管式搅拌反应器流动特性与混合特性的CFD数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管式反应器广泛应用于化工冶金领域,根据我国一水硬铝石矿的管道化溶出中效率不高、管壁结疤现象严重等特点,本实验室自主开发了一种带搅拌的叠管式反应器,目前已通过冷态物理模拟的实验方法对这种新型搅拌反应器的流动和混合特性进行了初步研究,但有关的理论及设计方法仍不完善。近年来,利用计算流体力学(CFD)的方法研究搅拌设备内的流动和混合特性逐渐发展起来。CFD技术以其卓越的优势,对搅拌设备的研究、开发与设计提供新的研究方法。
     本文以自主开发的单、叠管式搅拌反应器为研究对象,利用商业CFD软件FLUENT6.3和并行计算系统的图形工作站,在已有的研究基础上对其进行了CFD的系统研究,并与实验数值进行对比,验证了利用CFD对管式搅拌反应器进行流动和传质特性研究的可行性,本研究能为反应器的进一步设计和改善提供新的研究思路,也可以作为实验研究和进一步模拟的基础。
     首先,采用雷诺时均方程(RANS)的标准k-ε湍流模型和多重参考系(MRF)法,对单、叠管式搅拌反应器进行数值模拟,根据传统(无搅拌)管式反应器与新型带有搅拌装置的管式反应器流场的比较,并通过对管式搅拌反应器速度场、湍流动能场的分析,带搅拌的管式反应器起到了增加管内湍流区,增强混合效果等作用。此外本文还讨论了不同转速对管内速度分布、压力分布、湍流动能分布的影响。
     在用RANS法对单、叠管式反应器的流场研究的基础上,采用速度场和浓度场分开求解的方法,计算了该管式反应器的停留时间分布,其模拟计算结果与实验测量结果吻合较好。通过对管式搅拌反应器内的停留时间分布模拟计算的结果显示,反应器内接近活塞流,带搅拌装置通过增加扰动、避免死区等来改善反应器的性能,还讨论了进口流量及搅拌转速对平均停留时间、方差及RTD曲线的影响。
     本文采用标准k-ε湍流模型和多重参考系(MRF)法,对单管式搅拌反应器的混合时间及功率准数Np进行了数值模拟,其模拟值与实验值吻合较好,并考察了不同搅拌转速以及不同监测点的位置对混合时间的影响规律。
     鉴于搅拌设备的复杂性,RANS法模型对于桨叶区湍流预测偏低,影响管内流体的物质交换的预报,本文采用大涡模拟(LES)的方法,用滑移网格(SM)法来处理搅拌桨区,对单管式搅拌反应器的流场进行数值模拟,并用该方法计算了停留时间分布和混合时间。结果表明LES法比标准k-ε模型更能有效解决该管式搅拌反应器之间的物质交换问题,尤其是在搅拌转速较高时模拟得到的平均停留时间及混合时间更趋于实验值,其中平均停留时间的平均相对误差降低了5%,混合时间模拟值的平均相对误差降低了13%。
     在单管式搅拌反应器内采用玻璃珠-水体系对固-液两相流场进行数值模拟,从CFD角度研究反应器内固-液悬浮状况下速度分布、浓度分布,并考察了不同搅拌转速的影响规律,同时,在固体体积2%和7.5%两种体系下,采用不同搅拌转速反应器内固相体积分率的的最大值来判断固体颗粒临界悬浮转速Njs,其值约为35rpm。
Tubular reactor is widely applied in the chemical metallurgy field. To solve the problems of low efficiency and scarring at the tube wall in diaspore tube digestion techniques, a new-style tubular reactor with a stir is developed to decrease or even eliminate the scab in tubular reactors. Although the primary researches on the flow and mixing characteristic of this new-style reactor were investigated by the cold state physical modeling method, the study of mixing and the design methods are not developed well up to now. In recent years, the study of the flow and mixing characteristic using Computational Fluid Dynamics (CFD) has been gradually developing. With its superior advantage, the CFD method provides new approach for the design and optimization of the stirred reactors.
     In this study, based on the single and multi pipe tubular stirred reactor, a systematic CFD study was carried out using the commercial software FLUNET 6.3 on parallel computing graphic workstation. By comparing the simulation and experimental data, the feasibility of CFD method was verified to simulate the flow and mass transfer characteristics. The results can provide CFD research thought for further design, optimization and simulation.
