EFGM求解传热边界形状辨识和相变问题及自适应EFGM计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传热边界形状辨识和相变传热问题的数值模拟具有重要的工程应用背景与理论探讨价值。由于这两个问题都涉及到边界变化的问题,因此,如何避免网格重构造成的计算困难成为相关数值模拟中所关注的一个重要问题。无网格伽辽金法(Element-free Galerkin method, EFGM)基于点的近似,不需要网格的生成和重构,具有良好的精度、稳定性和收敛性。因此,本文以EFGM为基础,探讨了传热边界形状辨识和相变问题的数值求解技术。
     自适应EFGM只对计算精度不满足要求的区域进行模型改进,和均匀加密相比,可在提高精度的同时,显著减少所需的节点数量,降低计算量,具有重要的工程应用价值。因此,本文还对EFGM的自适应计算进行了研究。
     主要的研究工作包括:
     1.将EFG和水平集方法(Level set method, LSM)相结合,提出了一个求解传热边界形状辨识问题的数值模型。EFG求解边界变化的的温度场,不需网格重构;LSM可在固定网格下方便和准确地描述形状演化。通过一个曲线边界的识别问题对所提模型进行了数值验证,考虑了初值、EFG节点/LSM有限差分网格和测量误差的影响,计算结果令人满意。
     2.将EFG与函数光滑化技术相结合,提出了一个求解相变传热问题的光滑等效热容数值模型。借助Sigmoid函数得到光滑连续的等效热容曲线,有效避免了等效热容阶跃变化引起的计算误差,不需使用传统的平均近似,对集中/非集中质量热容阵均适用。采用EFGM/有限差分法进行空间/时域离散。通过平板/角域凝固的数值算例对所提模型进行了数值验证,考虑了EFG节点、光滑函数参数的影响,并与平均近似方法对比,计算结果令人满意。
     3.建立了一个基于节点误差估计的自适应EFG数值模型,并应用到弹性力学问题中。基于节点的误差估计可减小估计误差在节点间的虚假振荡。和Chung-Belytschko误差估计的自适应相比,可在引入较少节点数量的条件下取得较高的精度。
     4.提出了一个偶应力正问题的h自适应EFG数值模型。EFG避免了有限元求解中因C1连续性要求造成的困难,自适应计算提高了计算精度,与均匀加密相比,显著降低了计算量。本文还建立了一个多宗量偶应力反问题的EFG和Gauss-Newton数值模型,可有效地对区域非均质的本构参数/载荷进行单一/组合反演,具有良好的抗噪性。
     论文工作,有望为无网格方法的进一步研究/应用及相关问题的数值求解提供有价值的参考。
Identification of boundary configurations and phase change in heat transfer problems have important application background in engineering and research value in theory. As these two problems involve changing boundaries, how to avoid the difficulties because of remeshing is a very important problem in numerical simulation. The Element-Free Galerkin Method (EFGM) builds the approximation using nodes only, thus it can avoid the generation and remeshing for mesh with good accuracy, stability and convergence. Hence, this thesis studies the identification of boundary configurations and phase change in heat transfer problems based on EFGM solutions.
     The adaptive EFGM computing can only refine the region where accuracy is not satisfied, so in comparision with uniform refinement, it can improve the accuracy and reduce the number of nodes needed, which achieve a significant decrease of computation cost. Hence, besides above two heat transfer problems, the adaptive EFGM computing is also researched in this thesis.
     The contribution of this thesis includes:
     1. Presenting a numerical model for the identification of boundary configurations in heat transfer problems combining EFG and Level set method (LSM). The remeshing is avoided in solving temperature field with changing boundary; LSM is an easy way to discrible shape evolution convieniently and accurately on a fixed grid. The proposed numerical model is verified via an identification of a curvilinear boundary, and the effects of initial guess, number of probing points, measurement error, and density of EFGM nodes and the LSM FD grid are considered. Satisfactory results are obtained.
     2. Presenting a smoothed effective heat capacity numerical model for phase change heat transfer problems combining EFG and function smoothing technique. The Sigmoid function is used to achieve a discontinuous and smooth effective heat capacity, which avoids the error caused by the discontinuous step-jump of the effective heat capacity, and it is efficient for either lumped or non-lumped heat capacity matrix. The proposed numerical model is verified via solidifications of slab and coner region examples, and the EFG nodes, the parameter relevant with Sigmoid function and the comparison with traditional averaging method are considered. Satisfactory results are obtained.
