淫羊藿总黄酮、淫羊藿苷、淫羊藿次苷Ⅱ延长健康寿限及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     衰老相关疾病与衰老进程本身具有同源性。干预衰老能够降低衰老相关疾病的发生发展,延长健康寿命,是实现健康老龄化的关键环节,但目前仍缺乏有效的延缓衰老手段。中医药学在养生健体、延缓衰老方面历史悠长。在前期补肾延缓衰老系列研究中,我们发现淫羊藿总黄酮(EF)为补肾抗衰老复方改善内分泌免疫衰老的主要有效成分。寿命为评价衰老干预手段的核心指标,但是EF能否延长寿命还属未知。淫羊藿苷(Icariin, ICA)是EF的主要成分,但ICA是否为EF延长寿命的有效成分需进一步研究。
     延长寿命更重要的是延长有功能意义的健康寿命,因此检测衰老干预手段对老年机体健康状态的改善作用尤为重要。目前对老年机体健康状态的检测主要包括压力应激能力、衰老退行性改变以及衰老相关疾病等3个方面。ICA能否改善机体的健康状态,延长健康寿命还属未知。
     现代药理研究证实,ICA经吸收后在体内被迅速代谢为淫羊藿次苷Ⅰ(Icariside Ⅰ, ICS Ⅰ)、次苷Ⅱ (Icariside Ⅱ, ICS Ⅱ)及淫羊藿素(Icaritiin, ICT)。ICA是以其原型还是代谢衍生物发挥延长健康寿命的作用值得研究。目前研究证实,Insulin/IGF-1通路(IIS)、Target of rapamycin通路(TOR)、沉默信息调节子Sirtuins家族以及AMP kinase (AMPK)等为寿命调控的核心分子机制。其中IIS通路已被证实能够调节包括低等和高等生物在内的一系列物种的寿命,其作用在进化上高度保守。寻找这些寿命调控通路的靶向药物是抗衰老研究的一个主要目标。在揭示ICA为EF发挥作用的单一成分后,ICA及其体内活性代谢衍生物是否通过上述衰老调控通路发挥作用值得探索。
     模式生物秀丽隐杆线虫(以下简称线虫)是衰老研究的经典模式生物,具有实验操作简单、遗传背景清晰等优点,易于进行寿命实验和作用机制的探索,但低等生物毕竟与人类相差太远,药物的确切效果还需进一步通过哺乳动物和人类细胞的验证。因此,在本研究中我们采用了线虫、C57BL/6小鼠及人类成纤维二倍体细胞模型MRC-5等3种实验模型,结合各实验模型的优势来探索药物延缓衰老的作用及其机制。
     目的:
     1.研究EF及其主要成分ICA干预寿命的效果。
     2.评价ICA对老年健康状态的改善作用;
     3.探讨ICA延长健康寿命的体内活性成分及其分子机制。
     方法:
     1.EF及ICA干预寿命的研究
     1.1野生型线虫N2分组为对照组、EF高(100mg/mL)、中(50mg/mL)、低剂量组(25mg/mL);对照组、ICA高(75μM)、中(45μM)、低(15μM)剂量组进行寿命实验;
     1.2C57BL/6雄性小鼠分组为正常对照组、EF组(0.06%,w/w)及ICA组(0.02%,w/w),进行寿命实验,记录各组小鼠体重、饲料日耗量、饮水量、大便小便量,小鼠自然死亡后行大体解剖观察肿瘤发生及皮肤溃疡情况。
     1.3人二倍体成纤维细胞MRC-5分组为对照组、EF组(3mg/mL)及ICA组(10-6mol/L),检测细胞传代次数(PD);
     2.ICA影响老年健康状态的研究
     2.1压力应激能力:野生型线虫N2分组为对照组、ICA组(45μM),进行热压力应激及氧化压力应激实验,观察ICA对压力应激能力的影响;
     2.2衰老退行性病变:MRC-5细胞分组为对照组、ICA组(10-6mol/L),进行细胞衰老相关β-半乳糖苷酶染色实验;野生型线虫N2分组为对照组、ICA组(45μM),进行游泳能力测试;线虫突变体PD4251分组为对照组、ICA组(45μM),进行肌肉细胞计数;C57BL/6小鼠的分组对照组、ICA组,同时取3月龄小鼠作为青年对照,进行转棒实验、骨密度检测及重要脏器病理观察,观察ICA对衰老退行性病变的影响;
     2.3衰老相关疾病:线虫疾病模型突变体AM140、CL4176分组为对照组、ICA组(45μM),观察ICA对谷氨酰胺重复序列(PolyQ)及人类β-淀粉样肽(Aβ1-42)蛋白毒性诱导的神经退行性病变的作用,检测ICA对衰老相关疾病的作用。
     3.ICA的体内代谢衍生物ICSⅡ延长健康寿命作用机制的研究
     3.1野生型线虫N2分组为对照组及药物干预组,观察ICA及其衍生物ICSI、ICSII、ICT对寿命的影响并结合高效液相(HPLC)检测ICA和各衍生物在野生型线虫体内的浓度;
     3.2野生型线虫N2分组为对照组、ICS Ⅱ组(20μM),进行压力应激实验、游泳能力测试、肌肉细胞计数,观察药物对衰老相关退化的改善作用;线虫疾病模型突变株AM140、CI4176分组为对照组、ICS Ⅱ组(20μM),观察药物对PolyQ及Aβ1-42蛋白毒性诱导的神经退行性病变的影响。
     3.3不同遗传背景的线虫突变体分组为对照组、ICS Ⅱ组(20μM),进行寿命实验(Genetic Epistasis Experiment),探讨药物作用机制,并进一步用实时定量RT-PCR、Western Blot及相关基因GFP报告体检测药物对相关通路下游靶基因的表达的影响。
     结果:
     1.EF及其主要成分ICA能显著延长多个物种实验模型的寿命
     EF及ICA呈剂量依赖性右移野生型线虫的生存曲线,提高线虫平均寿命及最大寿命;显著右移小鼠的生存曲线,显著提高小鼠平均寿命,对小鼠的最大寿命无明显影响。药物干预对小鼠自发肿瘤及皮肤溃疡发生率无明显影响。EF及ICA能显著提高人类二倍体细胞MRC-5的传代次数;
     2.ICA能显著改善老年健康状态
     ICA能显著降低MRC-5细胞衰老特异性p-半乳糖苷酶的表达,提高线虫的热应激、氧化应激能力及运动能力,改善线虫衰老相关肌肉萎缩,延长小鼠转棒潜伏期时间;ICA能降低蛋白毒性介导的线虫瘫痪表型,提高老年小鼠股骨骨密度。经ICA干预过的小鼠肝组织中衰老相关病理改变明显减轻。药物长期干预对小鼠主要脏器无明显毒性影响。
     3.ICA及其活性代谢物衍生物ICS Ⅱ通过ⅡS通路延长健康寿命。
     在野生型线虫上对ICA及ICA代谢衍生物进行寿命实验显示20μM ICSⅡ能获得与45μM ICA同等的延长寿命的效果,HPLC结果显示在秀丽线虫中测得的化合物主要为ICA及其代谢衍生物ICSⅡ,提示ICSⅡ为ICA发挥抗衰老作用的体内活性衍生物。ICSⅡ能显著提高野生型线虫的热应激及氧化应激能力,提高老年线虫的运动能力,降低衰老相关肌肉萎缩,减低PolyQ及Aβ1-42的蛋白毒性。ICA及ICSⅡ不能影响ⅡS通路上游基因daf-2突变体、下游核心转录因子daf-16突变体及协助转录因子hsf-1突变体的寿命,提示药物作用机理与ⅡS通路相关。进一步的实时定量RT-PCR、Western Blot及SOD-3绿色荧光报告实验结果结果显示,ICS Ⅱ能增强IIS通路的核心转录因子DAF-16的转录活性,提高其下游有益靶基因的表达,从而延长健康寿命。