     First, the flow field in the tubular stirred reactor was numerically simulated by using the Reynolds-averaged Navier-Stokes(RANS) approach with standard k-εmodel and Multi-Reference Frame(MRF). According to the analysis of the flow field, velocity field and turbulent kinetic of traditional(without agitation) tubular reactor and the stirred tubular reactor, the tubular reactor with a stirrer could increase turbulent kinetic, enhance mixing effect and avoid the dead zone. Furthermore, effects of different rotating speeds on the velocity, pressure and turbulent kinetic distribution were investigated
     Based on the flow field study, Residence Time Distribution (RTD) of the single/multi pipe tubular stirred reactor was simulated by using RANS, and the velocity field and the concentration field were simulated respectively. The result predicted by CFD model showed good agreement with experimental data. The CFD prediction showed that the flow pattern approached to the plug flow. According the tubular reactor without agitation, the tubular reactor with a stirrer could improve the flow profile by creating high Reynolds numbers and avoiding the dead zone. The effects of inlet mass flow and rotating speed on the mean residence time and variance were investigated numerically as well.
     The mixing time and power number Np in a single pipe tubular stirred reactor were simulated by CFD technique, and standard k-εmodel and MRF method were adopted for the simulation. The calculated mixing and power number were consistent with experimental data. The law of the influence of different rotation speeds and detecting positions on the mixing time was also discussed.
     In the light of the complexity of the stirred reactor, RANS approach could not predict the turbulence near the impeller properly, which would affect the mass transfer prediction. A new approach, the Large Eddy Simulations(LES), was used to predict the fluid field in the single pipe tubular stirred reactor, while the Sliding Mesh(SM) method was adopted for the rotation impeller. The RTD and mixing time were also modeled in this simulation. The results showed that LES can solve more effectively the mass transfer problem in the tubular stirred reactor than standard k-εmodel. The mean.residence time and mixing time predicted by LES were closer to experimental data, especially for high impeller speed. The average relative error of the mean residence time reduced by 5%, and a reduction of 13% was seen of that of the mixing time.
     The Solid-Liquid flow flied was simulated by the use of CFD, and sand particles were chosen as the dispersed phase. The particle volumetric concentration was 2% and 7%. The law of the influence of different rotation speeds and detecting positions on the velocity and concentration distribution was also investigated. In addition, the maximum solids concentration criterion was used to predict Njs. the just-suspended speed of the impeller. The Njs of these two particle volumetric concentration systems were similar, which was about 35rpm.
引文
1. 王建华.反应工程[M],成都:成都科技大学出版社,1988,236-246.
    2. 张廷安,赵秋月,豆志河,等.内环流叠管式溶出反应器[P],2005,ZL200510047338.3.
    3. 赵秋月.叠管式搅拌反应器的设计与流动特性的物理和数值模拟研究[D],东北大学,2008.
    4. 王凯,冯连芳.混合设备设计[M],机械工业出版社,2000.
    5. 张涵信,周恒.流体力学的基础研究[J],世界科技研究与发展,23(1):15-18.
    6. A. Ramond, P. Millan. Measurements and treatment of LDA signals comparison with hot-wire signals[J], Experiment in fluids,2000, (28):58-63.
    7. R. J. Adrian, K. T. Christensen, Z. C. Liu, etal. Analysis and interpretation of instantaneous turbulent velocity fields[J], Experiments in Fluids,2000, (29):275-290.
    8. L. F. Richardson. Weather prediction by Numerical Process[D], Cambridge: Cambridge University Press,1972.
    9. M. Liao, W. M. Zhang. Discriminating Fractals in Time Series[J], Journal of Beijing technology and Science University,1998,20(5):412-416.
    10.刘式达,刘式适.孤波与湍流[M],上海:上海科技教育出版社,1994.
    11. Z. L. Huang, H. W. Xin. Proceedings of the Third National Conference on Fractal Theory [M], Hefei:USTC press,1993.
    12.阮晓东,宋向群.用流动可视化技术研究混合器内流场及混合效果[J],化工学报,2002,51(1):137-139.
    13.邢茂,赵阳升.高压旋转射流流动特性的实验研究[J],力学与实践,2001,23(1):49-51.
    14.徐江荣.一种描述湍流脉动速度的函数[J],杭州电子工业学院学报,1999,19(1):64-68.
    15.周国忠.搅拌槽内流动与混合过程的实验研究及数值模拟[D],北京化工大学,2002.