     3. Presenting an adaptive EFGM numerical model based on a node-based error estimator, this model is applied in elasticity problems. This node-based error estimator effectively reduces the spurious oscillation of estimated error between nodes. In comparison with the adaptive computing using Chung-Belytschko error estimator, the proposed model can achieve higher accuracy with fewer nodes introduced.
     4. Presenting an adaptive EFGM model for direct couple-stress problems, in which the EFG avoids the inconvenience that may be caused by C1 continuity requirement in the implementation of FEM, and the adaptive refinement increases computational accuracy with significantly reducing the computational cost compared with uniform refinement. This thesis also builds a numerical model for solving multi-variables inverse couple-stress problems based on EFGM and Gauss-Newton algorithm. This model is effective for single/combined identification for material parameters/load in case of regional inhomogeneity.
     This thesis provides a valuable reference for further research/application of meshless and other numerical solutions for relevant problems.
引文
[1]Cheng C H, Chang M H. Shape identification by inverse heat transfer method [J]. Journal of Heat Transfer,2003,125:224-231.
    [2]Su C R, Che C K. Geometry estimation of the furnace inner wall by an inverse approach [J]. International Journal of Heat and Mass Transfer,2007,50:3767-3773.
    [3]Huang C H. An inverse geometry problem in estimating frost growth on an evaporating tube [J]. Heat and Mass Transfer,2002,38:615-623.
    [4]Partridge P W, Wrobel L C. An inverse geometry problem for the localisationo of skin tumours by thermal analysis [J]. Engineering Analysis with Boundary Elements,2007, 31:803-811.
    [5]Tan J Y, Liu L H. Inverse Geometry Design of Radiating Enclosure Filled with Participating Media Using Meshless Method [J]. Numerical Heat Transfer, Part A,2009, 56:132-152.
    [6]Huang C H, Hsiung T Y. An inverse design problem of estimating optimal shape of cooling passages in turbine blades [J]. International Journal of Heat and Mass Transfer,1999, 42:4307-4319.
    [7]范春利,孙丰瑞,杨立,等.电线电缆破损的定量热像检测与诊断方法研究[J].中国电机工程学报,2005,25(18):162-166.
    [8]Lewis R W, Ravindran K. Finite element simulation of metal casting [J]. International Journal for Numerical Methods in Engineering,2000,47:29-59.
    [9]Anca A, Cardona A, Risso J et al. Finite element modeling of welding processes [J]. Applied Mathematical Modelling,2010. (Article in Press)
    [10]李方方,刘静,乐恺.生物组织在冻结过程中的三维相变传热问题精确解[J].应用数学和力学,2009,30(1):64-74.
    [11]Li B, Sun D W. Novel methods for rapid freezing and thawing of foods-a review [J]. Journal of Food Engineering,2002,54:175-182.
    [12]付杨,邱义芬,任兆生.相变降温服热分析[J].北京航空航天大学学报,2007,33,3:278-281.
    [13]Baetens R, Jelle B P, Gustavssn A. Phase change materials for building applications: A state of the art review [J]. Energy and Buildings,2010,42:1361-1368.
    [14]Tan L J, Zabaras N. A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods [J]. Journal of Computational Physics,2006,211:36-63.
    [15]Lewis R W, Morgan K, Thomas H R, et al. The finite element method in heat transfer analysis [M]. Chichester, England:John wiley & Sons,1996.
    [16]Belystchko T, Lu Y Y, Gu L. Crack propagation by element-free Galerkin methods [J]. Engineering Fracture Mechanics,1995,51:295-315.
    [17]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J], International Journal for Numerical Methods in Engineering,1994,37:229-256.
    [18]Yvonnet J et al. A simple error indicator for meshfree methods based on natural neighbors [J]. Computers and Structures,2006,84:1301-1312.
    [19]Rabczuk T, Samaniego E. Discontinuous modelling of shear bands using adaptive meshfree methods [J]. Computer Methods in Applied Mechanics and Engineering,2008,197:641-658.