     结论:
     综上所述,我们首次发现EF、ICA及ICS Ⅱ能改善多个物种实验模型的衰老相关性退化、降低衰老相关疾病的发生发展,延长健康寿命。我们发现ICS Ⅱ为ICA发挥抗衰老作用的主要体内活性衍生物;ICA及ICS Ⅱ通过抑制ⅡS通路从而增强FOXO/DAF-16转录活性发挥抗衰老作用。本研究提示ICA及ICS Ⅱ能延缓从低等至高等多个物种实验模型的衰老,并通过进化保守的ⅡS通路发挥作用,极有可能延缓人类衰老。临床使用经验及本研究小鼠实验显示ICA可长期使用,安全性高,有望走向人类抗衰老临床使用。
Introduction
     A major goal of current research on aging is to identify compounds that delay age-related diseases and extend healthspan in humans. Herba epimedii is a popular herbal tonic used in traditional Chinese medicine, with proven efficacy in treating several age-related diseases including osteoporosis, cardiovascular diseases, neurodegenerative diseases and sexual dysfunction. Our previous studies on Epimedium Flavones (EF), the raw extract of Epimedium which contains icarrin (ICA) as a major constituent, show that EF delays aging in Drosophila melanogaster and cell senescence model. Interestingly, EF also resets the age-related metabolites (fatty acids, carnosine, ergothioneine and deoxycholic acid et al) to the juvenile level in rat plasma and urine. These findings prompted us to investigate the anti-aging potential of EF and its major pharmacologically active flavonol diglycoside, icariin. Various studies indicate the anti-oxidative effect of icariin and derivatives on DNA damage, β-amyloid mediated neurotoxicity, and vein endothelial cell oxidative injury. Meanwhile, icariin and its derivatives function as signalling modulators to exert beneficial effects in a multitude of age-dependent disease states, including bone loss, cancer, cardiovascular disease, and neurodegenerative disorders. These researches further strengthen the possibility of the effects for EF, icariin and its derivatives to extend healthspan.
     The highly conserved IIS pathway plays a key role in aging. It has been demonstrated in multiple species that inhibition of the IIS pathway extends lifespan. In C. elegans, the daf-2gene encodes an insulin/IGF-1receptor. Mutations in daf-2suppress the IIS which lead to the nuclear localization of FOXO/DAF-16transcription factor. The activated FOXO/DAF-16regulates a series of genes involved in lifespan control, stress tolerance and protein misfolding suppression. Nuclear localization of DAF-16in the daf-2mutants requires the heat shock transcription factor (HSF)-1, which modulates the expression of heat shock proteins and protease responsible for the stress tolerance and protein folding. Despite the well established role of a number of genes in the IIS pathway in modulating aging, pharmacological tools that inhibit IIS pathway to extend lifespan are not commonly available, which limits its translation to mammalian model systems.
     Objectives
     1. To investigate the delaying aging effects of EF and ICA in the experimental systems from invertebrate to mammalian.
     2. To measure the effects of ICA in extending healthspan.
     3. To ascertain the bioactive formation of ICA in vivo for the healthspan extension and investigate the molecular mechanisms of these effects.