    16.曹晓畅,张廷安,赵秋月,等.CFD技术在冶金搅拌反应器中的应用进展[J],世界有色金属,2008,(06):21-27.
    17.王海松.轴流泵CAD-CFD综合特性研究[D],北京:中国农业大学,2005.
    18.古新.管壳式换热器数值模拟与斜向流换热器研究[D],郑州:郑州大学,2006.
    19.苗一,潘家祯,阂健.涡轮桨搅拌槽内混合过程的大涡模拟[J],华东理工大学学报(自然科学版),2006,32(5):623-628.
    20. M. Tyagia. Simulation of laminar and turbulent impeller stirred tanks using immersed boundary method and large eddy simulation technique in multi-block curvilinear geometries[J], Chemical Engineering Science,2007,62:1351-1363.
    21. J. Pan, E. Loth. Reynolds-averaged Navier-Stokes simulations of airfoils and wins with ice shapes[J], Journal of Aircraft,2004,41(4):879-891.
    22. V. Michelassi, J. G. Wissink, W. Rodi. Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade:A comparison[J], Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2003,217(4):403-412.
    23.陶文铨.数值传热学[M],西安:西安交通大学出版社,2001.
    24.章梓雄,董曾南.粘性流体力学[M],北京:清华大学出版社,1998.
    25.吴子牛.计算流体力学基本原理[M],北京:科学出版社,2001.
    26.刘顺隆,郑群.计算流体力学[M],哈尔滨:哈尔滨工程大学出版社,2000.
    27.魏新利,任杰,王定标.搅拌反应器流场的数值模拟[J],郑州大学学报(工学报),2006,27(2):52-55.
    28. P. Magnico, P. Fongarland. CFD simulations of two stirred tank reactors with stationary catalytic basket[J], Chemical Engineering Science,2006,61:1217-1236.
    29.周国忠,施力田,王英琛.搅拌反应器内计算流体力学模拟技术进展[J],化学工程,2004,32(3):28-32.
    30. P. S. Harvey, M. Greaves. Turbulent flow in an agitated vessel. Part I:A predictive model[J], Trans Inst Chem Eng,1982,60(a):195-200
    31. A. Brucato, M. Ciofalo, F. Grisafi, etal. Complete numeric simulation of flow fields in baffled stirred vessels:The inner-outer approach[C],8th Euro. Conf. On Mixing. Cambridge,1994:155-162.
    32. J. V. Luo, R. I. Issa, A D Gosman. Prediction of impeller induced flows in mixing vessels using multiple frames of reference[C], ChemE Symp Ser 136.1994:549-556.
    33. J. V. Luo, A. D. Gosman, R. I. Issa,etal. Full flow field computation of mixing in baffled stirred reactors[J], Trans IChemE,1993,71(A):342-344.
    34.孙会,潘家祯,程刚.搅拌设备的CFD分析与软件对比[J],华东理工大学学报,2003,29(6):625-628.
    35. D. Dakshinamoorthy, A. R. Khopkar, J. F. Louvar. CFD simulations to study shortstopping runaway reactions in a stirred vessel[J], Journal of Loss Prevention in the Process Industries,2004,17:355-364.
    36.张国娟,闵健,高正明,等.涡轮桨搅拌槽内混合过程的数值模拟[J],北京化工大学学报,2004,31(6):24-27.
    37. K. H. Javed, T. Mahmud, J. M. Zhu. Numerical simulation of turbulent batch mixing in a vessel agitated by a Rushton turbine[J], Chemical Engineering and Processing, 2006,45:99-112.
    38.马青山,聂毅强,包雨云,等.搅拌槽内三维流场的数值模拟[J],化工学报,2003,54(5) :612-618.
    39.侯栓弟.搅拌槽内三维流场的实验研究与数值模拟[D],北京化工大学博士学位论文,1997.
    40.于鲁强,戴志潜,冯连芳,等.刮壁搅拌桨的最优设计[J],化学工程,1997,25(4): 35-38.
    41.马青山.搅拌槽内三维流场的数值模拟[D],北京化工大学博士后研究工作报告,2001.
    42.周国忠.搅拌槽内流动与混和过程的实验研究及数值模拟[D],北京化工大学博士学位论文,2002.
    43. G. R. Kasat, A. R. Khopkar, V. V. Ranade, A. B. Pandit. CFD simulation of liquid-phase mixing in solid-liquid stirred reactor[J], Chemical Engineering Science, 2008,63(15):3877-3885.