    [20]Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks [J]. Computer Methods in Applied Mechanics and Engineering, 2007,196,29-30:2777-2799.
    [21]Tan J Y, Zhao J M, Liu L H. Meshless Method for Geometry Boundary Identification Problem of Heat Conduction [J]. Numerical Heat Transfer, Part B,2009,55:135-154.
    [22]Gonzalez M, Goldschmit M B. Inverse geometry heat transfer problem based on a radial basis functions geometry representation. International Journal for Numerical Methods in Engineering,2006,65,9:1243-1268.
    [23]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [24]Huang C H, Chiang M T. A three-dimensional inverse geometry problem in identifying irregular boundary configurations [J]. International Journal of Thermal Sciences,2009, 48:502-513.
    [25]Huang C H, Tsai C C. A transient inverse two-dimensional geometry problem in estimating time dependent irregular boundary configurations [J]. International Journal of Heat and Mass Transfer,1998,41,12:1707-1718.
    [26]Huang C H, Chen H M. An inverse geometry problem of identifying growth of boundary shapes in a multiple region domain [J]. Numerical Heat Transfer, Part A,1999,35:435-450.
    [27]Huang C H, Shih C C. A shape identification problem in estimating simultaneously two interfacial configurations in a multiple region domain [J]. Applied Thermal Engineering,2006,26,1:77-88.
    [28]Partridge P W, Wrobel L C. An inverse geometry problem for the localisationo of skin tumours by thermal analysis [J]. Engineering Analysis with Boundary Elements,2007, 31:803-811.
    [29]Lee H S, Park C J, Park H W. Identification of geometric shapes and material properties of inclusions in two-dimensional finite bodies by boundary parameterization [J]. Computer Methods in Applied Mechanics and Engineering,2000,181:1-20.
    [30]李斌,刘林华.一种基于边界元离散的导热问题几何边界识别算法[J].中国电机工程学报,2008,28(20):38-43.
    [31]李斌,刘林华.基于双倒易边界元法的非稳态导热几何边界识别[J].中国电机工程学报, 2009,29,5:66-71.
    [32]Paris M, Daneshmand F. Solution of geometric inverse heat conduction problems by smoothed fixed element method [J]. Finite Element in Analysis and Design,2009,45:599-611
    [33]Rabinovich D, Givolil D, Vigdergauz S. XFEM-based crack detection scheme using a genetic algorithm [J]. International Journal for Numerical Methods in Engineering,2007,71:1051-1080.
    [34]陈怡,谭永基,谭永基,等.使用反问题和遗传算法监测高炉炉底热侵蚀[J].复旦学报(自然科学版),2006,45,2:170-176.
    [35]Lu Y Y, Belystchko T, Tabbara M, Element-free Galerkin methods for wave propagation and dynamic fracture [J]. Computer Methods in Applied Mechanics and Engineering,1995,126:131-153.
    [36]Belystchko T, Tabbara M. Dynamic fracture using element-free Galerkin [J]. International Journal for Numerical Methods in Engineering,1996,39:923-938.
    [37]Belystchko T, Gu L, Lu Y Y. Fracture and crack growth by element free Galerkin methods [J]. Modelling and Simulation in Materials Science and Engineering,1994,115:277-286.
    [38]Lee S H, Yoon Y C. An improved crack analysis technique by element-free Galerkin method with auxiliary supports [J]. International Journal for Numerical Methods in Engineering,2003,56,9:1291-1314
    [39]Zhuang X Y, Augarde C, Bordes S. Accurate fracture modelling using meshless methods and level sets:formulation and 2D modelling [J]. International Journal for Numerical Methods in Engineering,2010 (Article in Press)
    [40]Duflot M. A meshless method with enriched weight functions for three-dimensional crack propagation [J]. International Journal for Numerical Methods in Engineering,2006,65:1970-2006.
    [41]Krysl P, Belytschko T. The element free Galerkin method for dynamic propagation of arbitray 3-D cracks [J]. International Journal for Numerical Methods in Engineering,1999,44:767-800.
    [42]Tan J Y, Zhao J M, Liu L H. Meshless Method for Geometry Boundary Identification Problem of Heat Conduction [J]. Numerical Heat Transfer, Part B,2009,55:135-154.
