高性能MnZn铁氧体材料的制备及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MnZn铁氧体材料是现代电子工业及信息产业的基础材料。随着通讯技术、计算机技术的飞速发展,对MnZn铁氧体材料提出了越来越高的要求。按应用特征MnZn铁氧体可以分为三大类型,即功率铁氧体、高磁导率铁氧体和抗电磁干扰铁氧体。目前,功率铁氧体正朝着高频率、低损耗方向发展,高磁导率铁氧体则朝着磁导率更高、频率稳定性更好的发展方向发展。本文将主要对具有优良性能的功率铁氧体和高磁导率铁氧体的制备技术和机理进行研究。
    本文首先从MnZn铁氧体的晶格结构分析出发,理论上解释了MnZn铁氧体磁性的来源;然后利用分子场理论,研究了MnZn铁氧体材料的分子磁矩、居里温度、饱和磁感应强度等电磁参数与MnZn铁氧体磁性能的关系;最后从磁畴理论出发,研究了MnZn铁氧体的损耗和磁导率的机理,提出了降低MnZn铁氧体损耗和提高磁导率的方法,为制备高性能MnZn铁氧体材料打下理论基础。
    本文还研究了MnZn铁氧体材料的制备工艺过程,指出了MnZn铁氧体制备工艺中应该注意的问题。首先对MnZn铁氧体的形成机理进行了分析,并对MnZn铁氧体形成的固相反应动力学进行了研究;然后分析了MnZn铁氧体在烧结过程中的物理化学变化,研究了烧结工艺对MnZn铁氧体磁性能的影响,提出了制定MnZn铁氧体烧结工艺的原则。
    对功率MnZn铁氧体而言,在分析了MnZn铁氧体磁滞损耗、涡流损耗和剩余损耗的基础上,指出制备高性能功率MnZn铁氧体材料的关键工艺在于掺杂和烧结工艺的控制,在此基础上,对制备高性能功率MnZn铁氧体材料的掺杂和烧结工艺进行了深入研究。首先,研究了各种杂质CaCO3、SiO2、TiO2、ZrO2、Ta2O5、Er2O3等杂质对功率铁氧体磁损耗的影响,并对杂质的作用机理进行了研究。研究结果发现加入适量的上述杂质均可以有效降低功率铁氧体材料的磁损耗,其原因在于杂质离子在铁氧体的晶界处大量聚集,在晶界形成了1-10um厚的高电阻率晶界绝缘层,提高了铁氧体的电阻率,从而降低铁氧体的磁损耗。其次,研究了SnO2杂质对铁氧体材料的磁性能的影响,并改进了铁氧体工艺,将加入SnO2杂质时间提前,并降低预烧温度,改进后的工艺可以进一步降低MnZn铁氧体的高频损耗。其原因在于部分的Sn4+离子
    
    
    部分取代Fe3+离子进入铁氧体晶格,提高了铁氧体晶粒内部的电阻率;另一部分的Sn4+离子与Ca2+、Si4+、Nb5+和V5+等离子一起形成具有高电阻率晶界层,提高了铁氧体晶界的电阻率,降低了铁氧体的涡流损耗。然后,研究了纳米CaCO3和SiO2对MnZn功率铁氧体材料的影响,研究结果表明加入纳米材料有助于MnZn功率铁氧体材料的晶粒均匀生长,并阻止其他杂质离子进入铁氧体材料的晶格,而在晶界层富集,形成高电阻率的晶界层,降低了铁氧体材料的涡流损耗,提高了铁氧体材料的性能。最后,研究了烧结工艺对功率铁氧体材料磁性能的影响,在最佳烧结温度和平衡气氛下烧结可以得到高性能的功率铁氧体。
    对高磁导率MnZn铁氧体而言,高磁导率的关键在于选择合适的配方和掺杂,并辅于适当的烧结工艺。选择合适的配方,在适当的掺杂和烧结工艺条件下就可以制得为15K的高磁导率MnZn铁氧体材料。适量的有效杂质Bi2O3、MoO3、PbO、Co2O3和B2O3都可以促进铁氧体的晶粒生长,提高烧结密度,并提高磁导率。
MnZn ferrite is the key materials of modern electronic industry and information industry. With the rapid development of telecommunication and computer technology, MnZn ferrite is required for better performance. According to application characteristic, MnZn ferrite can be divided into three kinds, power ferrite, high permeability ferrite and EMI ferrite. Now the power ferrite is developing to use in higher frequency with lower power loss. For high permeability ferrite, higher initial permeability with better stability is needed. For this reason, this dissertation presents a deeply study on the preparation technology and mechanism of high properties MnZn ferrite.
    The magnetic origin of MnZn ferrite can be interpreted by the crystal structure of MnZn ferrite. The relationship between magnetic parameters such as magnetic torque, Courier temperature, saturation magnetic inductin, et al, and magnetic properties of MnZn ferrite have been studied using theory of Neer molecular field. The mechanism of MnZn ferrite magnetic characteristics, such as loss and initial permeability is discussed from the concept of magnetic domain. The methods of lowering power loss and improving the initial permeability are indicated.
    The preparation technology of MnZn ferrite is discussed. Some aspects of preparation technology should be considered completely. The formation mechanism and solid reaction kinetics of MnZn ferrite is studied. The effect of sintering parameters such as sintering temperature, atmosphere, cooling speed, on the MnZn ferrite magnetic properties is also discussed.
    The key technology for preparation low power loss MnZn ferrite is added in proper content dopants and sintered under optimal sintering condition. The effect of dopants CaCO3、SiO2、TiO2、ZrO2、Ta2O5、Er2O3 on the magnetic properties of power MnZn ferrite is systematically studied. The results showed that the magnetic loss of MnZn ferrite is lowered with containing proper content dopants in MnZn ferrite. From studying the microstructure of MnZn ferrite contained these dopants, the conclusion is drawn that the
    
