微尺度下结构的静动力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微机械加工技术水平的提高,微机电系统这一新兴科学技术领域得以发展,并在信息通信、航空航天、生物医学和军事等领域都有着十分广阔的应用前景。由于微器件和微机械的结构尺寸一般在微米甚至纳米量级,在研究微结构力学行为时,微尺度效应影响不容忽视。因此,对微机电系统的研究需要建立考虑微尺度效应的理论模型来精确预测微结构的各种力学行为。
     本文运用修正偶应力理论或应变梯度理论构建完成一系列用于分析微结构静动力学行为(静态变形、振动、屈曲等)的理论模型。为了描述微尺度效应,修正偶应力和应变梯度理论模型分别引入一个和三个与微结构有关的材料内禀长度。通过三种微结构(微梁、微板和微输液管)的静动力学行为研究,探讨了微尺度效应的影响和尺度效应强弱的影响因素。主要研究工作如下:
     1、基于修正偶应力理论,分别建立用于研究微尺度下悬臂输液管的动力特性和稳定性的Bernoulli-Euler梁及Timoshenko梁模型。算例分析表明:悬臂微输液管的振动频率和阻尼特性均具有尺度效应,非经典梁模型预测的临界流速值偏高,输液管系统偏于稳定。
     2、采用应变梯度理论建立一种可预测微尺度效应的微输液管动力学模型。与修正偶应力理论模型结果比较发现,在包含旋转梯度张量,同时考虑膨胀梯度张量和拉伸梯度张量的偏斜分量后,微输液管具有更高的固有频率和临界流速,尺度效应更显著。
     3、以修正偶应力理论为基础,建立分析微板振动特性的理论模型。以两类不同边值的矩形板问题为例,研究了微尺度效应对微板固有频率的影响规律。
     4、利用修正偶应力理论建立了非线性的微梁模型并研究了微梁的静态弯曲、屈曲和自由振动。研究表明:微梁在横向载荷下的静态变形、轴向载荷下的临界屈曲载荷和屈曲形态以及初始侧向位移下的非线性固有频率皆具有尺度效应。
     5、应用修正偶应力理论进一步建立力-电耦合非经典梁模型,研究了静电驱动微梁的pull-in特性。结果表明:静电驱动微梁的微尺度效应表现在更小的静态挠度和更高的pull-in电压值,且该模型预测的微尺度效应强弱与微梁的长宽比无关。
     上述研究均表明结构特征尺寸是反映尺度效应强弱的一个重要参数。微尺度效应随结构特征尺寸的增大而减弱。当结构特征尺寸(管道外径、板厚或梁厚)与材料内禀长度相当时,微结构表现出强烈的微尺度效应;当结构特征尺寸远大于材料内禀长度时,微尺度效应消失。
     本文所建立的理论模型可用于微机电系统的刚度、强度及稳定性等性能的定量评估,研究结果可为微机电系统的设计提供理论支持。
With the advancement of the micromachining technology, a new scientific and technological undertaking, micro-electro-mechanical systems (MEMS), has been developing and has a very broad application prospect in various fields, such as the information communication, aerospace, biomedical, and military. In various micro devices and micro machinery, the characteristic sizes of their structures are typically on the order of microns or even nanometers. In this scale, the size effect can not be ignored in the study on mechanical behavior of micro-structures. Therefore, the research on MEMS raises the demand of establishing theoretical models considering size effect to predict accurately the various mechanical behaviors of microscale structures.
     By using the modified couple stress theory or strain gradient theory, a set of theoretical models are established to analyze the static and dynamic behaviors (static deformation, vibration, buckling and so on) in this paper. In order to capture the size effect, the models based on the modified couple stress and strain gradient theories introduce one and three material length scale parameters dependent on the micro-structure respectively. By the analysis on the static and dynamic behavior of three microscale structures (microbeams, microplates and microscale pipes conveying fluid), this paper investigates the size effect on microscale structures and the parameters influencing the intensity of size effect. The main results are shown as follows:
     1. Based on the modified couple stress theory, the non-classical Bernoulli-Euler and Timoshenko beam models are established to analyze the dynamic characteristics and stability of microscale cantilevered pipes conveying fluid. The numerical examples show that the natural frequencies and damping properties are size-dependent. The results also show that the critical flow velocities predicted by the non-classical beam models are generally higher than those predicted by the classical beam models, indicating that the stability of microscale pipes is enhanced.
