微弯曲成形中应变梯度硬化效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属塑性微成形在微型零件的生产制造过程中显得越来越重要,并受到广大研究者的重视。但随着微型零件几何尺寸的缩小,其微观晶粒尺寸和表面粗糙度等材料参数却保持不变,从而导致材料的塑性变形行为发生变化,其力学性能等与尺寸大小相关,这些不同于宏观尺寸零件成形时的现象称为尺寸效应现象。传统的塑性成形技术和理论中由于不包含材料尺度量而不能直接应用于塑性微成形工艺中。为研究微成形中的尺寸效应现象,在考虑传统应变硬化的基础上,引入了应变梯度对材料硬化的影响,进而将成形零件的几何尺寸量引入控制方程中,使应变梯度硬化理论能够用于描述微成形中的尺寸效应现象。本文基于金属微成形实验中的尺寸效应现象,采用应变梯度塑性理论研究金属塑性微成形过程中表现出的与尺寸相关的现象。
     本文研究了厚度为25μm~500μm的纯铝(99.5%)和CuZn37黄铜薄板材料的单向拉伸实验,结果表明:纯铝的的屈服强度表现出随板料厚度减小而降低的“越小越弱”的尺寸效应现象,这是由于具有脆性氧化膜的纯铝,材料表面层晶粒中的位错更容易滑移出表面并且表面层晶粒所占比例随厚度的减小而增加,进而引起小尺寸材料的软化;CuZn37黄铜的屈服强度却显示出了随板料厚度减小而增强的“越小越强”的尺寸效应现象,这与其表面的韧性氧化膜有关,它的存在阻碍了表面层晶粒中位错的滑出,从而使薄试样的强度增加。这两种材料在表面层应变相同的微弯曲实验中均表现出了明显的“越小越强”的尺寸效应现象,即回弹角随试样板料厚度的减小而增大。微弯曲变形区侧表面微硬度分布表明,厚度较大的细晶粒试样变形区侧表面存在明显的低硬度中心层,而粗晶粒试样变形区中心层不明显。传统的塑性模型不能描述实验中与尺寸相关的现象,需采用包含成形材料尺寸量的应变梯度塑性理论来解释。
     采用应变梯度塑性理论对微弯曲实验中存在的尺寸效应现象进行了分析研究。结果表明:包含高阶应力的Fleck-Hutchinson应变梯度硬化模型和基于Taylor关系式而不包含高阶应力的Nix-Gao模型能够显示出微弯曲变形中的尺寸效应现象。但FH应变梯度塑性理论模型需要引入与高阶应变功共轭的高阶应力和特殊的边界条件,其中的内禀尺寸量为根据实验数据拟合得到的保持量纲平衡的量。而在NG应变梯度塑性理论中,不需要引入高阶应力,并且内禀尺寸量具有一定的物理意义,但在分析微弯曲实验时,存在内禀尺寸计算值与根据实验拟合得到的内禀尺寸值不相符的问题;同时考虑到内禀尺寸与晶粒尺寸或晶粒相对尺寸之间的关系,因此我们对NG应变梯度模型进行了修正,以解释弯曲回弹实验中表现出的尺寸效应现象。结果表明:修正的Nix-Gao应变梯度硬化模型给出了更好的计算结果。材料内禀尺寸是应变梯度硬化模型的关键参数之一。为了更准确的描述应变梯度对材料硬化的影响,将厚度方向晶粒数引入到了内禀尺寸表达式中,计算得到的内禀尺寸值和采用实验拟合得到的内禀尺寸值比较接近。进一步说明了厚度方向晶粒数越少由几何必需位错引起的应变梯度对硬化的影响越显著,相反厚度方向晶粒数越多由统计存储位错所反映的均匀变形应变引起的硬化作用越显著,这与采用Hall-Petch关系式对屈服的描述相一致。
     极薄试样(如厚度为25μm)的微弯曲实验结果显示出很大的波动性,其微观结构金相照片表明厚度方向仅有单层晶粒,同时又存在明显的尺寸效应现象,因此在晶体塑性理论中引入应变梯度对硬化的影响,在考虑晶粒方位对硬化影响的同时考虑微成形过程中的尺寸效应现象。针对应变梯度晶体塑性理论中求解剪应变梯度的关键核心问题提出了新的简化算法,采用计算点近邻域的方法求得该点与相邻点之间的剪应变梯度。对微压痕成形的模拟结果显示压痕载荷与实验结果较接近,其他结果与研究者的模拟结果比较接近,验证了应变梯度晶体塑性理论模型及剪应变梯度的简化算法的准确性;对微弯曲成形进行了模拟计算:由于晶粒方位的不同导致硬化的各向异性,从微观机制上解释了较薄试样弯曲实验中结果误差波动性较大的原因。
Metal plastic microforming is becoming an important manufacturing process for metal micro parts and is investigated by more and more researchers recently. In metal microforming process, some material parameters, such as crystal microstructure, surface roughness etc. are the same as ones in macro scale material forming process, but its macro geometrical dimensions, such as foil thickness, wire diameter and indentation depth, are very small, in finally, the metal plastic forming behaviours are changed. The properties of metal material are different from macro scale forming and related with the macro geometrical dimensions, which is referred to as size effect. The conventional metal forming technology and theory in macro scale cannot be applied directly to metal plastic microforming through scale down the specimen and tooling size due to the lack of the material length scale in their constitutive models. In order to study on the size effects in microforming process, the strain gradient plasticity theory is developed, in which the conventional strain hardening and the strain gradient hardening are included together and the material intrinsic length is present in the constitutive relation. In present dissertation, the plastic stran gradient theories are studied to explain the size effects in metal microforming. The research results are summarized as following:
     The uniaxial tensile tests are investigated using 25μm~500μm thickness foils for pure aluminium (99.5%) and CuZn37 brass. The results show that there is a size effect“smaller is weaker”, i.e. the yield strength of pure aluminium decreases with the foil thickness decreasing, and which is attribute to the dislocations in the surface grains might slip easily with brittle oxidation film and the share of surface grains in the overall volume increases with decreasing thickness. For the brass foils, the yield strength increases with the foil thickness decreasing, that is to say, there is a size effect“smaller is stronger”. The reason is that there exists the passivated and ductility oxidation film to block the dislocation slip out of the surface of brass and the ratio of the thickness of oxidation film to the brass foil increases with the brass foil thickness decreasing. In the microbending experiments for these two metal materials, the springback angle increases with decreasing foil thickness, indicating obvious size effects of“smaller is stronger”. The hardness distribution in bended area shows that there is an obvious middle layer for fine grain structure samples and no middle layer for coarse structure samples. The size effects in microbending process are investigated with strain gradient theories.
     The analysis results show that Fleck-Hutchinson’s strain gradient plasticity theory with higer-order stress tensor and Nix-Gao’s strain gradient plasticity theory based on the Taylor relation can catch these size effects, but the springback angles or the microbending moment based on the modified Nix-Gao strain gradient plasticity theory are in better agreement with the experimental data. The material intrinsic length is one of the important factors in plastic strain gradient plasticity theory and originally proposed for dimensional consistency. In the Nix-Gao’s srain gradient theory, the material intrinsic lengths calculated from its equation are different from the ones fitted by the experimental data. In present dissertation, the material intrinsic length is related to material properties and average grain numbers along the characteristic scale direction of part to improve the strain gradient hardening effects. The calculated results of material intrinsic length are closed to the fitting results from experiment data. The less the grain numbers across the foil thickness is, the larger the strain gradient hardening based on the geometrically necessary dislocation is. On the contrary, the more the grain numbers across the foil thickness is, the larger the uniforming strain hardening based on the statistically stored dislocation is, which is in accordance with the Hall-Petch relation.
