微电网用双向DC/DC变换器损耗及效率优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双向DC/DC变换器作为微电网系统电力储能环节的重要组成部分,对微电网稳定运行非常重要,而其损耗和效率直接关系到变换器能否健康运行,同时与经济效益密切相关,因此研究微电网用双向DC/DC变换器的损耗和效率问题具有很高的实用价值。本文以一台双向DC/DC样机主电路为效率优化对象,针对功率器件、磁性元件和滤波电容三类器件在实际电路中所存在的损耗问题,开展了双向DC/DC变换器的损耗及效率优化的研究。本文主要研究内容如下:
     设计出了满足样机指标的双向DC/DC变换器拓扑结构,并采用常规计算方法,从实现DC/DC基本功能出发,计算出了主电路各部分参数,包括高频变压器、反激绕组、滤波电容和功率器件。所设计的电路拓扑和参数将作为损耗和效率优化研究的对象和入口参数。
     分析了快恢二极管和IGBT的开关过程,得出了其损耗的近似表达式和影响因素,并对硬开关双向DC/DC进行了功率器件损耗实验。采用有损缓冲和软开关这两种损耗优化方案,并做实验对比,重点讨论了充电ZVZCS和放电ZVS软开关实现条件和主要电路模态,提出了软开关辅助参数迭代优化策略,得出了优化结果,并通过实验证明了该参数迭代优化方法的正确性。
     讨论了磁芯损耗和绕组损耗的产生原因和影响因素,分析了双向DC/DC变换器中变压器和反激绕组的工作波形与损耗计算方法,并对双向DC/DC进行了磁性元件损耗实验。提出了变压器和反激绕组的损耗优化方案,并进行了实验对比,从发热、效率、成本和体积等方面综合考虑,选择出了最优的解决方案,使变换器性能显著提升。
     分析了电容等效损耗模型,得出了双向DC/DC两个滤波电容的不同的损耗表达式,并进行了滤波电容损耗实验。提出了三种滤波电容的损耗优化方案,并从损耗、整机效率、纹波电压、成本和体积等多方面进行了实验对比,确定了综合性能最优的方案,同时实现了电容低温升、高效率、低纹波、低成本和小体积。
     综上所述,本文以微电网用双向DC/DC变换器为优化对象,提出了功率器件、磁性元件和电容损耗的优化方法,采用实验对比的方法证明了优化方法的有效性,为电路进一步降低热耗、提高效率和提升功率密度提供了思路和依据。
As the key component of microgrid's electric power storage system, the bi-directional DC/DC converter is of great significance to the grid's stability. The converter's power losses and efficiency are closely related to the whole system's well-running and economic benefits. Therefore, the study on losses and efficiency of bi-directional DC/DC converters in the microgird system is of much practical use. This dissertation mainly studies the optimization of a bi-directional DC/DC prototype's losses and efficiency centering on three different kinds of practical loss problems: power device losses, magnetic element losses and filter capacitor losses. The main contents of this dissertation are as follows:
     The topology of the bi-directional DC/DC converter is designed for the microgrid system. The parameters of the transformer, flyback winding, filter capacitors and power devices are calculated to meet the performance indexes, using common calculation methods from the standpoint of function implementation. These circuit parameters are the object and suction variables of subsequent efficiency optimization.
     Switching processes of fast recovery diode (FRD) and IGBT are analyzed to deduce the approximate expression and main factors of losses. Loss experiments of the bi-directional hard-switching DC/DC converter are made to analyze power device losses. The dissertation adopts two loss optimization schemes:the lossy snubber circuit and soft-switching, and compares the two scheme's experimental results in detail. Based on soft-switching conditons and equivalent circuits of ZVZCS in charging mode and ZVS in discharging mode, a iteration optimization strategy of the soft-switching auxiliary circuit is presented to determine the optimization results. The experimental results indicate the effectiveness of optimization strategy.
     The main reasons of magnetic core loss and winding loss are analyzed to deduce the magnetic loss expression on the base of the woking waveforms of the transformer and flyback winding. Magnetic loss experiments are made. The optimization method is studied for the loss of the transformer and flyback winding. By considering all factors, including heat, efficiency, cost and volume, etc, the dissertation selects the best scheme, significantly enhancing the converter's performances.
     The capacitor equivalent loss model is analyzed to deduce the approximate expression of two filter capacitors in the bi-directional DC/DC conveter. Filter capacitor loss experiments of bi-directional DC/DC converter are made. Three optimization methods are presented for the loss of filter capacitors. Considering such aspects as loss, efficiency, ripple voltage, cost, and volume, this dissertation presents the best capacitor optimization scheme and its experimental results, realizing capacitor's low loss, high efficiency, low ripple voltage, low cost and small volume.