     2. By utilizing the strain gradient theory, another dynamic model of micropipes conveying fluid is presented to capture the size effect. From the comparison between results of the present model and the model based on the modified couple stress theory, it is found that micropipes conveying fluid take larger natural frequencies and higher critical flow velocities, and thus the size effect is stronger. This is because the former model has introduced the additional dilatation gradient tensor and the deviatoric stretch gradient tensor in addition to the rotation gradient tensor.
     3. On the bases of the modified couple stress theory, a theoretical model is developed for analyzing the vibration characteristic of microscale plates. Taking two different boundary value problems of rectangular micro-plates for example, the size effect on natural frequencies of microscale plates is investigated.
     4. A nonlinear model of microbeams is established using the modified couple stress theory and the static bending, postbuckling and free vibration of microbeams is analyzed. The results show that the static deflections of a bending beam subjected to transverse force, the critical buckling loads and buckled configurations of an axially loaded beam, and the nonlinear frequencies of a beam with initial lateral displacement are size-dependent.
     5. Applying the modified couple stress theory, a non-classical beam model accounting for the electromechanical coupling is further presented and the pull-in characteristic of electrostatically actuated microbeams is investigated. It is found that the size effect on electrostatically actuated microbeams exhibits smaller deflection and larger pull-in voltage. Furthermore, the intensity of size effect predicted by this model is independent on the length-width ratio.
     The all above researches explore that the characteristic size is an important parameter reflecting the intensity of size effect. The size effect becomes weaker with the increase of the characteristic size. When the characteristic size of a microscale structure (outside diameter of a pipe, plate thickness or beam thickness) becomes comparable to the material length scale parameter, the microstructure displays strong size effect. While the characteristic size is far greater than the material length scale parameter, the size effect is almost diminishing.
     The theoretical models established in this paper can be utilized to evaluate quantitatively the mechanical properties of MEMS structures, such as the strength, stiffness and stability. Moreover, the results can provide theoretical support for the design of MEMS devices.
引文
[1]高世桥,刘海鹏.微机电系统力学.第一版.北京:国防工业出版社,2008
    [2]Liu C.微机电系统基础.第一版.北京:机械工业出版社,2007
    [3]Lin R M, Wang W J. Structural dynamics of microsystems-current state of research and future directions. Mechanical Systems and Signal Processing,2006, 20:1015-1043
    [4]Najmzadeh M, Haasl S, Enoksson P. A silicon straight tube fluid density sensor. J. Micromech. Microeng.,2007,17:1657-1663
    [5]Younis M I, Abdel-Rahman E M, Nayfeh A. A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. Syst.,2003,12(5): 672-680
    [6]Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plasticity:theory and experiment. Acta Metall. Mater.,1994,42:475-487
    [7]Stolken J S, Evans A G. A microbend test method for measuring the plasticity length scale. Acta Metall.Mater.,1998,46:5109-5115
    [8]Chong A C M, Lam D C C. Strain gradient plasticity effect in indentation hardness of polymers. Journal of Materials Research,1999,14 (10):4103-4110