     The error of springback angle is larger for thinner foils in microbending experiments, in which there is only one grain across the thinner foils. Therefore, the anisotropic properties of material are more and more highlights together with the size effects phenominon. The anisotropic properties of single crystal together with the shear strain gradient hardening are expressed in the strain gradient crystal plasiticity theory, in which the shear strain gradient hardening is introduced directly into the evolutionary equations of the slip resistence. The new simple numerical algorithm to obtain the shear strain gradient is proposed, in which the concept of the closed neighbour domain of integration points are used to calculated the shear strain gradient between the present integration point and neighbour points in the range of predefined domain. Two examples are provided to illustrate the present theory, including a single crystal subject to microindentation and microbending deforming processes. The FE analysis results of microindentation on a single crystal copper show that the indentation load is closed to the experimental data for the same indentation depth and other results are good agreement with the simulation results from published papers. The accuracy of the strain gradient crystal plasticity theory and simplified numerical algorithm of shear strain gradient is verified. The significant fluctuates of the error for thinner foils in microbending experiments are better attributed to the anisotropic properties of single crystal in microbending simulation of different orientation. The thinner foils are single crystal through the thickness but many grains across the thicker foils; therefore the later is approach to the material isotropic properties.
引文
[1] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming, Cirp Ann-Manuf Techn 50(2001): 445-462.
    [2]苑伟政,马炳和, (Eds),微机械与微细加工技术,西北工业大学出版社,西安, 2000.
    [3] U. Engel, R. Eckstein, Microforming - from basic research to its realization, J Mater Process Tech 125(2002): 35-44.
    [4] U. Engel, A. Rosochowski, S. Gei?d?rfer, L. Olejnik, Microforming and Nanomaterials, Advances in Material Forming(2007): 99-124.
    [5] V.K. Varadan, MEMS and NEMS based smart devices and systems, Electronics and Structures for Mems II 4591(2001): 28-38.
    [6] T. Connolley, P.E. McHugh, M. Bruzzi, A review of deformation and fatigue of metals at small size scales, Fatigue Fract Eng M 28(2005): 1119-1152.
    [7] Y. Saotome, A. Inoue, Superplastic micro-forming of microstructures, MEMS’94, Proceedings, IEEE(1994): 343-348.
    [8] Y. Saotome, H. Iwazaki, Superplastic extrusion of microgear shaft of 10 mu m in module, Microsyst Technol 6(2000): 126-129.
    [9] Y. Saotome, H. Iwazaki, Superplastic backward microextrusion of microparts for micro-electro-mechanical systems, J Mater Process Tech 119(2001): 307-311.
    [10] F. Vollertsen, H.S. Niehoff, Z. Hu, State of the art in micro forming, Int J Mach Tool Manu 46(2006): 1172-1179.
    [11] Y.I. Kim, K.S. Sim, E.G. Yoh, Y.S. Lee, H.J. Park, K.H. Na, Analysis of the milli-forming of single-crystal and poly-crystal bar, J Mater Process Tech 113(2001): 70-74.
    [12] Y. Saotome, T. Okamoto, An in-situ incremental microforming system for three-dimensional shell structures of foil materials, J Mater Process Tech 113(2001): 636-640.
    [13] J.T. Gau, C. Principe, J.W. Wang, An experimental study on size effects on flow stress and formability of aluminm and brass for microforming, J Mater Process Tech 184(2007): 42-46.
    [14] H. Van Brussel, J. Peirs, D. Reynaerts, A. Delchambre, G. Reinhart, N. Roth, M. Weck, E. Zussman, Assembly of microsystems, Cirp Annals 2000: Manufacturing Technology, Vol 49/2/2000(2000): 451-472.
    [15] U. Engel, Tribology in microforming, Wear 260(2006): 265-273.
    [16] T. Masuzawa, State of the art of micromachining, Cirp Annals 2000: Manufacturing Technology, Vol 49/2/2000(2000): 473-488.