     Methods
     In this study, we employed three experimental models including the cell senescence model MRC-5, the simple animal model C. elegans and the mammalian model C57BL/6mice to investigate the delaying aging effects of the compounds. Lifespan is the major measurement to evaluate the effect of the compounds. Stress-resistant assays, mobility assay, qualification of muscle cells, rotarod experiment, protein-misfolding disease models are used to evaluate the effects of the compounds in healthspan. HPLC was used to measure the level of ICA and its derivatives in vivo. Genetic epistasis experiments were used to study the mechanism. Three major genetic modulate pathways in longevity were tested in this study, the insulin/IGF-1pathway, the dietary restriction and the target of rapamycin (TOR) pathway. Real-time PCR, western blot were used to measure the downstream targets of the pathway to ascertain the molecular mechanism.
     Results
     In this study, we tested the anti-aging properties of EF, ICA and its three derivatives, icariside Ⅰ (ICS Ⅰ), icariside Ⅱ (ICS Ⅱ) and icaritin (ICT) in the cell senescence model MRC-5, the simple animal model C. elegans and the mammalian model C57BL/6mice. We found that EF has a conserved role in extending lifespan from simple animal to mammalian model. ICA is the major pharmacological element of EF to extend lifespan. Additionally, ICA promotes the stress resistance and mobility in late life of the animals. Meanwhile it ameliorates protein aggregation and protetoxicity-mediated paralysis phenotype. And one of its derivatives, ICS Ⅱ prolonged adult lifespan. Chemical profiles of ICA treated animals revealed that ICS Ⅱ was the predominant bioactive form of ICA in vivo. Furthermore, we found that ICS Ⅱ treated animals have delayed age-associated phenotypes suggesting ICS Ⅱ enhances the healthy aging significantly. Finally, our genetic analysis indicates that Icariside Ⅱ may act through the IIS pathway to affect lifespan.
     Conclusion
     Our findings reveal a novel role for EF, ICA, along with its bioactive form ICS II in extending healthspan via the well conserved pathway IIS. Given the extensive protective effects and safe long term use of ICA and ICS II in humans they may serve as promising anti-aging candidates in the future.
引文
1. Hadley, E.C., Lakatta, E.G., Morrison-Bogorad, M., Warner, H.R., and Hodes, R.J. (2005). The Future of Aging Therapies. Cell 120,557-567.
    2. Nieuwenhuis-Mark, R.E. (2011). Healthy aging as disease? Front Aging Neurosci 3,3.
    3. Rogina, B. (2011). A grand challenge for genetics of aging:adding healthy years to our lives. Front Genet 2,79.
    4. Kirkwood, T.B.L. (2005). Understanding the Odd Science of Aging. Cell 120,437-447.
    5. Chien, K.R., and Karsenty, G. (2005). Longevity and Lineages:Toward the Integrative Biology of Degenerative Diseases in Heart, Muscle, and Bone. Cell 120,533-544.
    6. Bartke, A. (2012). Healthy Aging:Is Smaller Better?-A Mini-Review. Gerontology.
    7. Majima, T, Koyama, T., Houkinn, K., Tohyama, H., and Nakagawa, S. (2010). [How to elongate healthy life expectancy. Let's start anti-aging]. Hokkaido Igaku Zasshi.85,157-160.
    8. Colman, R.J., Anderson, R.M., Johnson, S.C., Kastman, E.K., Kosmatka, K.J., Beasley, T.M., Allison, D.B., Cruzen, C., Simmons, H.A., Kemnitz, J.W., et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325,201-204.
    9. Holloszy, J.O., and Fontana, L. (2007). Caloric restriction in humans. Exp. Gerontol.42, 709-712.
    10. Morley, J.F., Brignull, H.R., Weyers, J.J., and Morimoto, R.I. (2002). The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A.99,10417-10422.
    11. Florez-McClure, M.L., Hohsfield, L.A., Fonte, G., Bealor, M.T., and Link, C.D. (2007). Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy 3,569-580.
    12. Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366,461-464.
    13. Kenyon, C.J. (2010). The genetics of ageing. Nature 464,504-512.
    14. Katewa, S.D., and Kapahi, P. (2010). Dietary restriction and aging,2009. Aging Cell 9, 105-112.
    15. Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L. Wilkinson, J.E., Frenkel, K., Carter, C.S., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature.
    16. Anisimov, V.N., Berstein, L.M., Egormin, P.A., Piskunova, T.S., Popovich, I.G., Zabezhinski, M.A., Tyndyk, M.L., Yurova, M.V., Kovalenko, I.G., Poroshina, T.E., et al. (2008). Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7, 2769-2773.
    17. Viswanathan, M., Kim, S.K., Berdichevsky, A., and Guarente, L. (2005). A Role for SIR-2.1 Regulation of ER Stress Response Genes in Determining C. elegans Life Span. Developmental Cell 9,605-615.
    18. Petrascheck, M., Ye, X., and Buck, L.B. (2007). An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450,553-556.
    19. Salmon, A.B., Richardson, A., and Perez, V.I. (2010). Update on the oxidative stress theory of aging:does oxidative stress play a role in aging or healthy aging? Free Radic. Biol. Med.48, 642-655.
    20. Hefti, F.F., and Bales, R. (2006). Regulatory issues in aging pharmacology. Aging Cell 5,3-8.
    21. Joseph, J.A., Shukitt-Hale, B., and Lau, F.C. (2007). Fruit polyphenols and their effects on neuronal signaling and behavior in senescence. Ann. N. Y. Acad. Sci.1100,470-485.