    [9]Mcfarland A W, Colton J S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng.,2005,15: 1060-1067
    [10]魏悦广.机械微型化所面临的科学难题—尺度效应.世界科技研究与发展,2000,22(2):57-61
    [11]林谢昭.微机电系统的尺度效应及其影响.机电产品开发与创新,2005,18(5):28-30
    [12]Voigt W. Theoretische studien uber die elasticitatsverhaltnisse der krystalle. Abh. Ges. WissGottingen,1887,34:3-51
    [13]Duhem P. Theorie mathematique de la lumiere, Revue des Questions Scientifiques, 1893,33:257-258
    [14]Cosserat E, Cosserat F. Theorie des corps deformables. Paris:A. Hermann et. Fils, 1909
    [15]Eringen A C, Kafadar C B.微极场论.戴天民译.南京:江苏科学技术出版社,1982
    [16]Edelen D G B.非局部场论.戴天民译.南京:江苏科学技术出版社,1981
    [17]Eringen A C.非局部微极场论.戴天民译.南京:江苏科学技术出版社,1982
    [18]Toupin R A. Elastic materials with couple stresses. Arch. Ration. Mech. Anal., 1962,11:385-414
    [19]Mindlin R D, Tiersten H F. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal.,1962,11:415-448
    [20]Mindlin R D. Influence of couple-stresses on stress concentrations. Exp. Mech., 1963,3:1-7
    [21]Koiter W T. Couple-stresses in the theory of elasticity:I and II. Proc. K. Ned. Akad. Wet. B,1964,67:17-44
    [22]Ashby M F. The deformation of plastically non-homogeneous alloys. Phil.Mag., 1970,21:399-424
    [23]Fleck N A, Hutchinson J W. A phenomenological-theory for strain gradient effects in plasticity. J. Mech. Phys. Solids,1993,41:1825-1857
    [24]Acharya A, Shawki T G. Thermodynamic restrictions on constitutive equations for second-deformation-gradient inelastic behavior. J. Mech. Phys. Solids,1995,43: 1751-1772
    [25]Xia Z C, Hutchinson J W. Crack tip fields in strain gradient plasticity. Journal of the Mechanics and Physics of Solids,1996,44(10):1621-1648
    [26]Nowacki W. Couple stresses in the theory of thermoelasticity. In:Parkus H, Sedov L I, Eds. Proc. IUTAM Symposia. Vienna:Springer,1966,259-278
    [27]Ristinmaa M, Vecchi M. Use of couple-stress theory in elasto-plasticity. Comput. Methods Appl. Mech. Engrg.,1996,136:205-224
    [28]Yang F, Chong A C M, Lam D C C, et al. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct.,2002,39:2731-2743
    [29]Park S K, Gao X L. Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng.,2006,16:2355-2359
    [30]Mindlin R D. Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct.,1965,1:417-438
    [31]Fleck N A, Hutchinson J W. Strain gradient plasticity. Adv. App. Mech.,1997,33: 295-361
    [32]Aifantis E C. On the microstructural origin of certain inelastic models. J. Mater. Engng. Technol.,1984,106:326-330
    [33]Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity-I. J. Mech. Phys. Solids,1999,47:1239-1263
    [34]Zervos A, Papanastasiou P, Vardoulakis I. A finite element displacement formulation for gradient elastoplasticity. International Journal for Numerical Methods in Engineering,2001,50(6):1369-1388
    [35]Ahmadia G, Firoozbakhsha K. First strain gradient theory of thermoelasticity. International Journal of Solids and Structures,1975,11(3):339-345
    [36]Aifantis E C. Update on a class of gradient theories. Mechanics of Materials,2003, 35:259-280
    [37]黄克智,邱信明,姜汉卿.应变梯度理论的新进展(一)—偶应力理论和SG理论.机械强度,1999,21(2):81-87
    [38]Aifantis E C. Strain gradient interpretation of size effects. International Journal of Fracture,1999,95(1-4):299-314
    [39]Fleck N A, Hutchinson J W. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids,2001,49:2245-2271
    [40]Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids,2003,51:1477-1508
    [41]Eringen A C. Simple microfluids. Int. J. Engng. Sci.,1964,2(2):205-217