    44. A. Ochieng, M. S. Onyango, A. Kumar. Mixing in a tank stirred by a Rushton turbine at a low clearance[J], Chemical Engineering and Processing:Process Intensification, 2008,47(5):842-851.
    45. W. Kelly, B. Gigas. Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime[J], Chemical Engineering Science,2003,58(10):2141-2152.
    46.刘春江,黄莹,李莹珂,等.规整填料特征单元内混合过程的计算流体力学[J],天 津大学学报,2006,39(10):1162-1168.
    47.倪建军,郭庆华,梁钦锋,等.撞击流气化炉内颗粒停留时间分布的随机模拟[J],化工学报,2008,59(3):567-573.
    48.董红星,杨晓光,王兴超,等.连续搅拌釜流场数值模拟及停留时间分布[J],石油和化工设备,2008,06:19-23.
    49.孟辉波,吴剑化,禹言芳.SK型静态混合器停留时间分布特性研究[J],石油化工高等学校学报,2008,21(2):59-62.
    50. P. A. A. Klusener, G. Jonkers, F. During, etal. Horizontal cross-flowbubble column reactors:CFD and validation by plant scale tracer experiments[J], Chemical Engineering Science,2007, (62):5495-5502.
    51. K. R. Connelly, L. J. Kokini. Examination of the mixing ability of single and twin screw mixers[J], Chemical Engineering Science,2007, (30):5495-5502.
    52. R. K. CONNELLY Robin, J. L. KOKINI Jozef. Examination of the mixing ability of single and twin screw mixers using 2D finite element method simulation with particle tracking[J], Journal of Food Engineering,2007, (79):956-969.
    53. A. Arnab, R. Shantanu, D. P. Krishna. Nigam.Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD[J], Chemical Engineering Science,2007, (62):7033-7044.
    54. L. Pramparo, J. Pruvost, F. Stuber. Mixing and hydrodynamics investigation using CFD in a square-sectioned torus reactor in batch and continuous regimes[J], Chemical Engineering Journal,2007, (10):1016-1026.
    55. D. Calogine, N. Rimbert, O. Sero-Guillaume. Modelling of the deposition of retardant in a tree crown during fire fighting[J], Environmental Modelling & Software,2007, (22):1654-1666.
    56. S. P. Asok, K. Sankaranarayanasamy, T. Sundararajan. Neural network and CFD-based optimisation of square cavity and curved cavity static labyrinth seals, Tribology International,2007, (40):1204-1216.
    57. A. Atta, R. Shantanu, K. D. P. Nigam. Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD[J], Chemical Engineering Science,2007, (62):5870-5879.
    58. G. Skodras, S. P. Kaldis, G. P. Sakellaropoulos. Simulation of a molten bath gasifier by using a CFD code[J], Fuel,2003, (82):2033-2044.
    59. W. Michael, G. B. Plosz, K. Essemiani. Suction-lift sludge removal and non-Newtonian flow behaviour in circular secondary clarifiers:Numerical modelling and measurements[J], Chemical Engineering Journal,2007, (132):241-255.
    60. A. Bosoaga, N. Panoiu, L. Mihaescu, etal. The combustion of pulverised low grade lignite[J], Fuel,2002, (85):1591-1598.
    61. C. Richard, P. F. Donal. The influence of secondary refrigerant air chiller U-bends on fluid temperature profile and downstream heat transfer for laminar flow conditions[J], International Journal of Heat and Mass Transfer,2008, (51):724-735.
    62. E. S. Demessie, S. Bekele, U. Pillai.Residence time distribution of fluids in stirred annular photoreactor.CatalysisToday,2003, (88):61-72.
    63. S. C. Byung, B. Wan, P. Suaan, etal. Residence time distributions in a stirred tank: comparison of CFD predictions with experiment[J], Ind Eng Chem Res,2004, (43):6548-6554.
    64. R. Farmer, R. Pike, G. Cheng. CFD analyses of complex flows[J], Computers and Chemical Engineering,2005, (29):2386-2403.
    65. A. Milewska, E.J. Molga. CFD simulation of accidents in industrial batch stirred tank reactors[J], Chemical Engineering Science,2007, (62):4920-4925.
    66. G. R. Kasat, A. R. Khopkar, V. V. Ranade. CFD simulation of liquid-phase mixing in solid--liquid stirred reactor[J], Chemical Engineering Science,2008, (63):3877 3885.