    [43]Ameur H B, Burger M, Hackl B. Level set methods for geometric inverse problems in linear elasticity [J]. Inverse Problems,2004,20:673-696.
    [44]Osher S, Sethian J. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton Jacobi formulations [J]. Journal of Computational Physics,1988,79:12-79.
    [45]Sethian J, Weigmann A. Structural boundary design via level set and immersed interface methods [J]. Journal of Computational Physics,2000,163,2:489-528
    [46]Osher S, Santosa F. Level set methods for optimization problems involving geometry and constrains I. Frequencies of a two-density inhomogeneous drum [J]. Journal of Computational Physics,2001,171:272-288
    [47]Wang Y M, Wang X M, Guo D M. A level set method for structural topology optimization [J]. Computer Methods in Applied Mechanics and Engineering,2003,192:227-246.
    [48]荣见华.一种改进的结构拓扑优化水平集方法[J].力学学报,2007,39,2:253-260.
    [49]郑素佩,欧阳洁Level Set追踪等温非牛顿熔体前沿界面[J].力学与实践,2007,29,3:11-14.
    [50]崔鹃,欧阳洁,郑素佩等.三维非牛顿熔体前沿界面的Level Set/Ghost/SIMPLEC模拟[J].应用力学学报,2010,27,2:333-339.
    [51]Litman A, Lesselier D, Santosa F. Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set [J]. Inverse Problems,1998,14:685-706.
    [52]Minkowycz W J, Sparrow E M. Advances in numerical heat transfer [M]. Volume 1. Taylor and Francis,1997.
    [53]Crank J. Free and moving boundary problems [M]. Oxford:Calverdon Press,1984.
    [54]Lewis R W, Morgan K, Thomas H R, et al. The finite element method in heat transfer analysis [M]. John wiley & Sons,1996.
    [55]Comini G, Guidice D, Lewis R W, Zienkiewicz O C. Finite element solution of non-linear heat conduction problems with special reference to phase change [J]. International Journal for Numerical Methods in Engineering,1974,8:613-624.
    [56]Giudice D, Comini G, Lewis R W. Finite element simulation of freezing processes in soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics.1978,2:223-235.
    [57]Morgan K, Lewis R W, Zienkiewicz O C. An improved algorithm for heat conduction problems with phase change [J]. International Journal for Numerical Methods in Engineering.1978, 13:1191-1195.
    [58]Lemmon E C. Multidimensional integral phase change approximations for finite element conduction codes [M]. In:Numerical Methods Heat Transfer, Lewis RW, Morgan K, Zienkiewicz OC, Eds. Wiley:New York,1981; 201-213.
    [59]Dalhuijsen A J, Segal A. Comparison of finite element techniques for solidification problems [J]. International Journal for Numerical Methods in Engineering,1986, 23:1807-1829.
    [60]Voller V R, Swaminathan C R, Thomas B G. Fixed grid techniques for phase change problems: a review [J]. International Journal for Numerical Methods in Engineering,1990,30:875-898.
    [61]Kraus H G. Thermal finite element formulation and solution versus experimental results for thin-plate gta welding [J]. Transactions and Journal of Heat Transfer, ASME,1986,108:591-596.
    [62]Purlis E, Salvadori V R. Bread baking as a moving boundary problem. Part 1:Mathematical modelling [J]. Journal of Food Engineering,2009,91:428-433.
    [63]Gao Z, Lai Y, Zhang M et al. An element free Galerkin method for nonlinear heat transfer with phase change in Qinghai-Tibet railway embankment [J]. Cold Region Science and Technology,2007,48:15-23.
    [64]Vertnik R, Sarler B. Meshless local radial basis function collocation method for convective-diffusive solid-liquid phase change problems [J]. International Journal of Numerical Methods for Heat & Fluid Flow,1996,16,5:617-640.
    [65]Vertnik R, Sarler B. Simulation of continuous casting of steel by a meshless technique [J]. International Journal of Cast Metals Research,2009,22:1-4.
    [66]Zhang L, Rong Y M, Shen H F et al. Solidification modelling in continuous casting by finite point method [J]. Journal of Materials Processing Technology,2007,192-193:511-517.
    [67]曾攀.有限元分析与应用[M].北京:清华大学出版社,2004.