    
    dopants atoms are enriched in the grain boundaries and developed a high ρlayer to lower the eddy current loss. The effect of SnO2 on the magnetic properties of MnZn ferrite is also studied. At this moment, the calcinations temperature is decreased. High properties MnZn ferrite is obtained. SnO2 added to MnZn ferrite dissolves in the ferrite grain during sintering and induces an excess amount of Fe2+, which form stable Fe2+-Sn4+ pairs. These pairs do not participate in the hopping mechanism and improve the grainρ. Part Sn4+ ion with the other ion enriched in the grain boundaries and developed a high ρlayer to lower the eddy current loss. The effect of nano-SiO2 and CaCO3 addition on the power loss of MnZn ferrites is investigated ultimately. The MnZn ferrite with nano-dopants can produce uniform grain structure and decrease the hysteresis and eddy current losses. These losses are thought to originate from the additive effect of Si atoms, which are enriched in grain boundaries to form a high resistivity layer and prevent Ca and Nb atoms being incorporated with the spinel lattice. High properties MnZn ferrite can be gained by sintering at optimum sintering temperature and equilibrium atmosphere.
    The key technology for preparation high initial permeability MnZn ferrite is chosen proper component, added in proper content dopants and sintered under optimal sintering condition. The effect of dopants Bi2O3、Mo2O3、PbO、Co2O3 and B2O3 on the magnetic properties of high permeability MnZn ferrite is systematically studied. The results showed that the permeability and density of MnZn ferrite is increased with containing proper content dopants in high permeability MnZn ferrite, for these dopants can promote grain growth.
引文
陈国华. 21世纪软磁铁氧体材料和元件发展趋势. 磁性材料及器件, 2001, 32(4): 34-36
    陆明岳. MnZn铁氧体最新进展及其发展趋势. 磁性材料及器件, 2001, 32(5): 27-33
    何水校. 锰锌铁氧体材料的未来发展动向. 磁性材料及器件, 2001, 32(6): 27-30
    刘玉红. 软磁铁氧体材料的现状及其发展趋势. 材料导报, 2000, 14(7): 30-31
    徐泽玮. 电源技术中应用的软磁材料发展回顾与分析(一). 金属功能材料, 2001, 8(5): 1-7
    Lu J. W. Application and analysis of adjustable profile high frequency switch mode transformer having a U-shaped winding structure. IEEE Trans. Magn., 1998, 34(4): 1345-1347
    Takadate K., Yamamoto Y., Makino A. et al. Fine grained MnZn ferrites in the high driving. J. Appl. Phys., 1998, 83(11): 6861-6863
    Stoppels D. Develompents in soft magnetic power ferrites. J. Magn. Magn. Mater., 1996, 160: 323-328
    Sugimoto M. The past, present, and future of ferrites. J. Amer. Ceram. Soc., 1999, 82(2): 269-280
    Roess E. Soft magnetic ferrites and applications in the telecommunication and power converters. IEEE Trans. Magn., 1982, 18: 1529-1534
    Koenig U. Improved manganese zinc ferrites for power transformers. IEEE Trans. Magn., 1975, 11: 1306-1308
    阎鑫, 胡小玲, 岳红, 等. 雷达吸收剂材料的研究进展. 材料导报, 2001, 15(1): 62-64
    步文博, 徐洁, 丘泰, 等. 吸波材料的基础研究及微波损耗机理的探讨. 材料导报, 2001, 15(5): 14-17
    Kim D. Y., Chung Y. C., Kang T. W., et al. Dependence of microwave absorbing property on ferrite volume fraction in MnZn ferrite-rubber composites. IEEE Trans.
    