    22. Cherniack, E.P. (2010). The potential influence of plant polyphenols on the aging process. Forsch Komplementmed 17,181-187.
    23. Khan, N., and Mukhtar, H. (2007). Tea polyphenols for health promotion. Life Sci.81, 519-533.
    24. Das, D.K., Mukherjee, S., and Ray, D. (2010). Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev 15,467-477.
    25. Kampkottcr, A., Gombitang Nkwonkam, C., Zurawski, R.F., Timpel, C., Chovolou, Y., Watjen, W., and Kahl, R. (2007). Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch. Toxicol.81,849-858.
    26. Saul, N., Pietsch, K., Menzel, R., and Steinberg, C.E. (2008). Quercetin-mediated longevity in Caenorhabditis elegans:is DAF-16 involved? Mech. Ageing Dev.129,611-613.
    27. Saul, N., Pietsch, K., Menzel, R., Sturzenbaum, S.R., and Steinberg, C.E. (2009). Catechin induced longevity in C. elegans:from key regulator genes to disposable soma. Mech. Ageing Dev.130,477-486.
    28. Abbas, S., and Wink, M. (2010). Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine 17,902-909.
    29. Wilson, M.A., Shukitt-Hale, B., Kalt, W., Ingram, D.K., Joseph, J.A., and Wolkow, C.A. (2006). Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5,59-68.
    30. Lithgow, G.J., White, T.M., Melov, S., and Johnson, T.E. (1995). Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. U. S. A.92,7540-7544.
    31. Kapahi, P., and Zid, B. (2004). TOR pathway:linking nutrient sensing to life span. Sci Aging Knowledge Environ 2004, PE34.
    32. Kapahi, P., Chen, D., Rogers, A.N., Katewa, S.D., Li, P.W., Thomas, E.L., and Kockel, L. (2010). With TOR, less is more:a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11,453-465.
    33. Hardie, D.G. (2011). AMP-activated protein kinase--an energy sensor that regulates all aspects of cell function. Genes Dev.25,1895-1908.
    34. Selman, C., Tullet, J.M.A., Wieser, D., Irvine, E., Lingard, S.J., Choudhury, A.I., Claret, M., Al-Qassab, H., Carmignac, D., Ramadani, F., et al. (2009). Ribosomal Protein S6 Kinase 1 Signaling Regulates Mammalian Life Span. Science 326,140-144.
    35. Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410,227-230.
    36. Masoro, E.J. (2005). Overview of caloric restriction and ageing. Mech. Ageing Dev.126, 913-922.
    37.王文健,沈自尹,张新民,and陈素珍(1982).肾阳虚患者和老年人(男性)的下丘脑一垂体—性腺轴功能初步观察.中西医结合杂志,149-152+131.
    38.沈自尹,王文健,陈响中,陈剑秋,查良伦,施赛珠,姜兴慧,陈素珍,张新民,and张瑞金(1983).肾阳虚证的下丘脑—垂体—甲状腺、性腺、肾上腺皮质轴功能的对比观察.医学研究通讯,21-22.
    39.沈自尹,王文健,胡国让,杨连卿,许德盛,and张玲娟(1987).肾虚与衰老的研究.中医杂志,57-59.
    40.王文健,沈自尹,张新民,陈素珍,张玲娟,and吴波水(1986).补肾法对老年男性下丘脑-垂体-性腺轴作用的临床和实验研究.中医杂志,32-36.
    41.胡国让,沈自尹,陈伟华,吴波水,张玲娟,陈素珍,涂灏,and黄杰(1986).补肾法对老年人T细胞功能的影响.中西医结合杂志,264-267+258.
    42.沈自尹,胡国让,许德盛,张玲娟,陈素珍,and陈伟华(1987).补肾和健脾在延缓衰老作用中的对比研究.中西医结合杂志,584-587+579.
    43.沈自尹,王文健,王惠,张玲娟,张新民,陈素珍,and陈伟华(1989).补肾药改善老年肾上腺皮质功能的临床与实验研究.中西医结合杂志,518-521+514.
    44.张新民,沈自尹,王文健,张玲娟,and陈素珍(1990).补益中药对老龄雄性大鼠下丘脑神经递质——甲状腺轴机能作用的研究.上海医科大学学报,365-369.
    45.张玲娟,沈自尹,王文健,张新民,陈素珍,and陈伟华(1990).补肾益气法对淋巴细胞 糖皮质激素受体老年性改变的影响.中西医结合杂志,583-585+579.
    46.张新民,沈自尹,王文健,张玲娟,and陈素珍(1991).补肾对神经内分泌老化调节作用研究(Ⅰ)——对下丘脑神经递质—性腺轴、甲状腺轴作用的观察.中医杂志,43-46.
    47.张新民,沈自尹,王文健,张玲娟,and陈素珍(1991).补肾对神经内分泌老化调节作用研究(Ⅱ)——对老年垂体—肾上腺皮质—淋巴细胞糖皮质激素受体作用的观察.中医杂志,41-43.
    48.张新民,沈自尹,王文健,张玲娟,and陈素珍(1993).中医补肾法延缓衰老作用机理的研究.老年学杂志,170-172.
    49.张新民,沈自尹,王文健,张玲娟,陈素珍(1994).补肾中药对老年神经—内分泌和免疫系统作用机理的研究.中国中西医结合杂志,686-688.
    50.蔡定芳,沈自尹,张玲娟,陈晓红,堀口贞次郎,小岛晓,井上昌辉(1995).右归饮对皮质酮大鼠细胞免疫及细胞因子的影响.中国免疫学杂志,248-252.