    [42]Eringen A C, Suhubi E R. Nonlinear theory of simple microelastic solids-Ⅰ & Ⅱ. Int. J. Engng. Sci.,1964,2(2):189-203,389-404
    [43]Eringen A C. Mechanics of micromorphic materials. In:Gortler H, Ed. Proc.11th Int. Congr. Appl. Mech. Berlin:Springer,1966,131-138
    [44]Sansour C. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc.,1998,8:341-348
    [45]Eringen A C. Theory of micromorphic materials with memory. Int. J. Engng. Sci., 1972,10(7):623-641
    [46]Eringen A C. Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Engng. Sci.,2003,41(7):653-665
    [47]Chen Y P, Lee J D. Connecting molecular dynamics to micromorphic theory. (Ⅰ). Instantaneous and averaged mechanical variables & (Ⅱ). Balance laws. Physica A, 2003,322:359-392
    [48]Dillard T, Forest S, Ienny P. Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. European Journal of Mechanics A/Solids,2006,25:526-549
    [49]Eringen A C. Theory of micropolar continuum. Dev. Mech.,1965,3(1):23-40
    [50]Eringen A C. Theory of micropolar fluids. J. Math. Mech.,1996,16(1):1-18
    [51]Eringen A C. Theory of micropolar elasticity. In:Liebowitz H, Ed. Fracture. An advanced treatise vol.Ⅱ. New York:Academic Press,1968,621-729
    [52]Eringen A C. Linear theory of micropolar viscoelasticity. Int. J. Engng. Sci.,1967, 5(2):191-204
    [53]de Borst R. A generalisation of J2-flow theory for polar continua. Computer Methods in Applied Mechanics and Engineering,1993,103(3):347-362
    [54]Tauchert T R, Claus Jr W D, Ariman T. The linear theory of micropolar thermoelasticity. Int. J. Engng. Sci.,1968,6(1):37-47
    [55]Gurtin M E, Murdoch A I.A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis,1975,57:291-323
    [56]Wang G F, Feng X Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett.,2007,90:231904
    [57]Wang G F, Feng X Q. Surface effects on buckling of nanowires under uniaxial compression. Appl. Phys. Lett.,2009,94:141913
    [58]Wang G F, Feng X Q. Timoshenko beam model for buckling and vibration of nanowires with surface effects. J. Phys. D:Appl. Phys.,2009,42:155411
    [59]王伯雄,陈非凡,董瑛.微纳米测量技术.第一版.北京:清华大学出版社,2006
    [60]Eisner R L. Tensile tests on silicon whiskers. Acta. Metall.,1955,3:414-15
    [61]Chasiotis I, Knauss W G. A new microtensile tester for the study of MEMS materials with the aid of atomic force microscopy. Experimental Mechanics,2002, 42(1):51-57
    [62]Espinosa H D, Prorok B C, Peng B. Plasticity size effects in free-standing submicron polycrystalline FCC-films subjected to pure tension. Journal of the Mechanics and Physics of Solids,2004,52:667-689
    [63]Pearson G L, Read Jr W T, Feldmann W L. Deformation and fracture of small silicon crystals. Acta Metallurgica,1957,5(4):181-191
    [64]Espinosa H D, Prorok B C, Fischer M. A methodology for determining mechanical properties of freestanding thin films and MEMS materials. Journal of the Mechanics and Physics of Solids,2003,51(1):47-67
    [65]Oliver W C, Pharr G M. Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research,1992,7(6):1564-1583
    [66]Jardret V, Zahouani H, Loubeta J L, et al. Understanding and quantification of elastic and plastic deformation during a scratch test. Wear,1998,218(1):8-14
    [67]Stelmashenkoa N A, Walls M G, Browna L M, et al. Microindentations on W and Mo oriented single crystals:An STM study. Acta Metallurgica et Materialia,1993, 41(10):2855-2865
    [68]陈隆庆,赵明皞,张统一.薄膜的力学测试技术.机械强度,2001,23(4):413-429
    [69]Beams J W. Mechanical properties of thin films of gold and silver. In:Neugebauer C A, Newkirk J B, Vermilyea D A, Eds. Structure and Properties of Thin Films. New York:Wiley,1959,183-192
