基于PS-FB-ZVZCS的稀土电解电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,随着各国“稀土价格战”的不断升级,国内有关部门及稀土行业对稀土的开采和电解越发重视,作为电解稀土用的电解电源又一次被提上议程。
     IGBT具有体积小、反应速度快、反向恢复时间短、功耗小等优点。稀土电解电源采用IGBT作为开关管,解决了以往电解稀土用的可控硅整流电源体积大、效率低等缺点。同时,采用IGBT作为开关管,提高了开关电源频率,优化了电源的输出性能。
     通过对移相全桥软开关(FB-ZVZCS)的拓扑结构以及大、中功率开关电源副边整流回路的研究分析和探讨比较,确定了主电路原边采用串联饱和电感和阻断电容的FB-ZVZCS拓扑结构,主电路副边采用全波整流方式。主电路原边串联饱和电感,缩短了变换器的换流时间,防止了占空比的丢失;串联阻断电容,帮助了原边电流复位,同时还具有防止高频变压器偏磁的作用。
     建立了稀土电解电源损耗模型,分析了稀土电解电源中IGBT开关管、高频变压器及副边整流二极管等器件的损耗情况,根据此,选择了稀土电解电源中有关主要器件的型号和参数,计算了单个模块在某一个工作点的效率,预测了稀土电解电源的效率。结果表明,此种模型计算预测的效率与实测计算的效率相差不到50W。根据器件损耗的不同,结合主电路的拓扑结构,对稀土电解电源热回路进行了设计。
     分析了稀土电解电源系统中产生电磁干扰的原因,并对产生电磁干扰的干扰源进行了分析和处理。从磁性器件入手,设计和优化了高频变压器和饱和电感等磁性器件,减小了磁性器件本身对电源的干扰以及磁性器件相互间的干扰。除此之外,对电源系统中的其他干扰源及易受干扰的部位采用屏蔽、吸收等方法进行处理,从而提高了电源系统的稳定性及电磁兼容性能。
     研制了一台输入电压380V,输出电压0~15V可调,输出电流0~15000A的稀土电解电源样机,采集和分析了超前臂和滞后臂的电压电流波形,验证了超前臂的零电压(ZVS)开通以及滞后臂的零电流(ZCS)关断,实现了稀土电解电源在全工作范围内的软开关;对稀土电解电源的整机效率进行了测试和计算,结果表明,此稀土电解电源效率可达81%以上。
Recently, with the prices of RE(rare earth) accelerating, domestic relating departments and RE industry have put more emphasis on the extraction and electrolysis of the rare earth. Power source that is used to electrolyze has been put on the agenda.
     Since IGBT has the advantages of small volume, rapid response, short reverse time and low power dissipation, rare earth power employ the IGBT as its power switches, which solves the disadvantage of the large volume and high power dissipation of the silicon control rectifier of the traditional power. Moreover, with the higher switching frequency, this power optimizes the performance of the output.
     Through analysis and comparison of the Phase Shift- Full Bridge- Zero Voltage Zero Current Switching (PS-FB-ZVZCS) topology and the secondary rectifier circuit of high power source, this paper employ the PS-FB-ZVZCS topology. The primary inductor of its main circuit is in series with blocking capacitor and saturated inductor. The saturation inductor helps accelerate commuting and prevent the loss of duty ratio, while the blocking capacitor helps the reset of the primary current and prevent the high-frequency transformer from magnetic saturation.
     The model of the electrolysis power for rare earth and the analysis of the power dissipation of the IGBT, transform, diodes used to rectifier has been proposed in this paper. According to that, the accurate type and parameters of the main devices has been chosen. This paper has predicted the efficiency of this converter through computing the efficiency of one module and the results shows that the error between the computing efficiency and the experiment efficiency is less than 50W. Considering both the topology of the main circuit and different power dissipation of devices, the thermal circuit of the electrolysis power has been
     designed. This paper has analyzed the cause of the electro-magnetic-interference (EMI), and attenuated the EMI sources. Firstly, the saturation inductor of the transform has been optimized, which helps reduce the interference of the system and the magnetic devices. Besides, other EMI sources has been shielded or absorbed, which helps enhance the stability of the electrolysis power.