    51.蔡定芳,沈自尹,张玲娟,陈晓红,堀口贞次郎,小岛晓,井上昌辉(1995).右归饮对皮质酮大鼠下丘脑单胺类递质含量以及体重饮食摄水的影响.中国中西医结合杂志,728-731.
    52.张新民,沈自尹,王文健,陈素珍,陈伟华(1996).补肾、健脾、活血类中药复方对老龄小鼠免疫功能作用的对比研究.中国中西医结合杂志,610-612.
    53.吴周强,陈淑冰,胡国让,沈自尹,陈伟华,吴波水,张玲娟,and陈素珍(1997).补肾益寿胶囊的抗应激作用和对免疫功能影响的实验和临床研究.中药药理与临床,42-46.
    54. China, C.P.C.o.H.M.o.P.R. (2000). Chinese Pharmacopoeia Vol. I. seven Edition, C. Industry, ed. (Beijing), pp.267-268.
    55.张玲娟,沈自尹,蔡定芳,陈晓红,and沈时谋(1996).淫羊藿对大鼠下丘脑—垂体—肾上腺—胸腺轴抑制模型的影响.中医杂志,620-621+580.
    56.蔡定芳,沈时谋,陈晓红,沈自尹,张玲娟,and刘彦芳(1997).仙灵脾减轻外源性糖皮质激素抑制神经内分泌免疫作用的临床与实验研究.In世界中西医结合大会.(中国北京),p.369.
    57. Wu, H., Lien, E.J., and Lien, L.L. (2003). Chemical and pharmacological investigations of Epimedium species:a survey. Prog. Drug Res.60,1-57.
    58.沈自尹,张玲娟,蔡定芳,and陈晓红(1998).淫羊藿总黄酮和多糖对大鼠垂体—肾上腺—免疫网络作用的研究.中国中西医结合杂志,196-198+385.
    59.沈自尹,and陈瑜(2002).淫羊藿总黄酮与补肾复方对皮质酮大鼠T细胞凋亡相关基因群调控的对比研究.中国免疫学杂志,187-190.
    60.沈自尹(2003).淫羊藿总黄酮对应一个药靶的探索过程.中药新药与临床药理,293-295.
    61.沈自尹,陈瑜,黄建华,and胡作为(2004).EF延缓HPAT轴衰老的基因表达谱研究.中国免疫学杂志,59-62.
    62.胡作为,沈自尹,and黄建华(2004).淫羊藿总黄酮保护衰老细胞端粒长度缩短的实验研究.中国中西医结合杂志,1094-1097.
    63.沈自尹,袁春燕,黄建华,郭爱克,and胡作为(2005).淫羊藿总黄酮延长果蝇寿命及其分子机制.中国老年学杂志,1061-1063.
    64. Schaffitzel, E., and Hertweck, M. (2006). Recent aging research in Caenorhabditis elegans. Exp. Gerontol.41,557-563.
    65. Johnson, T. (2003). Advantages and disadvantages of Caenorhabditis elegans for aging research. Exp. Gerontol.38,1329-1332.
    66. Campisi, J. (2005). Senescent Cells, Tumor Suppression, and Organismal Aging:Good Citizens, Bad Neighbors. Cell 120,513-522.
    67. Selman, C, Lingard, S., Choudhury, A.I., Batterham, R.L., Claret, M., Clements, M., Ramadani, F., Okkenhaug, K., Schuster, E., Blanc, E., et al. (2008). Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J.22,807-818.
    68. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77,71-94.
    69. Gruber, J., Tang, S.Y., and Halliwell, B. (2007). Evidence for a trade-off between survival and fitness caused by resveratrol treatment of Caenorhabditis elegans. Ann. N. Y. Acad. Sci. 1100,530-542.
    70. Wang, X., Wang, X., Li, L., and Wang, D. (2010). Lifespan extension in Caenorhabditis elegans by DMSO is dependent on sir-2.1 and daf-16. Biochem. Biophys. Res. Commun.400, 613-618.
    71. Abbas, S., and Wink, M. (2009). Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med.75,216-221.
    72. Lehner, B., Tischler, J., and Fraser, A.G. (2006). RNAi screens in Caenorhabditis elegans in a 96-well liquid format and their application to the systematic identification of genetic interactions. Nat Protoc 1,1617-1620.
    73. Fitzgerald, V, Mensack, M., Wolfe, P., and Thompson, H. (2009). A transfer-less, multi-well liquid culture feeding system for screening small molecules that affect the longevity of Cacnorhabditis elegans. Biotechniques 47, ix-xv.
    74. Partridge, L., Gems, D., and Withers, D.J. (2005). Sex and Death:What Is the Connection? Cell 120,461-472.
    75. Partridge, L. (2007). Some highlights of research on aging with invertebrates,2006-2007. Aging Cell 6,595-598.
    76. Lamming, D.W., Wood, J.G., and Sinclair, D.A. (2004). Small molecules that regulate lifespan:evidence for xenohormesis. Mol. Microbiol.53,1003-1009.
    77. Lithgow, G.J., Gill, M.S., Olsen, A., and Sampayo, J.N. (2005). Pharmacological intervention in invertebrate aging. Age 27,213-223.
    78. Zid, B.M., Rogers, A.N., Katewa, S.D., Vargas, M.A., Kolipinski, M.C., Lu, T.A., Benzer, S., and Kapahi, P. (2009).4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139,149-160.
    79. Wu, B., Yan, S., Lin, Z., Wang, Q., Yang, Y., Yang, G., Shen, Z., and Zhang, W. (2008). Metabonomic study on ageing:NMR-based investigation into rat urinary metabolites and the effect of the total flavone of Epimedium. Mol Biosyst 4,855-861.