    
    Magn., 1996, 32(2): 555-558
    Taylor J. A. T., Reezek S. T., Rosen A. Soft ferrite processing. Amer. Ceram. Soc. Bulletin, 1995, 74(4): 91-94
    Inaba H. Nonstoichiometry and its effect on the magnetix properties of a Manganese zinc ferrites. J. Amer. Ceram. Soc., 1995, 78(11): 2907-2912
    Aeshak K. I., Egan D. P., Phelan K. Using statistical design of experiment to investigate the effect of firing parameters on the electrical and magnetic properties of MnZn ferrite. Microelectronics Reliability, 2002, 42: 1127-1132
    Pannaparayil T., Marande R., Komarneni S. Magnetic properties of high density MnZn ferrites. J. Appl. Phys., 1991, 69(8): 5349-5351
    Kilbride I. P., Freer R. Effect of sintering enclosure and sintering parameters on the magnetic properties of a high permeability Manganese zinc ferrites. IEEE Trans. Magn., 2000, 36(1): 375-380
    Gallagher P. K., Gyorgy E. M., Johnson D. W. Relation between magnetic permeability and stoichiometry of Mn0. 510Zn0. 417Fe2. 073O4+δ. Ceramic Bulletin, 1978, 57(9): 812-814
    Makove D., Drofenik M., Znidarsic A. Sintering and microstructure development MnZn ferrite podwers prepared by hydrothermal synthesis from oxides. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 743-745
    Zaag P. J. ver der. New views on the dissipation in soft magnetic ferrites. J. Magn. Magn. Mater., 1999, 196/197: 315-319
    Sakaki Y., Matsuoka T. Relationship between dimensions and power losses of high permeability MnZn ferrites core. Paper of Technical Group on Power Electrics, IECE, Japan, 1985, 24(1): 28-30
    Akasi T., Sugano I., Okuda T., et al. Sintering of coprecipitated Manganese zinc ferrites powder. In Ferrites: Proceeding of the International Conference, ed. Hoshio Y., Iida S. and Sugimoto M. University of Tokyo Press, Tokyo, Japan, 1971: 96-98
    Liu C. S., Wu J. M. Optimum power loss and microstructure of MnZn ferrites under consideration of particle size. IEEE Trans. Magn., 1996, 32(5): 4860-4862
    
    Stuijts A. L. Control of microstructures in ferrites. In Ferrites: Proceeding of the International Conference, ed. Hoshio Y., Iida S. and Sugimoto M. University of Tokyo Press, Tokyo, Japan, 1971: 108-112
    Arcos D., Valenzuela R., Vazquez M. Frequency behaviour of MnZn ferrites particles obtained by high energy ball milling. J. Magn. Magn. Mater., 1999, 203: 319-321
    Fatemi D. J., Harris V. G., Browning V. M., et al. Processing and cation redistribution of MnZn ferrites via high energy ball milling. J. Appl. Phys., 1998, 83(11): 6867-6869
    李自强, 李春, 何良惠, 等. 软磁材料锰锌铁氧体共沉粉料的研制. 四川联合大学学报(工程科学版), 1997, 1(5): 23-29
    刘素琴, 左晓希, 桑桑斌, 等. 锰锌铁氧体纳米晶的水热制备研究. 磁性材料及器件, 1999, 31(2): 12-16
    Rath C., Sahu K. K., Anand S., et al. Prepqration and characterization of nanosize MnZn ferrite. J. Magn. Magn. Mater., 1999, 202: 77-84
    Carsten B. Why a magnetics designer should measure core loss; with a surve of loss measurement techniques and low cost, high accuracy alternative. Proceeding of PCIM, Nurnberg, Germany, 1995: 163-179
    TDK, Inc. Handbook of Product, 2001
    TOKIN, Inc. Handbook of Product, 1997
    PHILIPS, Inc. Handbook of Product, 1996
    SIMENS, Inc. Handbook of Product, 2000
    宛德福, 马兴隆. 磁性物理学(修订本). 北京: 电子工业出版社, 1999
    Kaczmarek R., Bouguila L., Sadarnac D. Magnetic loss in MnZn ferrite under trapezoidal 1 MHz voltage supply. J. Magn. Magn. Mater., 1996, 160: 49-50
    Tung M. J., Chang W. C., Liu C. S., et al. Study of loss mechanisms of MnZn ferrites in the frequency from 1 MHz to 10 MHz. IEEE Trans. Magn., 1993, 29(6): 3526-3528
    Cardelli E., Fiorucci L., Torre E. D. Estimation of MnZn ferrite core losses in magnetic components at high frequency. IEEE Trans. Magn., 2001, 37(4): 2366-2368
    Zhu J., Tseng K. J., Foo C. F. Effects of Muti-segment structure on core losses in
    