    [68]Ziekiwicz O C, Taylor R L, Zhu J Z. The Finite Element Method [M].6th ed. Oxford: Elsevier Butterworth-Heinemann,2005.
    [69]Babuska I, Rheinboldt. Error estimates for adaptive finite element computations [J]. SIAM Journal on Numerical Analysis,1978,15:736-754.
    [70]Babuska I, Chandra J, Flaherty J E. Adaptive Computational Methods for Partial Differential Equations [M]. Philadelphia, PA, USA:Society for Industrial and Applied Mathematics,1983.
    [71]Stein E, Ramm E, Rank E, et al. Error-controlled adaptive finite elements in solids mechanics [M]. Chichesterr, England:John Wiley & Sons Ltd,2003.
    [72]Schmidt A, Siebert K G. Design of adaptive finite element software:the finite element toolbox ALBERTA [M]. Germany:Springer-Verlag Berlin Heidelberg,2005.
    [73]W. K. Liu, W. Hao, Y. Chen, et al. Multiresolution reproducing kernel particle methods [J]. Computational Mechacnis,1997,20:295-309.
    [74]Li S F, Liu W K. Meshfree and Particle Methods [M]. Springer-Verlag,2004.
    [75]You Y, Chen J S, Lu H. Filters. Reproducing kernel, and adaptive meshfree method [J]. Computational Mechacnis,2003,31:316-326.
    [76]Lee C K, Shuai Y Y. An automatic adaptive refinement procedure for the reproducing kernel particle method. Part I:Stress recovery and a posteriori error estimation [J]. Computational Mechacnis,2007,40:39-413.
    [77]Lee C K, Shuai Y Y. An automatic adaptive refinement procedure for the reproducing kernel particle method. Part II:Adaptive refinement [J]. Computational Mechacnis,2007,40:415-427.
    [78]干年妃.基于RKPM法的无网格自适应方法研究及其在金属成形中的应用[D].长沙:湖南大学 博士学位论文,2000
    [79]Duarte C A, Oden J T. An hp Adaptive Method Using Clouds [J]. Computer Methods in Applied Mechanics and Engineering,1996,139:237-262.
    [80]龙述尧,邬昭平.基于无网格局部Petrov—Galerkin方法的h型自适应分析[J].湖南大学学报:自然科学版,2009,36,1:68-71.
    [81]Krongauz Y, Belytschko T. Consistent pseudo-derivatives in meshless methods [J]. Computer Methods in Applied Mechanics and Engineering,1997,146,3-4:371-386.
    [82]Combe U H, Korn C. An adaptive approach with the element-free-Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering,1998,162:203-222.
    [83]Liu G R, Tu Z H. An adaptive procedure based on background cells for meshless methods [J]. Computer Methods in Applied Mechanics and Engineering,2002,191:1923-1943.
    [84]Gavete L, Gavete M L, Alonso B et al. A posteriori error approximation in EFG method [J]. International Journal for Numerical Methods in Engineering,2003,58:2239-2263.
    [85]Gavete L, Cuesta J L, Ruiz A. A procedure for approximation of the error in the EFG method [J]. International Journal for Numerical Methods in Engineering,2002,53:677-690.
    [86]Chung H J, Belytschko T. An error estimate in the EFG method [J]. Computational Mechanics,1998,21:91-100.
    [87]Lee G H, Chung H J, Choi C K. Adaptive crack propagation analysis with the element-free Galerkin method [J]. International Journal for Numerical Methods in Engineering,2003,56,3:331-350.
    [88]Lee C K, Zhou C E. On error estimation and adaptive refinement for element free Galerkin method Part I:stress recovery and a posteriori error estimation [J]. Computers and Structures,2004,82:413-428.
    [89]Lee C K, Zhou C E. On error estimation and adaptive refinement for element free Galerkin method Part II:adaptive refinement [J]. Computers and Structures,2004,82:429-443.
    [90]Rossi R, Alves M K. An h-adaptive modified element-free Galerkin method [J]. European Journal of Mechanics A/Solids,2005,24:782-799.
    [91]John V, Knobloch P. On spurious oscillations at layers diminishing (SOLD) methodsfor convection-diffusion equations:Part I-A review [J]. Computer Methods in Applied Mechanics and Engineering,2007,196:2197-2215.