    67. P. Magnicoa, P. Fongarland. CFD simulations of two stirred tank reactors with stationary catalytic basket[J], Chemical Engineering Science,2006, (61):1217 1236.
    68. C. D. Rielly, M. Habib, J. P. Sherlock. Flow and mixing characteristics of retreat curve impeller in a conical-based vessel[J], Chemical Engineering Research and Design,2007,85 (A7):953-962.
    69. T. Takahashi, A. Tagawa.N. Atsumi.Liquid-phase mixing time in boiling stirred tank reactors with large cross-section impellers[J], Chemical Engineering and Processing, 2006, (45):303-311.
    70. G. M. Cartl, J. J. Glover, Fitzpatrick. Modelling vortex formation in an unbaffled stirred tank reactors[J], Chemical Engineering Journal,2007, (127):11-22.
    71. D. Arlov, J. Revstedt, L. Fuchs. Numerical simulation of a gas-liquid Rushton stirred reactor-LES and LPT[J], Computers & Fluids,2008, (37):793-801.
    72. K. H. Javed, T. Mahmud, J. M. Zhu. Numerical simulation of turbulent batch mixing in a vessel agitated by a Rushton turbine[J], Chemical Engineering and Processing, 2006, (45):99-112.
    73. Y. N. Chiu,J. Naser, K. F. Ngian. Numerical simulations of the reactive mixing in a commercially operated stirred ethoxylation reactor[J], Chemical Engineering Science, 2008, (63):3008-3023.
    74. H. Noorman, K. Morud, B. H. Hjertager, etal. CFD modeling and verification of flow and conversion in a 1 m3 bioreactor[C], Proc.3rd Int. Conf Bioreactor and Bioprocessing Fluid Dynamisc, Cambridge,1993,241-258.
    75. S. Shmlid, M. Reuss. Application of computational fluid dynamics to simulations of mixing and biotechnical conversion process in stirred tank bioreactors[C], Proc.9th Europe Mixing Conf., Paris,1997,171-178.
    76. S. A. Anil, A. S. Bhruv, J.Canad. Chemical Engineering[M],1977.
    77. A. Bakker, H. E. A. V. Akker. Single-phase flow in stirred reactors[J], Chem Eng Res Des, Trans IChemE,1994,72(A4):583-593.
    78.徐姚,张政.旋转圆盘上液固两相流冲刷磨损数值模拟研究[J],北京化工大学学报,2002,29(3):12-16.
    79.钟丽,黄雄斌,贾志刚.固液搅拌槽内颗粒离底悬浮临界转速的CFD模拟[J],北京化工大学学报,2003,30:18—22.
    80. F. Wang, Z. S. MAO, X. Q. SHEN. Numerical Study of Solid-Liquid Two-Phase in Stirred Tanks with Rushton Impeller:(Ⅱ) Prediction of Critical Impeller Speed[J], Chinese J, Chem. Eng.,2004,12(5):610-640.
    81.王振松,李良超,黄雄斌.固液搅拌槽内槽底流场的CFD模拟[J],北京化工大学学报,2005,32(4):5-9.
    82.胥思平,朱宏武,张宝强.固液分离水力旋流除砂器的数值模拟[J],石油机械,2006,34(3):24-28.
    83. G. Montante. Experiments and CFD Predictions of Solid Particle Distribution in a Vessel Agitated with Four Pitched Blade Turbines[J], Chemical Engineering Research and Design,2000,79(8):1006-1010.
    84. R. J. Weetman. Automated Sliding Mesh CFD Computations for Fluidfoil impellers[C],9th Euro.Conf.On Mixing,1997:195-202.
    85. I. Naude, C. Xuereb, J. Bertrand. Direct Prediction of the Flows Induced By a Propeller in an Agitated Vessel Using an Unstructured Mesh[J], Can Chem. Eng., 1998,76:631-640.
    86. A. Bakker, J. B. Fasano, K. J. Myers. Effects of Flow Pattern on the Solids Distribution in a Stirred Tank[C],8th European Conference on Mixing, Cambridge, U.K. IChemE Symposium,1994,136(329):1-8.
    87.张捷迁,章光华,陈允文.真实流体力学[M],北京:清华大学出版社,1986.
    88.万耀青,李仲武.建模和仿真技术[J],工程设计学报,1995,4:46-46.
    89.古新.管壳式换热器数值模拟与斜向流换热器研究[D],郑州大学博士论文,2006.