    
    MnZn ferrites at high frequency. IEEE Trans. Magn., 2000, 36(5): 3408-3410
    张友刚, 黄永杰, 罗迪民. 磁性材料. 成都: 成都电讯工程学院出版社, 1988
    Otsuki E., Yamada S., Otsuka T., et al. Microstructure and physical properties of MnZn ferrites for high frequency power supplies. J. Appl. Phys., 1991, 69(8): 5942-5944
    Znidarsic A., Limpel M., Drofenik M. Effect of dopants on the magnetic properties of MnZn ferrites for high frequency power supplies. IEEE Trans. Magn., 1995, 31(2): 950-953
    Akashi T. Effect of the addition of CaO and SiO2 on the magnetic characteristics and microstructure of MnZn ferrites. Trans. Jpn. Inst. Met, 1961, 2: 171-176
    Otsuka T. Otsuki E., Sato T., et al. Effect of additives on the magnetic properties and microstructure of MnZn ferrites for high frequency power supplies. Proceeding of the Sixth International Conference on Ferrites (ICF6). Kyoto and Tokyo, Japan. 1992: 317-320
    Nishiyama T., Kanai K., Iimura T., et al. Analysis of loss on MnZn ferrites containing CaO. Adv. Ceram., 1985, 16: 491-495
    Znidarsic A., Drofenik M. High resistivity grain boundaries in CaO-doped MnZn ferrites for high frequency power application. J. Amer. Ceram. Soc., 1999, 82(2): 359-365
    Znidarsic A., Drofenik M., Zajc I. High resistivity grain boundaries in CaO-doped MnZn ferrites for high frequency power application. J. Appl. Phys., 1997, 82(9): 333-340
    Franken P. E. C., Stacy W. T. Examination of grain boundaries of MnZn ferrites by AES and TEM. J. Amer. Ceram. Soc., 1980, 63: 315-319
    Sundahi R. C., Ghate B. B., Homes R. J., et al. Grain boundary chemistry and magnetic properties of MnZn ferrite. Adv. Ceram., 1981, 1: 502-511
    Otobe S., Yachi Y., Hashimoto T., et al. Development of low loss MnZn ferrites having the fine Microstructure. IEEE Trans. Magn., 1999, 35(5): 3409-3411
    Paulus M. Properties of grain boundaries in spinel ferrites. Mater. Sci. Res. 1966, 3: 31-47
    
    Jeong G. M., Choi J., Kim S. S. Abnormal grain growth and magnetic loss in MnZn ferrites containing CaO and SiO2. IEEE Trans. Magn., 2000, 36(5): 3405-3407
    Yan M. F., Johnson D. W. Impurity induced abnormal grain growth in MnZn ferrite systems. J. Amer. Ceram. Soc., 1978, 61: 458-465
    Inaba H., Abe T., Kitano Y., et al. Magnetic properties and the grain boundary structure of MnZn ferrites with the addition of Nb2O5. J. Magn. Magn. Mater., 1994, 133: 487-489
    Rao A. D. P., Ramesh B., Rao P. R. M., et al. Magnetic and microstructureal properties of Sn/Nb substituted MnZn ferrites. J. Alloys and Compounds, 1999, 282: 268-273
    S Chen. H., Chang S. C., Tsay C. Y., et al. Improvement on magnetic power loss of MnZn ferrites materials by V2O5 and Nb2O5 co-doping. J. Euro. Ceram. Soc., 2001, 21: 1931-1935
    Chen S. H., Tsay C. Y., Chang S. C., et al. Improvement on magnetic power loss of MnZn ferrites materials by co-doping V2O5 and Nb2O5 additives. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 573-575
    Kojima T., Sato N., Minakawa T., et al. SnO2 substituted MnZn ferrite with low power loss. Podwer and Podwer Metallurgy, 1996, 43(1): 31-35
    Minakawa T., Sato N., Nomura T. Core loss of MnZn ferrite with added SnO2. 日本应用磁气协会志, 1996, 20(2): 497-500
    Kobayashi O., Yamada O., Ito K., et al. Frequency characteristics of SnO2 addition to MnZn ferrite with Fe-poor composition. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 515-517
    Jeong W. H., Shin M. S., Song B. M., et al. Effect of TiO2 addition on the residual loss of MnZn ferrites. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 564-566
    Shambalev V. N., Pankov V. V., Bashkirov L. A. Influence of Titanium additions on the compensation of magnetic anisotropy in MnZn ferrties. J. Magn. Magn. Mater., 1990, 88: 387-388
    