     An electrolysis power of 380V input, 0~15V and 0~15000A output has been designed. The waveform of the voltage and current of the leading-leg switches and the lag-leg switches verified that this system has achieved the soft switching in full range. The computing results and the experiments of the electrolysis power verified that its efficiency is larger than 81%.
引文
[1]刘余九.中国稀土产业现状及发展的主要任务.中国稀土学报,2007,25(3):258-260.
    [2]高艳青.电力电子器件发展与展望.电脑与电信,2007,10:15-17.
    [3]程建忠,车丽萍.中国稀土资源开采现状及发展趋势.稀土,2010,31(2):66-67.
    [4]颜世宏,李宗安.我国稀土金属产业现状及发展前景.稀土,2005,2:81-86.
    [5] Guichao. An improved full-bridge zero-voltage- switched PWM converter using a saturable inductor. IEEE Trans On Power Electronics . 1993,8(4):530-534.
    [6]陈延明,王志强,曹彪,黄石生.一种新型的移相软开关变换电路.电力电子技术,1999,(1):12-14.
    [7] K.Chen and T.A.Stuart,1.6KW, 10khz dc/dc converter optimized for IGBTs. IEEE Trans.on Power Electronics, 1993,8(1):18-25.
    [8] Cho J G,Baek J W,Yoo D W,etal. Novel zero voltage and zero current switching(ZVZCS)full bridge PWM converter usingtransformer auxiliary winding[J]. IEEE Transactions on PowerElectronics,2000,15(2):250-257.
    [9] Xu Feng , Xu Dianguo , Liu Yuxiu.A novel zero-voltage and zero current-switching(ZVZCS) full-bridge PWM converter[J].Proceedings of the CSEE,2004,24(1):147-152.
    [10] Jung G. Cho and Geun H. Rim. Zero Voltage and Zero Current Switching Full Bridge PWM Converter Using Secondary Active Clamp. APEC’1996 :657-663.
    [11] Cheng Shu,Chen Tefang,Yu Mingyang. A novel FB-ZVZCS PWM converter using improved secondary active clamping circuit[J]. Proceedings of the CSEE,2008,28(12):44-49.
    [12] Hang-Seok Choi,J.H.Lee and B.H.Cho. Analysis and design considerations of zero-voltage and zero-current-switching (ZVZCS) full-bridge PWM converters. IEEE APEC,2002:1835-1840.
    [13] Sun Tiecheng,Wang Hongjia,Zhang Xueguangetal. A novel ZVZCS converter using passive clamp circuit[J]. Proceedings of the CSEE,2006,26(17):72-76.
    [14] Serban BǐrcǎGǎlǎteanu and JeanLouis Cocquerelle. IEEE Transactions on Circuits and System-I. Fundamental Theory and Applications,1995,42(2):83-94.
    [15] Carl Blake,Dan Kinzer,Peter Wood. Synchronous Reetifiers Versus Schottlres Diodes. APEC’1994:17-23.
    [16] Ruan Xinbo,Yan Yangguang. A novel zero voltage and zero current switching PWM full bridge converter using two diodes in series with the lagging leg[J]. IEEE Transactions on Industrial Electronics,2001,48(4):777-785.
    [17] Yung C.Liang,Ramesh Oruganti and Tiong B.Oh. IEEE Transactions on Power Electronics. 1995,10(3):388-395.
    [18]阮新波,严仰光.直流开关电源的软开关技术.北京:科学出版社,2000:222-227.
    [19]汤广福,温家良,贺之渊,查鲲鹏,邱宇峰.大功率电力电子装置等效试验方法及其在电力系统中的应用[J].中国电机工程学报,2008,28(36):1-2.