    [70]Tabataa O, Kawahataa K, Sugiyamaa S, et al. Mechanical property measurements of thin films using load-deflection of composite rectangular membranes. Sensors and Actuators,1989,20(1-2):135-141
    [71]Petersen K E, Guarnieri C R. Young's modulus measurements of thin films using micromechanics. J. Appl. Phys.,1979,50(11):6711-6766
    [72]Mazza E, Abel S, Dual J. Expermental determination of mechanical properties of Ni and Ni-Fe microbars. Microsystem Technologies,1996,2:197-202
    [73]Chen C Q, Shi Y, Zhang Y S, et al. Size dependence of Young's modulus in ZnO nanowires. Physical Review Letters,2006,96:075505
    [74]Dominik M, Tucherman M E, Martyna G J. Quantum dynamics via adiabatic ab initio centroid molecular dynamics. Computer Physics Communications,1999, 118(2):166-184
    [75]Helin W, Zuli L, Kailun Y. Monte Carlo simulation of thin film growth on a surface with a triangular lattice. Vacuum,1999,52:435-440
    [76]Alder B J, Wainwright T E. Phase transition for a hard sphere system. J. Chem. Phys.,1957,27:1208-1209
    [77]张永伟,王自强.分子动力学方法在研究材料力学行为中的应用进展.力学进展,1996,26(1):14-27
    [78]张田忠,郭万林.纳米力学的数值模拟方法.力学进展,2002,32(2):175-188
    [79]Needleman A. Computational mechanics at the mesoscale. Acta Mater,2000,48(1): 105-124
    [80]Chen Y P, Lee J D, Eskandarian A. Micropolar theory and its applications to mesoscopic and microscopic problems. Computer Modeling in Engineering and Sciences,2004,5(1):35-43
    [81]Shikrot L E, Miller R E, Gurtin W A. Multiscale plasticity modeling:coupled atomistic and discrete dislocation mechanics. J. Mech. Phys. Solids,2004,52(4): 755-787
    [82]Amodeo R J, Ghoniem N M. Dislocation dynamics. I. A proposed methodology for deformation micromechanics.& Ⅱ. Applications to the formation of persistent slip bands, planar arrays, and dislocation cells. Phys. Rev. B,1990,41(10):6958-6976
    [83]Van der Giessen E, Needleman A. Discrete dislocation plasticity:A simple planar model. Modelling and Simulation in Materials Science and Engineering,1995,3(5): 689-735
    [84]Zbib H M, Rhee M, Hirth J P, et al. On plastic deformation and the dynamics of 3D dislocations. Int. J. Mech. Sci.,1998,40(2-3):113-127
    [85]Cleveringa H H M, Van der Giessen E, Needleman A. A discrete dislocation analysis of bending. International Journal of Plasticity,1999,15(8):837-868
    [86]Deshpande V S, Needleman A, Van der Giessen E. Discrete dislocation plasticity analysis of single slip tension. Mater. Sci. Eng. A,2005,400-401(1-2):154-157
    [87]Shi M X, Huang Y, Gao H. The J-integral and geometrically necessary dislocations in nonuniform plastic deformation. Int. J. Plast.,2004,20(8-9):1739-1762
    [88]Truesdell C, Toupin R. The classical filed theories. In:Flugge S, Ed. Handbuch der Physik, Berlin:Springer,1960,700-704
    [89]Shu J Y, Fleck N A. The prediction of a size effect in microindentation. Int. J. Solids Struct.,1998,35:1363-1383
    [90]Kong S L, Zhou S J, Nie Z F, et al. Static and dynamic analysis of micro beams based on strain gradient elasticity theory. International Journal of Engineering Science,2009,47:487-498
    [91]Wang B L, Zhao J F, Zhou S J. A micro scale Timoshenko beam model based on strain gradient elasticity theory. European Journal of Mechanics-A/Solids,2010, 29(4):591-599
    [92]Enoksson P, Stemme G, Stemme E. A silicon resonant sensor structure for Coriolis mass-flow measurements. J. Microelectromech. Syst.,1997,6:119-125