    90.周萍.铝电解槽内电磁流动模型及铝液流动数值仿真的研究[D],中南大学,2002.
    91.岑可法,樊建人.工程气固多相流动的理论及计算.杭州[M],浙江:浙江大学出版社,1989.
    92.王福军.计算流体动力学分析-CFD软件原理与应用[M],北京:清华大学出版社,2004.
    93.韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M],北京:北京理工大学出版社,2004.
    94.吴子牛.计算流体力学基本原理[M],北京:科学出版社,2001.
    95.刘导治.计算流体力学基础[M],北京:北京航空航天大学出版社,1989.
    96.吴江航,韩庆书.计算流体力学的理论方法及应用[M],北京:科学出版社,1998.
    97.章梓雄,董曾南.粘性流体力学[M],北京:清华大学出版社,1998.
    98.李文广.离心泵蜗壳断面的紊流时均流动测量[J],水泵技术,1995(3):3-10.
    99.阎超.流体机械内部流动数值计算方法的新进展(一)[J],流体机械,1994,22(8) :35-38.
    100. J. Smagorinsky. General cireulation experiments with the Primitive equations-The basic experiment[J], Month Wea. Rev.,1963,91:99-164.
    101. S. E. Kim. Large eddy simulation using unstructured meshes and dynamic subgrid scale turbulence models[C], AIAA 34th Fluid Dynamics Conference and Exhibit, Technical report,2004:25-48.
    102.李志鹏.涡轮桨搅拌槽内流动特性的实验研究和数值模拟[D],北京化工大学,2007.
    103.沈俊,傅立敏,黎妹红,等.CFD软件及其在汽车领域的应用汽车研究和开发[J],2000,5:26-28.
    104.黄军涛,赫冀成.方坯结晶器电磁制动的数值模拟[J],东北大学学报,1999,20(6):622-625.
    105.李勇,刘志友,安亦然.介绍计算流体力学通用软件Fluent[J],水动力学研究与进展,2001,16(2):255-256.
    106. J. H. LEE, C. Q. CHEN. Numerieal simulation of line Puffvia RNG k-ε model. Communication of Nonlinear Science and Numerical Simulation[J],1996, 1(4):11-16.
    107.李良超.固液搅拌槽内近壁区液相速度研究[D],北京化工大学,2004.
    108.王峰.搅拌槽内液液固三相流的数值模拟与实验研究[D],北京化工大学,2004
    109. M. Ishii. Thermo-Fluid Dynamic Theory of Two-Phase Flow[M], Paris:Eyrolles, 1975.
    110.孙锐,李争起,吴少华,等.不同湍流模型对强旋流动的数值模拟[J],动力工程,2002,22(3):12-22.
    111.肖志祥,李凤蔚,鄂秦.湍流模型在复杂流场数值模拟中的应用[J],计算物理,2003,20(4):336-340.
    112.肖志祥,李凤蔚.三种湍流模型模拟能力的对比[J],西北工业大学学报,2002,20(3) :351-355.
    113.梁德旺,吕兵.关于两方程湍流模型的考虑[J],航空动力学报,1999,14(3):289-332.
    114.王树立,张雅琴,张敏卿.湍流两相流动模式理论综述及展望[J],抚顺石油学院学报,1997,17(02):37-43.
    115.张兆顺,崔桂香,许春晓.湍流理论与模拟[M],北京:清华大学出版社,2005,9.
    116.闵健.搅拌槽内宏观及微观混合的实验研究与数值模拟[D],北京化工大学,2005.
    117.王承尧,王正华,杨晓辉.计算流体力学及其并行算法[M],长沙:国防科技大学出版社,2000.
    118.王一雍,张廷安,陈霞,等.我国铝土矿溶出技术的发展趋势[J],世界有色金属, 2006(1):25-27.
    119. C. Y. Wen, L. T. Fan, Model for Flow Systems and Chemical Reactor[M], New York, 1975.
    120. M. Razaviaghjeh, K. Nazoekdast, H. AssemPour. Determination of the residence time distribution in twin screw extruders via free radical modification of PE[J], International polymer processing 2004,19(4):335-341.
    121.彭世恒.中间包等温和非等温过程的基础研究和数值模拟[D],中南大学,2000.
    122.王建军,包燕平,曲英著.中间包冶金学.北京:冶金工业出版社,2000.