     In summary, studies on optimization methods have been made for the losses of power devices, magnetic elements and filter capacitors in the bi-directional DC/DC conveter. The experimental comparions are made to prove the effectiveness of these optimization methods. The studies on loss and efficiency optimiztion can serve as ideas and foundations,in order to further reduce thermal loss, enhance efficiency and increase the power density.
引文
[1]全书海,郝世强,黄亮.燃料电池用大升压比DC/DC器双闭环控制[J].电机与控制学报,2011,15(10):28-35.
    [2]杨向真,苏建徽,丁明等.面向多逆变器的微电网电压控制策略[J].中国电机工程学报,2012,32(7):7-11.
    [3]吴蓓蓓,苏建徽,张军军.用于微电网孤岛运行的逆变电源控制方法[J].电力系统及其自动化学报,2011,23(1):1-5.
    [4]Changhee Cho, Jin-Hong Jeon, Jong-Yul Kim, etc. Active Synchronizing Control of a Microgrid[J]. IEEE Transactions on Power Electronics,2011,26(12):3707-3719.
    [5]Basak P, Saha A K, Chowdhury S, etc. Microgrid:Control techniques and modeling[C]// Universities Power Engineering Conference,2009:1-5.
    [6]吴云亚,阚加荣,谢少军.适用于低压微电网的逆变器控制策略设计[J].电力系统自动化,2012,36(6):39-44.
    [7]Zahra Amjadi, Sheldon Williamson. Modeling, Simulation, and Control of an Advanced Luo Converter for Plug-In Hybrid Electric Vehicle Energy-Storage System[J]. IEEE Transactions on Vehicular Technology,2011,60(1):64-75.
    [8]Kunrong Wang, Lizhi Zhu. Design,implementation and experimental results of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability[J]. Proc of PESC,2000,2:1058-1063.
    [9]史金仙.双向DC DC变换器在混合动力汽车中的应用研究[D].合肥:合肥工业大学,2010.
    [10]Zhao C, Round S D, Kolar J W. Full-order averaging modelling of zero-voltage-switching phase-shift bidirectional DC-DC converters[J]. Power Electronics,2010,3(3):400-410.
    [11]Tsai-Fu Wu, Yung-Chu Chen, Jeng-Gung Yang, Chia-Ling Kuo. Isolated Bidirectional Full-Bridge DC-DC Converter With a Flyback Snubber[J].2010,25(7):1915-1922.
    [12]马榈,瞿文龙,刘圆圆.一种新型双向软开关DC_DC变换器及其软开关条件[J].电工技术学报,2006,21(7):16-19.
    [13]赵川红.PWM加相移控制的双向DC DC变换器[D].杭州:浙江大学,2003.
    [14]范海峰.相移加PWM复合控制双向DC_DC变换器拓扑的综合方法[D].杭州:浙江大学,2004.
    [15]Kunrong Wang, Fred C.Lee, Jason Lai. Operation principles of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability[C]// Applied Power Electronics Conference and Exposition,2000:111-118.
    [16]姜雪松.隔离升压全桥DC/DC变换器拓扑理论和控制技术研究[D].北京:中国科学院电工研究所,2005.
    [17]牛金红.数字控制双向全桥DC_DC变换器的研究[D].武汉:华中科技大学,2006.
    [18]王予,张培,胡海如.开关电源原理及发展方向[J].中国科技信息,2007,14:85-86.
    [19]罗佳明,戴庆元Boost变换电路的损耗分析[J].电子元器件应用,2007,9(2):64-67.
    [20]袁伟.断续模式反激变换器的优化设计[D].杭州:浙江大学,2010.
    [21]童梅,江传桂,孙士乾.利用PSPICE研究多次开关电路的暂态过程[J].浙江大学学报(自然科学版),1997,31(6):798-802.
    [22]江剑.电力电子器件开关损耗测试与建模系统的研制、优化与验证[D].杭州:浙江大学,2006.
    [23]毛鹏,谢少军,许泽刚IGBT模块的开关暂态模型及损耗分析[J].中国电机工程学报,2010,30(15):40-47.
    [24]Bai Y, Meng Y, Huang A Q, Lee F C. A novel model for MOSFET switching loss calculation[J]. Power Electronics and Motion Control Conference,2004,3:1669-1672.
    [25]Jizhen Fu, Zhiliang Zhang, Dickson A, Yan-Fei Liu, Sen P C. Accurate switching loss model and optimal design of a current source driver considering the current diversion problem[J]. Applied Power Electronics Conference and Exposition,2010:702-709.
    [26]Eberle W, Zhiliang Zhang, Yan-Fei Liu, Sen P. A Simple Switching Loss Model for Buck Voltage Regulators with Current Source Drive[J]. Power Electronics Specialists Conference, 2008:3780-3786.