    [92]Masuda S, Noguchi H. Analysis of structure with material interface by meshfree method [J]. Computer Modeling in Engineering & Sciences,2006,11,3:131-144.
    [93]Nguyen V P, Rabczuk T, Bordas S, et al. Meshless methods:A review and computer implementation aspects [J]. Mathematics and Computers in Simulation,2008,79:763-813.
    [94]张小华.无网格方法在计算流体力学中的应用研究[D].西安:西北工业大学硕士学位论文. 2006
    [95]Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. The Astron. Journal,1997,8,12:1013-1024
    [96]Onate E, Idelsohn S, Zienkiewicz O C et al. A finite point method in computational mechanics:Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering,1996,39:3839-3866.
    [97]Liu W K, Jun S, Zhang Y F. Reoproducing Kernel Particle methods [J]. International Journal for Numerical Methods in Fluids,1995,20:1081-1106
    [98]Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J]. Computational Mechacnis,1998,22:117-127
    [99]Zhang Z Q, Noguchi H, Chen J S. Moving least-squares approximation with discontinuous derivative basis functions for shell structures with slope discontinuities [J]. International Journal for Numerical Methods in Engineering,2008,76,8:1202-1230.
    [100]Singh I V, Tanaka M, Endo M. Thermal analysis of CNT-based nano-based nano-composites by element free Galerkin method [J]. Computational Mechacnis,2007,39:719-728
    [101]Gao Z, Lai Y, Zhang M et al. An element free Galerkin method for nonlinear heat transfer with phase change in Qinghai-Tibet railway embankment [J]. Cold Region Science and Technology,2007,48:15-23.
    [102]Singh. I. V. A numerical study of weight functions scaling and penalty parameters for heat transfer applications [J]. Numerical Heat Transfer, Part A:Applications,2005,47,10:1025-1053.
    [103]Yang H T, Liu L. Solving transient heat conduction problems with cyclic symmetry via a parallend EFGM and a precise algorithm [J]. Numerical Heat Transfer, Part B: Fundamentals,2004,46,5:479-495.
    [104]Zheng J, Long S, Li G. The topology optimization design for continuum structures based on the element free Galerkin method [J]. Engineering Analysis with Boundary Elements,2010,34:666-672.
    [105]Yang S, Ni G, Cardoso J R et al. A combined wavelet-element free Galerkin method for numerical calculations of electronmagnetic fields [J]. IEEE Transactions on magnetic,2003,39,3:1413-1416.
    [106]Xuan L, Zeng Z, Shanker B et al. Element-free Galerkin method for static and quasi-static electromagnetic field computation [J]. IEEE Transactions on magnetic, 2004,40,1:12-20.
    [107]Lancaster P, Salkauskas. Surfaces generated by moving least square methods [J]. Mathematics of Computation,1981,37:141-158.
    [108]McLain D H. Drawing contours from arbitrary data points [J]. Computer Journal,1973, 17:318-324.
    [109]Gordon W J, Wixom J A. Shepard's method of metric interpolation to bivariate and multivariate data [J]. Mathematics of Computation,1978:253-264.
    [110]Nayroles B, Touzot G, Villon P. Generalizing the finite element method:diffuse approximation and diffuse elements [J]. Computational Mechanics,1992,10:301-318.
    [111]Dolbow J, Belytschko T. An introduction to programming the meshless element free Galerkin method [J]. Archives of Computational Methods in Engineering.1998,5,3:207-241.
    [112]Chen S, Merriman, Osher S. A Simple Level Set Method for Solving Stefan Problems [J]. Journal of Computational Physics,1997,135:8-29.
    [113]梅玉林.拓扑优化的水平集方法及其在刚性结构、柔性结构和材料设计中的应用[D].大连:大连理工博士学位论文,2003.
    [114]Litman, Lesseliery D, Santosa F. Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set [J]. Inverse Problems,1998, 14:685-706.
    [115]周业涛,关振群,顾元宪.求解相变传热问题的等效热容法.化工学报,2004,55(9):1428-1433.
    [116]Ren J, Mclsaac K A, Patel R V, et al. A Potential Field Model using Generalized Sigmoid Functions [J]. IEEE Transactions of system, man and Cybernetics—PART B: Cybernetics,2007,37,2:477-484.