    [20]杨有涛,刘姣宏,杨荣,郭瑜.低压大容量逆变器功率损耗的一种估算方法[J].电气传动自动,2009,31(3):54-56.
    [21]陈兆岭,郑宏,邵学军,庞伟民,涂鹤宁.电化学整流电源损耗实用计算方法.江苏大学学报(自然科学版),2003,24(2):75-77.
    [22]郑利军,任天良,姜燕. PWM方式开关电源中IGBT的损耗分析.电力电子技术,1999,10(5):58-60.
    [23]曹建安,裴云庆,王兆安. Boost PFC电路中开关器件的损耗分析与计算.电工电能新技术,2002,21(1):41-44.
    [24]洪峰,单任仲,王慧贞,严仰光.一种逆变器损耗分析与计算的新方法[J].中国电机工程学报,2008,28(15):72-78.
    [25]陈桂文,张周胜,肖登明.大功率高压高频变压器模式和损耗分析.变压器,2009,46(1):16-19.
    [26]张晓兵,单德悦,尹涵春.偏转磁芯铁氧体材料的磁滞损耗分析.真空科学与技术,2001,21(2):105-107.
    [27] Lloyd H Dixon,Jr. High power factor preregulators for off-line power supplies [A]. Unitrode Power Supply Design Seminar,SEM-700 [C].1990:I2-1-I2-16.
    [28]沙占友,王彦朋,马洪涛,李玮.开关电源优化设计.北京:中国电力出版社,2009:299-308.
    [29]张占松,蔡宣三.开关电源的原理与设计[修订版].北京:电子工业出版社, 2007:109-116.
    [30] Philips Components. Magnetic Products Soft Ferrites Data Handbook Maol. 1996.
    [31] Zhang Wei,M.T.Zhang,F.C.Lee. Conducted EMI analysis of a boost PFC circuit. USA:Proc.of IEEE PESC’97. 1997:223-229.
    [32]何光平.开关电源电磁骚扰分析及抑制.电视技术,2004,(3):60-62.
    [33]王会立.开关电源的电磁兼容设计[J].电源技术应用,2003,(4):20-23.
    [34]何宏,魏克新,王红君,李丽.开关电源电磁兼容性.北京:国防工业出版社,2008:114-115.
    [35]杨智敏,李晔.开关电源EMC设计.移动电源与车辆,2002,(1):11-13.
    [36] Haroran Zhang , Annette von Jouanne. Suppressing Com-mon-Mode Conducted EMI Generated by PWM DriveSystems Using a Dual-Bridge Inverter [C]. Proc. Of IEEE APEC’98. 1998:1017-1020.
    [37] L.B.Gravelle,P.F.Wilson. EMI/EMC in printed circuit board—A literature review. IEEE Trans.on Electromagnetic Compatibility,1992,34(2):109-116.
    [38] Mark I.Montrose.电磁兼容和印刷电路板理论、设计和布线.北京:人民邮电出版社,2002:19-22.
    [39] Giulio Antonini,saverio Cristian,Antonini Orlandi. EMC characterization of SMPS devices : Circuit and radiated emission model. IEEE Transom Electromagnetic Compatibility,1996,38(3):300-309.
    [40]张军明,谢小高,吴新科等. DC/DC模块有源均流技术研究.中国电机工程学报,2005,25(19):30-36.
    [41] T.S. Anandhi,S.P. Natarajan,T. Anitha. UC3907 ASIC and TMS320F2407A DSP based control of paralleled Buck DC-DC converters .in proc. IEEE Indicon, 2005:472-475.
    [42]高承博,赵龙章.一种新型开关电源的并联均流技术的实现方法.通讯电源技术,2009,26(6):35-38.
    [43]符赞宣,瞿文龙,张旭.平均电流模式DC/DC变换器均流控制方法.清华大学学报,2003,43(3):337-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700