    Lin Y. C., Gan D., Shen P. Phase transformation of ZrO2 in MnZn ferrite under Magnetic field. J. Amer. Ceram. Soc., 1996, 79(2): 559-561
    Y Lin. C., Gan D., P Shen. Microstructure of Zirconia MnZn ferrites compoites. Mater. Sci. Eng., 1994, 188: 327-334
    C Liu. S., Wu J. M., Chen C. J., et al. Effect of Er2O3 addition on microstructure and physical properties of MnZn ferrites for high power use. J. Appl. Phys., 1994, 75(10): 6112-6114
    Liu C. S., Wu J. M., Chen C. J., et al. Power loss properties of MnZn ferrites containing Er2O3. J. Magn. Magn. Mater., 1994, 133: 478-480
    Mizushima T., Makino A., Inoue A. The effect of rare earth metal oxide addition on magnetic properties of MnZn ferrite. Proceeding of the Sixth International Conference on Ferrites (ICF6). Kyoto and Tokyo, Japan. 1992: 1221-1223
    Knowles J. E. Magnetic after-effects in ferrite substituted with titanium or tin. Philips Res. Repts, 1974, 29: 93-118
    Guyot M., Globus A. Determination of the domain wall erengy and the exchange constant from hystersis in ferromagnetic polycrystals. J. Appl. Phys., 1977, 38 (4): 157-168
    许定胜, 方勇. 锰锌铁氧体中Fe2O3、Mn3O4和ZnO的匹配. 中国锰业, 2000, 18(1): 44-46
    许定胜, 胡邦成. 高纯氧化铁中杂质元素对锰锌铁氧体性能的影响. 中国锰业, 1996, 14(4): 28-30
    温彩云. 软磁铁氧体粉料均匀性的改善. 江苏陶瓷, 2000, 33(4): 21-22
    Li H. H., Feng Z. K., He H. H., et al. Effect of Fe2+ content in raw materials on MnZn ferrite magnetic properties. J. Magn. Magn. Mater., 2001, 237: 153-157
    高瑞平. 纳米材料和技术的研究和展望. 材料导报, 2001, 15(5): 5-6
    张立德. 我国纳米材料技术应用的现状和产业化的机遇. 材料导报, 2001, 15(7): 2-5
    张立德, 牟季美. 纳米材料和纳米结构. 北京: 科学出版社, 2001
    Nie J. H., Gong R. Z., Feng Z. K., et al. Effect of nanosize dopants on the magnetic properties of low pwer loss MnZn ferrite. Composite Materials Ⅲ, Key Engineering
    
    
    Materials, 2003, 249: 377-380
    Nie J. H., Li H. H., Feng Z. K., et al. The effect of nano-SiO2 on the magnetic properties of MnZn ferrites. J. Magn. Magn. Mater., 2003, 265: 172-175
    聂建华, 冯则坤, 谭福清, 等. 纳米SiO2对锰锌铁氧体材料磁性能的影响. 华中科技大学学报(自然科学版), 2003, 31(6): 23-25
    聂建华, 李海华, 冯则坤, 等. 纳米杂质对MnZn铁氧体材料性能的影响. 磁性材料及器件, 2003, 34 (3): 14-16
    Byeon S. C., Hong K. S., Kim I. T., et al. Line width of manganese zinc ferrite polycrystals with oxygen partial pressure. J. Appl. Phys., 1998, 83(11): 6873-6875
    Fano W. G., Jacobo S. E., Razzitte A. C. Effect of sintering conditions on resistivity and dielectric properties of MnZn ferrites. Conference on Electrical Insulation and Dielectric Phenonmena. 1999: 297-300
    Znidarsic A., Drofenik M. Influence of oxygen partial pressure during sintering on the power loss of MnZn ferrites. IEEE Trans. Magn., 1996, 30(3): 1941-1945
    Reijnen P. J. L. Sintering behavior and microstructure of aluminates and ferrites with spinel structure with regard to the deviation from stoichimetry. Sci. Ceram. 1968, 4: 169-188
    Drofenik M. Microstructure engineering of power ferrites. J. Microelectron. Comp. and Mater., 1994, 24(1): 28-30
    Tanaka T. Equilibrium oxygen pressures of MnZn ferrites J. Amer Ceram. Soc., 1981, 64(7): 419-421
    Morineau R., Paulus M. Oxygen partial pressures of MnZn ferrites. J. Appl. Phys., 1974, 13(8): 1235-1237
    Yasuhara K., Takagawa K. The effect of cooling conditions in sintering process on magnetic properties and mocrostructure of MnZn ferrites. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 393-395
    Michalowsky L., Ludwig K. P. MnZn ferrites with improved magnetic and mechanical properties by optimized sintering in new batch kiln. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 22-24
    