    80. Fontana, L., Partridge, L., and Longo, V.D. (2010). Extending Healthy Life Span--From Yeast to Humans. Science 328,321-326.
    81. Liu, Z.Q. (2006). Icariin:a special antioxidant to protect linoleic acid against free-radical-induced peroxidation in micelles. J Phys ChemA 110,6372-6378.
    82. Sze, S.C., Tong, Y., Ng, T.B., Cheng, C.L., and Cheung, H.P. (2010). Herba Epimedii: anti-oxidative properties and its medical implications. Molecules 15,7861-7870.
    83. Ning, H., Xin, Z.C., Lin, G., Banie, L., Lue, T.F., and Lin, C.S. (2006). Effects of icariin on phosphodiesterase-5 activity in vitro and cyclic guanosine monophosphate level in cavernous smooth muscle cells. Urology 68,1350-1354.
    84. Iwasa, H., Yu, S., Xue, J., and Driscoll, M. (2010). Novel EGF pathway regulators modulate C. elegans healthspan and lifespan via EGF receptor, PLC-gamma, and IP3R activation. Aging Cell 9,490-505.
    85. Link, C. (2003). Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer's disease model. Neurobiol. Aging 24,397-413.
    86. Johnson, T.E., Lithgow, G.J., and Murakami, S. (1996). Hypothesis:interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J. Gerontol. A. Biol. Sci. Med. Sci.51, B392-395.
    87. Benedetti, M.G., Foster, A.L., Vantipalli, M.C., White, M.P., Sampayo, J.N., Gill, M.S., Olsen, A., and Lithgow, G.J. (2008). Compounds that confer thermal stress resistance and extended lifespan. Exp. Gerontol.43,882-891.
    88. Morimoto, R.I., Driessen, A.J., Hegde, R.S., and Langer, T. (2011). The life of proteins:the good, the mostly good and the ugly. Nat Struct Mol Biol 18,1-4.
    89. Alavez, S., Vantipalli, M.C., Zucker, D.J.S., Klang, I.M., and Lithgow, G.J. (2011). Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature.
    90. Huang, X., Zhu, D., and Lou, Y. (2007). A novel anticancer agent, icaritin, induced cell growth inhibition, G1 arrest and mitochondrial transmembrane potential drop in human prostate carcinoma PC-3 cells. Eur. J. Pharmacol.564,26-36.
    91. Kirkland, J.L., and Peterson, C. (2009). Healthspan, Translation, and New Outcomes for Animal Studies of Aging. The Journals of Gerontology Series A:Biological Sciences and Medical Sciences 64A,209-212.
    92. Morimoto, R.I. (2008). Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev.22,1427-1438.
    93. Walle, T. (2004). Absorption and metabolism of flavonoids. Free Radic. Biol. Med.36, 829-837.
    94. Zhou, J., Wu, J., Chen, X., Fortenbery, N., Eksioglu, E., Kodumudi, K.N., Burnette, P.E., Dong, J., Djeu, J.Y., and Wei, S. (2011). Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions. Int Immunopharmacol.
    95. Chiang, W.-C., Ching, T.-T., Lee, Hee C., Mousigian, C., and Hsu, A.-L. (2012). HSF-1 Regulators DDL-1/2 Link Insulin-like Signaling to Heat-Shock Responses and Modulation of Longevity. Cell 148,322-334.
    96. Ching, T.T., Chiang, W.C., Chen, C.S., and Hsu, A.L. (2011). Celecoxib extends C. eleganslifespan via inhibition of insulin-like signaling but not cyclooxygenase-2activity. Aging Cell.
    97. Yu, S., and Driscoll, M. (2011). EGF signaling comes of age:promotion of healthy aging in C. elegans. Exp. Gerontol.46,129-134.
    98. Honda, Y., Tanaka, M., and Honda, S. (2010). Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9,558-569.
    99. Lee, S.S., Kennedy, S., Tolonen, A.C., and Ruvkun, G. (2003). DAF-16 target genes that control C. elegans life-span and metabolism. Science 300,644-647.
    100. Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424,277-283.
    101. Lakowski, B., and Hekimi, S. (1998). The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A.95,13091-13096.
    Anisimov, V.N., Zabezhinski, M.A., Popovich, I.G., Piskunova, T.S., Semenchenko, A.V., Tyndyk, M.L., Yurova, M.N., Rosenfeld, S.V., and Blagosklonny, M.V. (2011). Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10,4230-4236.
    Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G, Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G, Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G, Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R., and Sinclair, D. A. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444,337-342
    Chang, R.C.-C., and So, K.-F. (2007). Use of Anti-aging Herbal Medicine, Lycium barbarum, Against Aging-associated Diseases. What Do We Know So Far? Cell Mol Neurobiol 28,643-652.
    Chen, T., Shen, L., Yu, J., Wan, H., Guo, A., Chen, J., Long, Y., Zhao, J., and Pei, G.(2011). Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10,908-911.
    Cherniack, P.E. (2010) The Potential Influence of Plant Polyphenols on the Aging Process. Forsch. Komplementmed.17,181-187.
    Chu, S.-F., and Zhang, J.-T. (2009). New achievements in ginseng research and its future prospects. Chin J Integr Med 15,403-408.
    Chung, J.H. (2012). Using PDE inhibitors to harness the benefits of calorie restriction:lessons from resveratrol. Aging (Albany NY).4,1-2
    Harrison, D.E., Strong, R., Sharp, Z.D., Nelson, J.F., Astle, C.M., Flurkey, K., Nadon, N.L., Wilkinson, J.E., Frenkel, K., Carter, C.S., et al. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature.460,392-395.