    [93]Westberg D, Paul 0, Andersson G I, et al. A CMOS-compatible device for fluid density measurements fabricated by sacrificial aluminum etching. Sens. Actuator A-Phys.,1999,73:43-251
    [94]Sparks D, Smith R, Cruz V, et al. Dynamic and kinematic viscosity measurements with a resonating microtube. Sens. Actuator A-Phys.,2009,149:38-41
    [95]Rinaldi S, Prabhakar S, Vengallatore S, et al. Dynamics of microscale pipes containing internal fluid flow:damping, frequency shift, and stability. Journal of Sound and Vibration,2010,329:1081-1088
    [96]Paidoussis M P. Fluid-structure interactions:slender structures and axial flow:Vol. 1. London:Academic Press,1998
    [97]Yoon J, Ru C Q, Mioduchowski A. Vibration and instability of carbon nanotubes conveying fluid. Compos. Sci. Technol.,2005,65:1326-1336
    [98]Reddy C D, Lu C, Rajendran S, et al. Free vibration analysis of fluid-conveying single-walled carbon nanotubes. Phys. Lett. A,2007,90:133122
    [99]Lee H L, Chang W J. Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory. Journal of applied physics,2008,103:024302
    [100]Wang L, Ni Q, Li M, et al. The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E,2008,40:3179-3182
    [101]Mattia D, Gogotsi Y. Review:static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid,2008,5:289-305
    [102]Wang L. Size-dependent vibration characteristics of fluid-conveying microtubes. Journal of Fluids and Structures,2010,26(4):675-684
    [103]Xia W, Wang L. Microfluid-induced vibration and stability of structures modeled as microscale pipes conveying fluid based on non-classical Timoshenko beam theory. Microfluidics and Nanofluidics,2010,9:955-962
    [104]Benjamin T B. Dynamics of a system of articulated pipes conveying fluid:Ⅰ. Theory. Proceedings of the Royal Society A,1961,261:487-499
    [105]Cowper G R. The shear coefficient in Timoshenko's beam theory. J. Appl. Mech., 1966,33:335-340
    [106]Bellman R E, Kashef B G, Casti J. Differential quadrature:a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys.,1972, 10:40-52
    [107]Kong S L, Zhou S J, Nie Z F, et al. The size-dependent natural frequency of Bernoulli-Euler micro-beams. Int. J. Engng. Sci.,2008,46:427-437
    [108]孔胜利,周慎杰,聂志峰.基于偶应力理论的压杆屈曲载荷的尺寸效应.机械强度,2009,31(1):136-139
    [109]孔胜利.微梁力学性能尺寸效应的研究[博士学位论文].济南:山东大学,2009
    [110]Tsiatas G C. A new Kirchhoff plate model based on a modified couple stress theory. International Journal of Solids and Structures,2009,46:2757-2764
    [111]Chen W, Striz A G, Bert C W. A new approach to the differential quadrature method for fourth-order equations. International Journal for Numerical Methods in Engineering,1997,40:1941-1956
    [112]Du H, Lin M K, Lin R M. Application of generalized differential quadrature method to structural problems. International Journal for Numerical Methods in Engineering,1994,37(11):1881-1896
    [113]Wu T Y, Liu G R, Wang Y Y. Application of the generalized differential quadrature rule to initial-boundary-value problems. Journal of Sound and Vibration,2003,264: 883-891
    [114]Wu T Y, Liu G R. Application of generalized differential quadrature rule to sixth-order differential equations. Commun. Numer. Meth. Engng.,2000,16: 777-784
    [115]Wu T Y, Liu G R. Application of the generalized differential quadrature rule to eighth-order differential equations. Commun. Numer. Meth. Engng.,2001,17: 355-364
    [116]Bert C W, Malik M. Differential quadrature method in computational mechanics:a review. Applied Mechanics Review,1996,49:1-27