    Chen S. H., Chang S. C., Lin I. N., et al. Effect of sintering parameters on the Zn loss for preparation of high permeability MnZn ferrites. IEEE Trans. Magn., 1992, 28(5): 2436-2438
    Lin I. N., Mishra R. K., Thomas G. Controlled atmosphere annealing of high permeability MnZn ferrite. IEEE Trans. Magn., 1986, 22(5): 175-181
    Morineau R., Paulus M. Oxygen partial pressures of MnZn ferrites. Phys. Stat. Sol., 1976, (12): 559-568
    Morineau R., Paulus M. Chart of PO2 versus temperature and oxidation degree for MnZn ferrites in the composition range 50    邓尚斌. MnZn铁氧体烧结工艺研究. 磁性材料及器件, 1996, 27(1): 50-53
    兰中文, 余忠, 王京梅, 等. 工艺条件对MnZn功率铁氧体性能的影响. 功能材料, 2000, 31(5): 486-487
    Kuroda T., Saita H., Sato N., et al. Effect of sintering atmosphere on characteristics of grain boundary in MnZn ferrites. J. Japn. Soc. Powder and Powder Metallurgy., 2000, 47(7): 763-767
    Roess E., Hanke I., Moser E. MnZn ferrite with initial permeability of over 20000 and their structure. Z. Angew. Phys., 1964, 17(7): 504-508
    Roess E. Magnetic properties and microstructure of high permeability MnZn ferrites. Ferrites Proceeding of the International Conference. 1966: 105-108
    松良尾夫, 望月武史, 佐佐木勇, 等. MnZnフェラィトの低损失化. 日本应用磁气协会志, 1971, 4(2): 429-432
    安原克志. 日本应用磁气协会志, 1995, 19(2): 417-420
    Shichijo Y. Magnetic properties of sintered ferrites of a MnO-ZnO-Fe2O3 ternary system. Trans JIM., 1961, 2(4): 204-210
    Ohta K. Magnetostriction Constant of Mn-Zn-Fe ferrites. J. Appl. Phys., 1964, 3(10): 576-579
    Drofenik M., Znidarsic A., Makovec D. Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites. J. Amer. Ceram. Soc., 1998, 81(11): 2841-2848
    
    Kopaev V., Kirichok P. P., Garmash V. Y., et al. Cation distributioan in MnZn ferrites with added Bismuth oxide. J. Appl. Phys., 1978, 49(9): 4902-4907
    Brooks K. G., Berta Y., Amarakoon V. R. W. Effect of Bi2O3 on the impurity ion distribution and electrical resistivity of MnZn ferrites. J. Amer. Ceram. Soc., 1992, 75(11): 3065-3069
    Andrei P., Caltun O. F., Papusoi C., et al. Losses and magnetic properties of Bi2O3 doped MnZn ferrites. J. Magn. Magn. Mater., 1999, 196/197: 362-364
    Dreikorn J., Michalowsky L. Influence of Bi2O3 on the Microstructure of high permeability MnZn ferrites. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 554-555
    Ono K., Mastuo Y., Ishikura M. Microstructure of MnZn ferrite on MoO3 addition. 日本应用磁气协会志, 1998, 22(4-2): 661-664
    Matsuo Y., Ono K., Ishikura M. Effect of MoO3 addition on MnZn ferrites. IEEE Trans. Magn., 1997, 33(5): 3751-3753
    Yasuhara K., Horino K., Nomura T., et al. Magnetic properties of high permeability MnZn ferrites. J. Magn. Soc. Jpn. 1995, 19: 417-419
    Ono K., Fukunaga S., Matsuo Y., et al. MnZn ferrites with MoO3 and other oxide additives. IEEE Trans. Magn., 1999, 35(5): 3406-3408
    Jain G. C., Das B. K., Goel N. C. Effect of MoO3 addition on the grain growth kinetics of a MnZn ferrite. J. Amer. Ceram. Soc., 1979, 62(1-2): 79-85
    Shichijo Y., Tsuya N., Suzuki K. Initial permeability characteristics of Vanadium doped MnZn ferrites. J. Appl. Phys., 1961, 32(3): 386-387
    Aoyama T., Hirota K., Yamaguchi O. Characterization and low temperature sintering of reactive MnZn ferrite podwer. J. Amer. Ceram. Soc., 1996, 79(10): 2792-2794
    Miyoshi Y., N Okamoto., Kageyama K. Preparation of MnZn ferrites having fine grain size. J. Jpn. Soc. Podwer & Podwer Metal., 1992, 39(11): 1011-1014
    Fujimoto M. Inner stress induced by Cu metal precipitation at grain boundary in low temperature fired Ni-Cu-Zn ferrites. J. Amer. Ceram. Soc., 1994, 77(11): 2873-2878
    Zhang H. G., Li L. T., Wu P. G., et al. Investigation on structure and properties of low temperature sintered composite ferrites. Materials Research Bulletin, 2000, 35:
    