    Ingram, D.K., Zhu, M., Mamczarz, J., Zou, S., Lane, M.A., Roth, G.S., and deCabo, R. (2006). Calorie restriction mimetics:an emerging research field. Aging Cell 5,97-108.
    Joseph J, Shukitt-Hale B, Casadesus G (2005) Reversing the deleterious effects of aging on neuronal communications and behavior:beneficial properties of fruit polyphenolic compounds. Am. J. Clin. Nutr.81 (Suppl.),313S-316S.
    Joseph, J.A., Shukitt-Hale, B., and Willis, L.M. (2009). Grape juice, berries, and walnuts affect brain aging and behavior. J. Nutr.139,1813S-7S.
    Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY. (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature.483,218-21.
    Li, X.M., Ma, Y.L., and Liu, X.J. (2007). Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. Journal of Ethnopharmacology 111,504-511.
    Liao, V.H.-C., Yu, C.-W., Chu, Y.-J., Li, W.-H., Hsieh, Y.-C., and Wang, T.-T. (2011). Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mechanisms of Ageing and Development 132,480-487.
    Miller, R. A., Harrison, D. E., Astle, C. M., Baur, J. A., Boyd, A. R., de Cabo, R., Fernandez, E., Flurkey, K., Javors, M. A., Nelson, J. F., Orihuela, C. J., Pletcher, S., Sharp, Z. D., Sinclair, D., Starnes, J. W., Wilkinson, J. E., Nadon, N. L., and Strong, R. (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Med. Sci.66,191-201
    Onken, B., and Driscoll, M. (2010). Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS ONE 5, e8758.
    Peng, C., Zuo, Y., Kwan, K.M., Liang, Y., Ma, K.Y., Chan, H.Y.E., Huang, Y., Yu, H., and Chen, Z.-Y. (2012). Blueberry extract prolongs lifespan of Drosophila melanogaster. Experimental Gerontology 47,170-178.
    Petrascheck, M., Ye, X., and Buck, L.B. (2007). An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450,553-556.
    Petrascheck, M., Ye, X., and Buck, L.B. (2009). A high-throughput screen for chemicals that increase the lifespan of Caenorhabditis elegans. Ann. N. Y. Acad. Sci.1170,698-701.
    Pietsch, K., Saul, N., Chakrabarti, S., Sturzenbaum, S.R., Menzel, R., and Steinberg, C.E.W. (2011). Hormetins, antioxidants and prooxidants:defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12,329-347.
    Pietsch, K., Saul, N., Menzel, R., Sturzenbaum, S.R., and Steinberg, C.E.W. (2009). Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 10,565-578.
    Psahoulia, F.H., Moumtzi, S., Roberts, M.L., Sasazuki, T., Shirasawa, S., and Pintzas, A. (2007). Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis 28,1021-1031.
    Ramesh, T., Kim, S.-W., Sung, J.-H., Hwang, S.-Y., Sohn, S.-H., Yoo, S.-K., and Kim, S.-K. (2012). Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Experimental Gerontology 47,77-84.
    Shi, S., Shi, R., and Hashizume, K. (2012). American ginseng improves neurocognitive function in senescence-accelerated mice:possible role of the upregulated insulin and choline acetyltransferase gene expression. Geriatr Gerontol Int 12,123-130.
    Spong, A., and Bartke, A. (2012). Rapamycin slows aging in mice. Cell Cycle 11,845-845.
    Strong, R., Miller, R.A., Astle, C.M., Baur, J.A., de Cabo, R., Fernandez, E., Guo, W., Javors, M., Kirkland, J.L., Nelson, J.F., et al. (2012). Evaluation of Resveratrol, Green Tea Extract, Curcumin, Oxaloacetic Acid, and Medium-Chain Triglyceride Oil on Life Span of Genetically Heterogeneous Mice. J. Gerontol. a Biol. Sci. Med. Sci. (published online ahead of print)
    Tissenbaum, H. A., and Guarente, L. (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410,227-230
    Wilson, M.A., Shukitt-Hale, B., Kalt, W., Ingram, D.K., Joseph, J.A., and Wolkow, C.A. (2006). Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5,59-68.
    Yang, J.-Y., Della-Fera, M.A., Rayalam, S., Ambati, S., Hartzell, D.L., Park, H.J., and Baile, C.A. (2008). Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci.82,1032-1039.
    1 Klass, M.R.,1977. Aging in nematode Caenorhabditis elegans-major biological and environmental-factors influencing life-span. Mech. Ageing Dev.6,413-429.
    2 Friedman, D.B., Johnson, T.E.,1988. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118,75-86.
    3 BrennerS.genetics of Caenorhabditis elegans.Genetics,1974,77(1):71-94.
    4 Riddle, D., Albert, P.,1997. Genetic and environmental regulation of dauer larva development. In:Riddle, D., Meyer, B., Priess, J., Blumenthal, T. (Eds.), C. elegans Ⅱ. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 739-768.
    5 Kenyon, C.,2005. The plasticity of aging:insights from long-lived mutants. Cell 120,449-460.
    6 Braeckman, B.P., Houthoofd, K., Vanfleteren, J.R.,2003. Energy metabolism, anti-oxidant defense and aging in Caenorhabditis elegans. In:Nystrom, T., Osiewacz, H.D. (Eds.), Topics in Current Genetics, Model Systems in Aging, vol. 3. Springer-Verlag, Berlin, Heidelberg, pp.99-144.