    [27]洪峰,单任仲,王慧贞,严仰光.一种逆变器损耗分析与计算的新方法[J].中国电机工程学报,2008,28(15):72-78.
    [28]John Shen Z, Yali Xiong, Xu Cheng, Yue Fu, Kumar P. Power MOSFET Switching Loss Analysis: A New Insight[J]. Industry Applications Conference,2006:1438-1442.
    [29]Maswood A I. A switching loss study in SPWM IGBT inverter[J]. Power and Energy Conference,2008:609-613.
    [30]陈恒林,钱照明.功率变流器中磁性元件损耗的影响因素[J].电力电子技术,2007,41(2):81-84.
    [31]孔剑虹.功率变换器拓扑中磁性元件磁芯损耗的理论与实验研究[D].杭州:浙江大学,2002.
    [32]旷建军,郑力新,卢小芬,方瑞明.非正弦励磁下磁芯损耗的计算[J].磁性材料及器件,2009,40(1):44-46.
    [33]应柏青.高频电子电路用圆环形磁芯中涡流损耗的有限元计算[J].微电子学与计算机,2002,4:51-56.
    [34]Dlala E. Comparison of Models for Estimating Magnetic Core Losses in Electrical Machines Using the Finite-Element Method[J]. IEEE Transactions on Magnetics,2009,45(2):716-725.
    [35]Nikolov G, Valchev V, Van den Bossche A. Core loss model for nanocrystalline cores for full and half bridge waveforms[J]. Power Electronics and Applications,2007:1-5.
    [36]Yu Zhang, Rui Guan, Pillay P, Cheng M C. General core loss models on a magnetic lamination[J]. Electric Machines and Drives Conference,2009:1529-1534.
    [37]马西奎,赵彦珍,戴栋.高频电子电路用矩形截面圆环磁芯中涡流损耗的解析解[J].中国电机工程学报,2005,25(6):124-128.
    [38]Roshen W A. A Practical, Accurate and Very General Core Loss Model for Nonsinusoidal Waveforms[J]. IEEE Transactions on Power Electronics,2007,22(1):30-40.
    [39]张晓兵,单德悦,尹涵春.偏转磁芯铁氧体材料的磁滞损耗分析[J].真空科学与技术,2003,21(2):105-108.
    [40]旷建军,阮新波,任小永.集肤和邻近效应对平面磁性元件绕组损耗影响的分析[J].中国电机工程学报,2006,26(5):170-175.
    [41]旷建军.开关电源中磁性元件绕组损耗的分析与研究[D].南京:南京航天航空大学,2007.
    [42]R E Lafferty.Capatitor loss at ratio frequencies[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1992,15(4):590-593.
    [43]Stephenson F W, Burton L C, Reddy R. Modeling of capacitor loss in a thick-film RC active filter[J]. Circuits and Systems,1989,2:1211-1213.
    [44]Chaofeng Huang, Melcher P, Ferguson G. Ness, RLoss Estimation of Capacitor in High Rep-Rate Pulsed Power System[C]// Pulsed Power Conference,2005:1077-1080.
    [45]徐立刚,陈乾宏.整流后滤波用电解电容的选择[J].元器件应用,2008,10:69-73.
    [46]于建新.对电感电容损耗电阻的研究[J].技术物理教学,2008,1:23-24.
    [47]郝世强,全书海,黄亮.一种用于双向全桥DC/DC变换器的新型反激绕组设计方法[J].电源学报,2012,2:25-31.
    [48]Wm T McLyman. Transformer and inductor design handbook[M]. New York:Marcel Dekker Inc.,2004:245-257.
    [49]曹建安,裴云庆,王兆安.Boost PFC电路中开关器件的损耗分析与计算[J].电工电能新技术,2002,21(1):41-44.
    [50]黄勇.推挽正激三电平直流变换器的研究[D].南京:南京航空航天大学,2008.
    [51]张强.风力发电并网变流器工程问题研究[D].合肥:合肥工业大学,2006.
    [52]周大宁.地铁用大功率DC-DC变换器的研究[D].北京:北京交通大学,2002.
    [53]张桂东,张波,肖文勋,丘东元.大功率开关电源损耗数学模型研究[J].电力电子,2010,3:55-58.
    [54]姚建红,张艳红,刘继承.一种新型全桥移相PWM零电压零电流变换器[J].电力自动化设备,2010,30(1):66-70.
    [55]郜俊.基于有限元仿真的高频磁性元件绕组优化设计[D].杭州:浙江大学,2007.
    [56]旷建军,阮新波,任小永.气隙设计对电感绕组损耗的影响[J].电子元件与材料,2007,26(10):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700