    [17] T.-R. Hsu, (Ed) MEMS and MICROSYSTEMS Design and Manufacture, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.
    [18] N. Krishnan, J. Cao, K. Dohda, Microforming: Study of friction conditions and the impact of low friction/high-strength die coatings on the extrusion of micropins, Manuf Eng Div Asme 16(2005): 331-340.
    [19] Y.P. Liu, L.A. Liew, R.L. Luo, L.N. An, M.L. Dunn, V.M. Bright, J.W. Daily, R. Raj, Application of microforging to SiCN MEMS fabrication, Sensor Actuat a-Phys 95(2002): 143-151.
    [20] H. Ike, M. Plancak, Coining process as a means of controlling surface microgeometry, J Mater Process Tech 80-1(1998): 101-107.
    [21] F. Vollertsen, Z. Hu, H.S. Niehoff, C. Theiler, State of the art in micro forming and investigations into micro deep drawing, J Mater Process Tech 151(2004): 70-79.
    [22] K. Fujimoto, M. Yang, M. Hotta, H. Koyama, S. Nakano, K. Morikawa, J. Cairney, Fabrication of dies in micro-scale for micro-sheet metal forming, J Mater Process Tech 177(2006): 639-643.
    [23] M. Yang, K.I. Manabe, K. Ito, Micro press forming and assembling of micro parts in a progressive die, J Mech Sci Technol 21(2007): 1452-1455.
    [24] T. Mori, K. Hirota, D. Tokumoto, Improvement of ultra-fine piercing by vacuum system, Mhs 2000: Proceedings of the 2000 International Symposium on Micromechatronics and Human Science(2000): 77-82.
    [25] T. Mori, K. Hirota, S. Kurimoto, Y. Nakano, Die making of ultra-fine piercing by electric discharge machining, Mhs2002: Proceedings of the 2002 International Symposium on Micromechatronics and Human Science(2002): 61-66.
    [26] S. Kurimoto, K. Hirota, D. Tokumoto, T. Mori, Improving high precision and continuous process of ultra-fine piercing by SiC fiber punch, Jsme Int J C-Mech Sy 47(2004): 398-404.
    [27] T. Jimma, F. Sekine, A. Sato, Effect of Bend-Corner of Lead on Blanking Accuracy of Ic Leadframe, J Mater Process Tech 24(1990): 181-190.
    [28] M.H. Fu, K.C. Chan, W.B. Lee, L.K. Chan, Springback in the roller forming of integrated circuit leadframes, J Mater Process Tech 66(1997): 107-111.
    [29] K.C. Chan, S.H. Wang, Theoretical analysis of springback in bending of integrated circuit leadframes, J Mater Process Tech 91(1999): 111-115.
    [30] T. Sekine, T. Obikawa, Single Point Micro Incremental Forming of Miniature Shell Structures, J Adv Mech Des Syst 4(2010): 543-557.
    [31] T. Obikawa, S. Satou, T. Hakutani, Dieless incremental micro-forming of miniature shell objects of aluminum foils, Int J Mach Tool Manu 49(2009): 906-915.
    [32] N.A. Fleck, G.M. Muler, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Matall. 42(1994): 475-487.
    [33] W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J Mech Phys Solids 46(1998): 411-425.
    [34] J.S. St?lken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater 46(1998): 5109-5115.
    [35] K. Suzuki, Y. Matsuki, K. Masaki, M. Sato, M. Kuroda, Tensile and microbend tests of pure aluminum foils with different thicknesses, Mat Sci Eng a-Struct 513-14(2009): 77-82.
    [36] J.T. Gau, C. Principe, M. Yu, Springback behavior of brass in micro sheet forming, J Mater Process Tech 191(2007): 7-10.
    [37] T.A. Kals, R. Eckstein, Miniaturization in sheet metal working, J Mater Process Tech 103(2000): 95-101.