    7 Kenyon, C., Chang, J., Gensch, E., Rudner, A., Tabtiang, R.,1993. A C. elegans mutant that lives twice as long as wild type. Nature 366,461-464.
    8 Kimura, K.D., Tissenbaum, H.A., Liu, Y., Ruvkun, G.,1997. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277,942-946.
    9 Wolkow, C.A., Munoz, M.J., Riddle, D.L., Ruvkun, G.,2002. Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J. Biol. Chem.277,49591-49597.
    10 Morris, J.Z., Tissenbaum, H.A., Ruvkun, G,1996. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382,536-539.
    11 Ogg, S., Ruvkun, G,1998. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 2,887-893.
    12 Hertweck, M., Gobel, C., Baumeister, R.,2004. C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev. Cell 6,577-588.
    13 Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H.A., Ruvkun, G.,1997. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389,994-999.
    14 Paradis, S., Ruvkun, G,1998. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev.12,2488-2498.
    15 Hsu, A.L., Murphy, C.T., and Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300,1142-1145.
    16 Morley, J.F., and Morimoto, R.I. (2004). Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol. Biol. Cell 15,657-664.
    17 Apfeld, J., O'Connor, G, McDonagh, T., DiStefano, P.S., and Curtis, R. (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev.18,3004-3009.
    18 Wolff, S., Ma, H., Burch, D., Maciel, G.A., Hunter, T., Dillin, A.,2006. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124,1039-1053.
    19 C.T.Murphy.,2006.The search for DAF-16/FOXO transcriptional targets: Approaches and discoveriesExperimental. Gerontology.41, (2006),910-921.
    20 Fabrizio, P., Liou, L.L., Moy, V.N., Diaspro, A., SelverstoneValentine, J., Gralla, E.B., and Longo, V.D. (2003). SOD2 functions down stream of Sch9 to extend longevity in yeast. Genetics 163,35-46.
    21 Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H.,Hafen, E., Leevers, S.J., and Partridge, L. (2001). Extension of life span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292,104-106.
    22 Tu, M.P., Epstein, D., and Tatar, M. (2002a). The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell 1,75-80.
    23 Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A.,Even, P.C., Cervera, P., and Le Bouc, Y. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature,421,182-187.
    24 Beato M, Herrlich P, Schutz G. Steroid hormone receptors:many actors in search of a plot. Cell,1995,83:851-857.
    25 Larsen, P.L., Albert, P.S., Riddle, D.L.,1995. Genes that regulate both development and longevity in C. elegans. Genetics 139,1567-1583.
    26 Ludewig, A.H., Kober-Eisermann, C., Weitzel, C., Bethke, A., Neubert, K. Gerisch, B., Hutter, H., Antebi, A.,2004. A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes Dev.18,2120-2133.
    27 Li, W., Kennedy, S.G., Ruvkun, G,2003. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev.17,844-858.
    28 Gems, D., Sutton, A.J., Sundermeyer, M.L., Albert, P.S., King, K.V., Edgley, M.L. Larsen, P.L., Riddle, D.L.,1998. Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in C. elegans. Genetics 150,129-155.
    29 Larsen, P.L., Albert, P.S., Riddle, D.L.,1995. Genes that regulate both development and longevity in C. elegans. Genetics 139,1567-1583.
    30 Arantes-Oliveira, N., Apfeld, J., Dillin, A., Kenyon, C.,2002. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295, 502-505.
    31 Rottiers, V, Motola, D.L., Gerisch, B., Cummins, C.L., Nishiwaki, K., Mangelsdorf, D.J., Antebi, A.,2006. Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev. Cell 10,473^482.
    32 Lin, K., Hsin, H., Libina, N., Kenyon, C.,2001. Regulation of the C.elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 28,139-145.
    33 Berman, J.R., Kenyon, C.,2006. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124,1055-1068.
    34 Zelcer, N., Tontonoz, P.,2006. Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest.116,607-614.
    35 Makishima, M., Lu, T.T., Xie, W., Whitfield, G.K., Domoto, H., Evans, R.M., Haussler, M.R., Mangelsdorf, D.J.,2002. Vitamin D receptor as an intestinal bile acid sensor. Science 296,1313-1316.
    36 Razzaque, M.S., Sitara, D., Taguchi, T., St-Arnaud, R., Lanske, B.,2006. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J.20,720-722.
    37 Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev, 2000,14(9):1021-1026.
    38 Koubova J, Guarente L. How does calorie restriction work. Genes Dev, 2003,17:313-321.
    39 Tissenbaum H A, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans[J].Nature,2001,410(6825):227-230.
    40 Vaziri H, Dessain SK, Ng Eaton E,et al. hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase[J]. Cell,2001,107(2):149-159
    41 Blander G, Guarente L. The Sir2 family of protein deacetylases[J] Annu Rev Biochem,2004,73:417-435.
    42 Weindruch, R.,1996. The retardation of aging by caloric restriction:studies in rodents and primates. Toxicol. Pathol.24,742-745.
    43 Wang, Y., Tissenbaum, H.A.,2006. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev.127, 48-56.
    44 Viswanathan, M., Kim, S.K., Berdichevsky, A., Guarente, L.,2005. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9,605-615.
    45 Adachi,H.,Ishii,N.,2000.Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J. Gerontol. A-Biol.55, B280-B285.
    46 Houthoofd, K., Braeckman, B.P., Johnson, T.E., Vanfleteren, J.R.,2003. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp. Gerontol.38,947-954.
    47 Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., Sinclair, D.,2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430,686-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700