    
    2207-2215
    Liu C. S., Wu J. M., Lin I. N., et al. High power use MnZn ferrites with monodomain structure prepared by low temperature sintering. J. Appl. Phys., 1996, 79(8): 5432-5434
    周志刚. 铁氧体磁性材料. 北京: 科学出版社, 1981
    北京大学物理系《铁磁学》编写组. 铁磁学. 北京: 科学出版社, 1976
    戴道生, 钱昆明. 铁磁学(上册). 北京: 科学出版社, 1992
    李荫远, 李国栋. 铁氧体物理学. 北京: 科学出版社, 1978
    Ross E. Microstructure and properties of manganese zinc. Z. Angew. Phys., 1961, 13: 2474
    钟文定. 铁磁学(中册). 北京: 科学出版社, 1992
    林其壬. 铁氧体工艺原理. 上海: 上海科学技术出版社, 1987
    Roess E. Manufacturing problems and quality assurance in the production of soft ferrites. J. Magn. Magn. Mater., 1984, 86: 576-579
    Roess E. Magnetic properties and microstructure of high permeability MnZn ferrites. FERRITES, 1970, 7: 203-209
    Hon Y. S., Ko Y. C. The two step sintering of MnZn ferrites. Proceeding of the Sixth International Conference on Ferrites (ICF6). Kyoto and Tokyo, Japan. 1992: 35-308
    Nomura T., Okatani K., Kitagawa T., et al. Sintering of MnZn ferrites for Power electronics. Amer. Ceram. Soc. Bulletin, 1982, 61(8): 809-812
    Wager U. Aspects of the correlation between raw material and ferrite properties. J. Magn. Magn. Mater., 1981, 23: 73-78
    Yan M. F., Johnson D. W. Impurity induced exaggerated grain growth in MnZn ferrites. J. Amer. Ceram. Soc., 1978, 61(7): 342-349
    Nakata A., Chihara H., Sasaki A. Microscopic study of grain boundary regions in polycrystalline. J. Appl. Phys., 1985, 35(6): 4177-4179
    Brook R. J. Pore-grain boundary interaction and grain growth. J. Amer. Ceram. Soc., 1969, 52(1): 56-57
    Zegadi L., Rousseau J. J., Allard B., et al. Model of power soft MnZn ferrites, including temperature effect. IEEE Trans. Magn., 2000, 36(4): 2022-2032
    
    Chen S. H., Chang S. C., Lin I. N. The influence of grain boundary internal stress on permeability: temoerature curve for MnZn ferrites. J. Magn. Magn. Mater., 2000, 209: 193-196
    Ravinder D., Latha K. Electrial conductivity of MnZn ferrites. J. Appl. Phys., 1994, 75(10): 6118-6120
    Rosales M. L., Valenzuela O. A., Valenzuela R. Microstructure dependence of AC magnetic properties in MnZn ferrites. IEEE Trans. Magn., 2001, 37(4): 2373-2376
    Zenger M., Bogs M., Lucke R., et al. High quality ferrite production. Amer. Ceram. Soc. Bulletin, 1995, 74(8): 77-81
    Matsuo Y., Ono K., Hashimoto T. Magnetic properties and mechanical strength of MnZn ferrite. IEEE Trans. Magn., 2001, 37(4): 2369-2372
    Sakamoto H., Harada K., Washimiya S., et al. Large air gap coupler for inductive charge. IEEE Trans. Magn., 1999, 35(5): 3526-3528
    Rath C., Anand S., Das R. P., et al. Dependence on cation distribution of particle size, lattice, and magnetic properties in nanosize MnZn ferrite. J. Appl. Phys., 2002, 91(4): 2211-2215
    Drofenik M., Znidarsic A., Makovec D. Ca redistribution in MnZn ferrite Grain boundaries during heat treatment in a reducing atmosphere. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 530-532
    Hirota K., Inoue O. Sodium doped MnZn ferrites-microstructure and properties. Ceram. Bull., 1987, 66(12): 1755-1758
    浙江大学等. 硅酸盐物理化学. 北京: 中国建筑工业出版社, 1980
    南京化工学院等. 陶瓷物理化学. 北京: 中国建筑工业出版社, 1981
    叶瑞伦. 无机材料物理化学. 北京: 中国建筑工业出版社, 1986
    姚学标, 胡国光, 尹萍, 等. 制备超高磁导率MnZn铁氧体的若干关键技术研究. 功能材料, 2001, 32(3): 245-247
    艾树涛, 胡国光. 高磁导率MnZn铁氧体的配方和烧结工艺的研究. 安徽大学学报(自然科学版), 1999, 23(1): 31-36
    陆明岳. 高磁导率MnZn铁氧体TL13材料的研制. 磁性材料及器件, 1999, 30(2): 34-38
    
