsorbents[J]. Journal of Membrane Science.1993,80:189-198.
    [139] Chandak M V, Lin Y S, Ji W, et al. Sorption and diffusion of VOCs in DAY zeolite andsilicalite-filled PDMS membranes[J]. Journal of Membrane Science.1997,133:231-243.
    [140] Dotremont C, Brabants B,Geeroms K, et al. Sorption and diffusion of chlorinatedhydrocarbons in silicalite–filled PDMS membranes [J]. Journal of Membrane Science.1995,104:109-117.
    [141]郑贵堃,张玉忠,丁晓莉,等.树脂001×7填充PES膜吸附水中重金属离子的研究[J].天津工业大学学报.2011,30(2):1-6.
    [142]徐纪平,倪玉山,闻久绵,等.4,4-二羟基二苯砜二钾盐与4,4-二氯二苯砜的溶液缩聚[J].高分子通讯.1977,5(10):266-273.
    [143]闻久绵,汪爱群,牟敦彩,等.在二甲亚砜介质中合成聚芳砜的研究[J].应用化学.1980,3:43-48.
    [144] Rose J B. Preparation and properties of poly (arylene ether sulphones)[J].Polymer.1974,15(7):456-465.
    [145]周其凤,范星河,谢晓峰.耐高温聚合物及其复合材料[M].化学工业出版社.2004.
    [146]徐又一,徐志康等.高分子膜材料[M].化学工业出版社.2005.
    [147]王银叶,单杰,张春青. X分子筛-硅藻土复合吸附剂对废水中亚甲基蓝吸附性能的研究[J].工业用水与废水.2009,40(5):53-56.
    [148]赵振国.吸附作用应用原理[M].北京:化学工业出版社.2005.
    [149] Andrzej Krysztafkiewicz, Lidia Karolina Lipska, Filip Ciesielczyk, Teofil Jesionowski.Amorphous magnesium silicate-synthesis,physicochemical properties and surfacemorphology[J]. Advanced Powder Technol.,2004,15(5):549–565.
    [150]魏秋兰.柴油-生物柴油混合燃料互溶性与溶胀性研究[J].公路与汽运.2008,5:11-13.
    [151] Berrios M, Skeltion R L. Comparison of purification methods for biodiesel[J]. ChemicalEngineering Journal.2008,144(3):459-465.
    [152]刘云,陈文,邓利.生物柴油工艺技术[M].北京:化学工业出版社,2011.
    [153] EN14214-2003, Automotive fuels-fatty acid methyl esters (FAME) for dieselengines-requirements and test methods[S].
    [154] GB/T20828-2007,柴油机燃料调合用生物柴油(BD100)[S].
    [155] ASTMD6751-2002, Standard specification for biodiesel fuel (B100) blend stock fordistillate fuels[S].
    [156]闵恩泽,姚志龙.近年生物柴油产业的发展-特色、困境和对策[J].化学进展,2007,19(7-8):1050-1059.
    [157]詹予忠,朱小丽,李玲玲,等.硅胶负载氧化锆的吸附除氟研究[J].郑州大学学报(工学版),2007,28(4):20-23.
    [158]黄怡,高乃云,周雪松.改性滤料除氟技术的探讨[J].工业水处理,2003,23(4):6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700