    123. O. LevensPiel. Chemical Reaction Engineering[M], John Wiley & Sons. Inc.,,1972
    124.王彦伟.振荡流混合反应器停留时间分布的数值模拟研究[D],浙江大学,2002.6
    125.陈国南,李广赞,王嘉骏,等.泰勒反应器中流体流动及停留时间分布的研究[J],化学工程,2005,33(6):23-26.
    126. S. Shmlid, M. Reuss. Application of computational fluid dynamics to simulations of mixing and biotechnical conversion process in stirred tank bioreactors[C], Proc.9th Europe Mixing Conf., Paris,1997,171-178
    127.戴干策,陈敏恒.化工流体力学[M],北京,化学工业出版社,1988.
    128.刘成勤,胡玉泽.电导滴定法测定聚酷桨料中对苯二甲酸含量[J],云南化工,1999,2,31-32.
    129. D. L. Zhao, Z. M. Gao, M. S. Hans. Liquid-Phase Mixing Times in Sparged and Boiling Agitated Reactors with High Gas Loading[J], Ind. Eng. Chem. Res.,2001, 40:1482-1487
    130. D. B. Holmes, R. M. Voneken, J. A. Dekker. Fluid flow in turbine stirred baffied tanks[J], Part1, Cireulationtime, Chem. Eng. Sci.,1964,19,201-208.
    131. S Ruszkowski. A rational method for measuring blending Perofrmnace and comparison of different impeller types[C], Proc.8th Europe Mixing conf, 1994:283-291.
    132. D. G. Cronin, A. W. Nienow, G. W. Moody. An experimental study of the miXing in a Proto-fermenter agitated by dual Rushton turbines[J], Food and BioProduets Proeessing,1994,72:35-40.
    133.张国娟,闵健,高正明,等.涡轮桨搅拌槽内混合过程的数值模拟[J],北京化工大学学报,2004,31(6):24-28.
    134. Y. N. Chiu, J. Naser, K. F. Ngian, etal. Numerical simulations of the reactive mixing in a commercially perated stirred ethoxylation reactor[J], Chemical Engineering Science,2008,63:3008-3023.
    135. Z. Jaworski, W. Bujalski, N. Otomo. CFD study of homogenization with dual Rushton turbines-comparison with experimental results Part 1:initial studies[J], Trans. ChemE:Chem. Eng. Res. Des.,2000,78:327-333.
    136.张国娟.搅拌槽内混合过程的数值模拟[D],北京化工大学硕士学位论文,2004.
    137.永田进治.混合原理与应用[M].马继舜译.北京:化学工业出版社,1984,169-207.
    138. P. M. Armenante, Y. T. Huang, T. Li. Determination of the minimum agitation speed to attain the just dispersed state in solid-liquid and liquid-liquid reactors provided with multiple impellers. Chem Eng Sci,1992.47:2856-2870.
    139.毛德明.多层桨搅拌釜内流动与混合的基础研究[D].杭州:浙江大学,1998.
    140.钟丽,黄雄斌,贾志刚.用CFD器的功率曲线[J],北京化工大学,2003,30(5):4-8.
    141. S. L. Yeoh, G. Papadadis, K. C. Lee. Large Eddy Simulation of Turbulent Flow in Rushton Impellers Stirred Reactor with a Sliding-Deforming Mesh Methodology[C], Proc.11th Europe Mixing Conf., Bamberg,2003:39-46.
    142. J. Revstedt, L. Fuchs, C. Tragardh. Large eddy simulations of the turbulent flow in a stirred reactor[J], Chem Eng. Sci.,1998,53:5041-5053.
    143. J. J. Derksn, M. S. Doelman, Three-dimensinal LDA measurements in the impeller region of a turbulently stirred tank[J], Exp.Fluids,1999,27:522-532.
    144.樊建化.搅拌槽内流场的时空特性研究[D],清华大学博士论文,2004.
    145.周国忠,王英深,施力田.用CFD研究搅拌槽内的混合过程[J],化工学报,2003,54:886-890.
    146.徐姚,张政.旋转圆盘上液固两相流冲刷磨损数值模拟研究[J],北京化工大学学报,2002,29(3):12-16.
    147. M. Lanre. O. Shinowo, A. Bakker. CFD modeling of solids suspensions in stirred tanks[J], Computational Modelling of Materials, Minerals and Metals Processing, 2001:205-215.
    148.钟丽.搅拌槽内固-液悬浮的数值模拟[D],北京化工大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700