    顾建成. 铁氧体烧结工艺中的一些普遍问题及研究. 磁性材料及器件, 1994, 25(1): 11-14
    Tawfik A., Olofa S. A. The diffusion coefficient of vacanicies and jump length of electrons in zinc doped manganese ferrite J. Magn. Magn. Mater., 1997, 174: 133-136
    Chen S. H., Chang S. C., Lin I. N. Zinc loss of MnZn ferrite sintered under alumina plate. IEEE Trans. Magn., 1996, 32(5): 4857-4859
    Hellicar N. J., Sicignano A. Dynamic role of zinc oxide in the sintering of manganese zinc ferrites. J. Amer. Ceram. Soc., 1982, 61(4): 502-505
    Sainamthip P., Amaramoon V. R. W. Role of zinc volatilization on the microstructure development of manganese zinc ferrites. J. Amer. Ceram. Soc., 1988, 71(8): 644-648
    Condurache D., Pasnicu C., Luca E. On the kinetics of vaporization of Zn loss in the sintering process of ferrites. J. Amer. Ceram. Soc., 1985, 65(6): 157-161
    Pigram A. J., Freer R. The effect of binder additions on the green and sintered properties of MnZn ferrite ceramics. Ceramics International, 1995, 21: 33-41
    Chol G., Auradon J. P., Damay F. Influence of sintering condition on the densification of manganese zinc ferrites. IEEE Trans. Magn., 1969, 5(3): 281-285
    陆明岳. 高频低功耗功率铁氧体TP4材料的研制与生产. 磁性材料及器件, 1999, 30(1): 49-53
    Ishino K., Narumiya Y. Development of magnetic ferrites: control and application of losses. Ceramic Bulletin, 1987, 66(10): 1469-1474
    Han P., Skutt G. R., Zhang J., et al. Finite element method for ferrite core loss calculation. IEEE Trans. Magn., 1995, 31(2): 348-353
    Inoue K., Ono K., Otobe S., et al. Decreasing core loss of MnZn ferrite. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 582-584
    Inoue O., Matsutani N., Kugimiya K., et al. Low loss MnZn ferrites: frequency dependence of minimum power loss temperature. IEEE Trans. Magn., 1993, 29 (6): 3532-3534
    Tsay C. Y., Liu K. S., Lin I. N. Improvement on power loss properties of MnZn ferrites by microwave sintering process. Proceeding of the Eighth International
    
    
    Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 585-587
    Yamada S., Chiba T., Konde K. et al. Analysis of temperature dependent eddy current loss and residual loss in MnZn ferrites for power supplies. Proceeding of the Eighth International Conference on Ferrites (ICF8). Kyoto and Tokyo, Japan. 2000: 556-560
    Matysko M., Krupicka S. Calculation of the eddy current loss in a ferrite core. J. Magn. Magn. Mater., 1996, 157/158: 469-470
    D Jiles. C., Atherton D. L. Theory of ferromagnetic hysteresis. J. Appl. Phys., 1984, 25(6): 2215-2119
    Rousseau J. J., Zegadi L., Tenant P. A complete hysteresismodel for soft ferrites. Proc. IEEE Power Electron. Baveno, Italy, 1996: 322-328
    张晓兵, 单德悦, 尹涵春. 偏转磁芯铁氧体材料的磁滞损耗分析. 真空科学与技术, 2001, 21(2): 105-108
    Ott G., Wrba J., R Lucke. Recent developments of MnZn ferrites for high permeability applications. J. Magn. Magn. Mater., 2003, 254/255: 535-537
    廖绍彬. 高磁导率软磁铁氧体材料的应用. 电子元器件应用, 2000, 2(7): 19-20
    顾建成. 高磁导率软磁铁氧体材料的研制动向. 电子材料, 1993, 11: 1-5
    Nitta A., Nakamura H., Komatsu T., et al. Interface reactions between SiO2-PbO-MO ternary system and manganese zinc ferrites. J. Appl. Phys., 1992, 71(4): 1992-1999
    Nitta A., Nakamura H., Komatsu T., et al. Interface reactions between silicon-lead oxide glass and manganese zinc ferrites. J. Amer. Ceram. Soc., 1989, 72(8): 1351-1354
    Liu C. S., Cheng C. J., Tung M. J., et al. Effect of PbO-BO-SiO2 glass on preparation of low loss MnZn ferrites. IEEE Trans. Magn., 1992, 28(5): 2441-2443
    Zaag P. J. ver der, Ruigrok J. J. M., Noordermeer A., et al. The initial permeability of polycrystalline MnZn ferrites: the influence of domain and microstructure. J. Appl. Phys., 1993, 74(6): 4085-4095

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700