    [117]Drory M D, Hutchinson J W. An indentation test for measuring adhesion toughness of thin films under high residual compression with application to diamond films. Mater. Res. Soc. Symp. Proc.,1995,383:173-182
    [118]Domke J, Radmacher M. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir,1998,14:3320-3325
    [119]Espinosa H D, Prorok B C. Size effects on the mechanical behavior of gold thin films. Journal of Materials Science,2003,38:4125-4128
    [120]Altan B S, Aifantis E C. On the structure of the mode III crack-tip in gradient elasticity. Scripta. Met.,1992,26:319-324
    [121]Lazopoulos K A. On the gradient strain elasticity theory of plates. Euro. J. Mech. A/Solids,2004,23:843-852
    [122]Papargyri-Beskou S, Beskos, D E. Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech.,2008,78:625-635
    [123]Lazopoulos K A. On bending of strain gradient elastic micro-plates. Mechanics Research Communications,2009,36:777-783
    [124]黄玉盈.结构振动分析基础.第一版.武汉:华中工学院出版社,1988
    [125]Ma H M, Gao X L, Reddy J N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids,2008,56: 3379-3391
    [126]Pereira R S. Atomic force microscopy as a novel pharmacological tool. Biochem. Pharmacol.,2001,62:975-983
    [127]Pei J, Tian F, Thundat T. Glucose biosensor based on the microcantilever. Anal., Chem.,2004,76:292-297
    [128]Asghari M, Ahmadian M T, Kahrobaiyan M H, et al. On the size-dependent behavior of functionally graded micro beams. Mater. Des.,2010,31(5):2324-2329
    [129]Hung E S, Senturia S D. Generating efficient dynamical models for microelectromechanical systems from a few finite-element simulation runs. J. Microelectromech. Syst.,1999,8:280-289
    [130]Ahn Y, Guckel H, Zook J D. Capacitive microbeam resonator design. J. Micromech. Microeng.,2001,11:70-80
    [131]Nayfeh A H, Younis M I, Abdel-Rahman E M. Reduced-order models for MEMS applications. Nonlinear Dynamics,2005,41:211-236
    [132]Papargyri-Beskou S, Tsepoura K G, Polyzos D, et al. Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct.,2003,40:385-400
    [133]Peddieson J, Buchanan G R, McNitt R P. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci.,2003,41:305-312
    [134]Sadeghian H, Rezazadeh G, Osterberg P M. Application of the generalized differential quadrature method to the study of pull-In phenomena of MEMS switches. J. Microelectromech. Syst.,2007,16:1334-1340
    [135]Nayfeh A H, Mook D T. Nonlinear oscillations. New York:John Wiley,1979
    [136]Senturia S. Microsystem design. Norwell:Kluwer Academic Publisher,2001
    [137]Choi B, Lovell E G. Improved analysis of microbeams under mechanical and electrostatic loads. J. Micromech. Microeng.,1997,7:24-29
    [138]Abel-Rahman E M, Younis M I, Nayfeh A H. Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng.,2002, 12:759-766
    [139]Younis M I, Abdel-Rahman E M, Nayfeh A H. A reduced-order model for electrically actuated microbeam-based MEMS. J. Microelectromech. S.,2003,12: 672-680
    [140]Chen J H, Kang S M, Zou J, et al. Reduced-order modeling of weakly nonlinear MEMS devices with Taylor-series expansion and Arnoldi approach. IEEE Journal of Microelectromechanical Systems,2004,13:441-451
    [141]Nayfeh A H, Pai P F. Linear and nonlinear structural mechanics. New York:Wiley, 2004
    [142]Sherbourne A N, Pandey M D. Differential quadrature method in the buckling analysis of beams and composite plates. Comput. Struct.,1991,40:903-913
    [143]Liew K M, Han J B, Xiao Z M, et al. Differential quadrature method for Mindlin plates on Winkler foundations. International Journal of Mechanical Sciences,1996, 38:405-421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700