    [38] A. Kocanda, T. Prejs, Experimental analysis of the effect of grain size on the mechanical behaviour of thin copper sheet in pure moment bending, P I Mech Eng L-J Mat 217(2003): 249-254.
    [39] L.V. Raulea, A.M. Goijaerts, L.E. Govaert, F.P.T. Baaijens, Size effects in the processing of thin metal sheets, J Mater Process Tech 115(2001): 44-48.
    [40] J.F. Michel, P. Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, J Mater Process Tech 141(2003): 439-446.
    [41] J.F. Michel, P. Picart, Modelling the constitutive behaviour of thin metal sheet using strain gradient theory, J Mater Process Tech 125(2002): 164-169.
    [42] W. Yun, D. Peilong, X. Zhenying, Y. Hua, W. Jiangping, W. Jingjing, A constitutive model for thin sheet metal in micro-forming considering first order size effects, Mater Design 31(2010): 1010-1014.
    [43] L.F. Peng, F. Liu, J. Ni, X.M. Lai, Size effects in thin sheet metal forming and its elastic-plastic constitutive model, Mater Design 28(2007): 1731-1736.
    [44] K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J Mater Res 13(1998): 1300-1306.
    [45] M.G.D. Geers, W.A.M. Brekelmans, P.J.M. Janssen, Size effects in miniaturized polycrystalline FCC samples: Strengthening versus weakening, Int J Solids Struct 43(2006): 7304-7321.
    [46] H.J. Gao, Y.G. Huang, Geometrically necessary dislocation and size-dependent plasticity, Scripta Mater 48(2003): 113-118.
    [47] J.M. Haile, (Ed) Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York, 1992, 489 pp.
    [48] M.P. Allen, Introduction to Molecular Dynamics Simulation, John von Neumann Institute for Computing,J¨ulich, NIC Series 23(2004): 1-28.
    [49] A. Messner, U. Engel, R. Kals, F. Vollertsen, Size Effect in the Fe-Simulation of Micro-Forming Processes, J Mater Process Tech 45(1994): 371-376.
    [50] S. Geissdorfer, U. Engel, M. Geiger, FE-simulation of microforming processes applying a mesoscopic model, Int J Mach Tool Manu 46(2006): 1222-1226.
    [51] N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity, Adv Appl Mech 33(1997):295-361.
    [52] N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity, J Mech Phys Solids 49(2001): 2245-2271.
    [53] N.A. Fleck, M.F. Ashby, J.W. Hutchinson, The role of geometrically necessary dislocations in giving material strengthening, Scripta Mater 48(2003): 179-183.
    [54] N.A. Fleck, J.R. Willis, A mathematical basis for strain-gradient plasticity theory-Part I: Scalar plastic multiplier, J Mech Phys Solids 57(2009): 161-177.
    [55] N.A. Fleck, J.R. Willis, A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier, J Mech Phys Solids 57(2009): 1045-1057.
    [56] H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity - I. Theory, J Mech Phys Solids 47(1999): 1239-1263.
    [57] Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity - II. Analysis, J Mech Phys Solids 48(2000): 99-128.
    [58] G.I. Taylor, Plastic strain in metals, J. Inst. Metals 62(1938): 307-324.
    [59] P. Van Houtte, S.Y. Li, M. Seefeldt, L. Delannay, Deformation texture prediction: from the Taylor model to the advanced Lamel model, Int J Plasticity 21(2005): 589-624.
    [60] P. Van Houtte, L. Delannay, S.R. Kalidindi, Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction, Int J Plasticity 18(2002): 359-377.
    [61] E. Nakamachi, C.L. Xie, H. Morimoto, K. Morita, N. Yokoyama, Formability assessment of FCC aluminum alloy sheet by using elastic/crystalline viscoplastic finite element analysis, Int J Plasticity 18(2002): 617-632.
    [62] R.J. Asaro, A. Needleman, Texture Development and Strain Hardening in Rate Dependent Polycrystals, Acta Metallurgica 33(1985): 923-953.