    [117]Rathjen K A, Jiji L A. Heat conduction with melting or freezing in a conner [J]. Journal of Heat Transfer,1971,93:101-109.
    [118]Zhuang X, Heaney C, Augarde C. On error estimation in the element-free Galerkin method [J].2011. (Submitted to Engineering Analysis with Boundary Elements).
    [119]Bobaru F, Yang M, Alves L F, et al. Convergence, adaptive refinement, and scaling in 1D peridynamics [J]. International Journal for Numerical Methods in Engineering,2008,77:852-877
    [120]Deeks A J, Wolf J P. An h-hierachical adaptive procedure for the scaled boundary finite element method [J]. International Journal for Numerical Methods in Engineering,2002,54:585-605.
    [121]靳希,杨尔滨,赵玲.信号处理原理与应用[M].北京:清华大学出版社.2004.
    [122]Augarde C E, Deeks A J. The use of Timoshenko's exact solution for a cantilever beamin adaptive analysis [J]. Finite Elements in Analysis and Design,2008,44:595-601.
    [123]Cosserat E, Cosserat F. Theorie des Corps Deformables [M]. Paris:Hermann et Files, 1909.
    [124]Toupin R A. Elastic materials with couple stress [J]. Archive for Rational Mechanics and Analysis,1962,11:385-414.
    [125]Mindlin R D, Tiersten H F. Effects of couple stress concentrations [J]. Experimental Mechanics,1963,3:1-7
    [126]Eringen A C. Linear theory of micropolar elasticity [J]. Journal of Mathematics and Mechanics.1966,15:909-923.
    [127]Cedri, Xia Z, Huntchison J W. Crack tip field in strain gradient plasticity [J]. Journal of the Mechanics and Physics of Solids,1996,44:1624-1648.
    [128]Chang C S, Shi Q, Liao C L. Elastic constants for granular materials modeled as first-order strain-gradient continua [J]. International Journal of Solids and Structure,2003,40:5565-5582.
    [129]Adachi T, Tomata Y, Tanaka M. Computational simulation of deformation behavior of 2D-lattice continuum [J]. International Journal of Mechanical Sciences,1998, 40:857-866.
    [130]Spencer A J M, Soldatos K P. Finite deformations of fiber-reinforced elastic solids with fibre bending stiffness [J]. International Journal of Non-Linear Mechanics,2007, 42:355-368.
    [131]Elangovan S, Altan B S, Odegard G M. An elastic micropolar mixture theory for predicting elastic properties of cellular materials [J]. Mechanics of Materials,2008, 40:602-615.
    [132]Lakes R S. Strongly Cosserat elastic lattice and foam materials for enhanced toughness [J]. Cellular Polymers,1993.12:17-30.
    [133]Wood R D. Finite element analysis of plane couple-stress problems using first order stress functions [J]. International Journal for Numerical Methods in Engineering,1988. 26:489-509.
    [134]Adachi T, Tomita Y, Tanaka M. Computational simulation of deformation behavior of 2d-lattice continuum [J]. International Journal of Mechanical Sciences.1998.40:857-866.
    [135]郑长良,任明法,张志峰,等.应用离散偶应力单元分析弹性Cosserat介质[J].计算物理,2004,21:377-382.
    [136]肖其林,凌中,吴永礼 偶应力问题的杂交/混合元分析[J].计算力学学报,2003,20:427-432.
    [137]张瑞霞.基于偶应力理论的无网格法[D].济南:山东大学硕士学位论文.2005.
    [138]Boresi A P, Chong K P. Elasticity in Engineering Mechanics [M], John Wiely & Sons, New York,2000.
    [139]Zienkiewicz O C, Morgan K. Finite Elements and Approximation [M], John Wiley & Sons, USA,1983
    [140]Liu G R. Computational inverse techniques in nondestructive evaluation [M], Boca Raton London New York Washington D. C. 592,2003
    [141]Wang D G, Li X S, Li S J. Regularization procedure for two-dimensional steady heat conduction inverse problems [J]. Chinese Journal of Acta Scientiarum Naturalium, Universitatis Jilinensis,2000,2:55-60.
    [142]王凯,杨海天,马莉英.高斯牛顿技术求解偶应力反问题[J].计算力学学报,2008,25,2:616-620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700