    [63] D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metallurgica 31(1983): 1951-1976.
    [64] A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity, J Mech Phys Solids 48(2000): 1565-1595.
    [65] A. Acharya, J.L. Bassani, A. Beaudoin, Geometrically necessary dislocations, hardening, and a simple gradient theory of crystal plasticity, Scripta Mater 48(2003): 167-172.
    [66] T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids, Int J Plasticity 21(2005): 2071-2088.
    [67] C.S. Han, H.J. Gao, Y.G. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - I. Theory, J Mech Phys Solids 53(2005): 1188-1203.
    [68] C.S. Han, H.J. Gao, Y.G. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - II. Analysis, J Mech Phys Solids 53(2005): 1204-1222.
    [69] M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J Mech Phys Solids 50(2002): 5-32.
    [70] M.E. Gurtin, L. Anand, A gradient theory for single-crystal plasticity, Model Simul Mater Sc 15(2007): S263-S270.
    [71] M.E. Gurtin, A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations, Int J Plasticity 26(2010): 1073-1096.
    [72] U. Borg, A strain gradient crystal plasticity analysis of grain size effects in polycrystals, Eur J Mech a-Solid 26(2007): 313-324.
    [73] S. Yefimov, E. van der Giessen, Size effects in single crystal thin films: nonlocal crystal plasticity simulations, Eur J Mech a-Solid 24(2005): 183-193.
    [74] S. Yefimov, E. Van der Giessen, Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations, Int J Solids Struct 42(2005): 3375-3394.
    [75] C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity, Int J Solids Struct 43(2006): 7268-7286.
    [76] M.G.D. Geers, W.A.M. Brekelmans, C.J. Bayley, Second-order crystal plasticity: internal stress effects and cyclic loading, Model Simul Mater Sc 15(2007): S133-S145.
    [77] L.P. Evers, D.M. Parks, W.A.M. Brekelmans, M.G.D. Geers, Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation, J Mech Phys Solids 50(2002): 2403-2424.
    [78] L. Li, Q. Zhou, Y.Y. Zhou, J.G. Cao, Numerical study on the size effect in the ultra-thin sheet's micro-bending forming process, Mat Sci Eng a-Struct 499(2009): 32-35.
    [79] L. Li, C.C. Wu, S.S. Xie, Incompatible Element Method for Couple Stress Plasticity and Numerical Study of Some Scale Effects Phenomena Key Engineering Materials 274 - 276(2004): 649-654.
    [80] J.Y. Shu, N.A. Fleck, The prediction of a size effect in microindentation, Int J Solids Struct 35(1998): 1363-1383.
    [81] R.K. Abu Al-Rub, G.Z. Voyiadjis, A direct finite element implementation of the gradient-dependent theory, Int J Numer Meth Eng 63(2005): 603-629.
    [82] E.P. Busso, F.T. Meissonnier, N.P. O'Dowd, Gradient-dependent deformation of two-phase single crystals, J Mech Phys Solids 48(2000): 2333-2361.
    [83] W.B. Lee, Y.P. Chen, Simulation of micro-indentation hardness of FCC single crystals by mechanism-based strain gradient crystal plasticity, Int J Plasticity 26(2010): 1527-1540.
    [84] Y. Aoyagi, K. Shizawa, Multiscale crystal plasticity modeling based on geometrically necessary crystal defects and simulation on fine-graining for polycrystal, Int J Plasticity 23(2007): 1022-1040.
    [85] M. Kuroda, V. Tvergaard, On the formulations of higher-order strain gradient crystalplasticity models, J Mech Phys Solids 56(2008): 1591-1608.
    [86]吴志方,柳林,新型块体非晶合金的形成、结构、性能和应用, Metallic Functional Materials(2002): 14-18.
    [87]郑志镇,李建军,白彦,吴晓,白一博,李蓓, Zr_(55)Cu_(30)Al_(l0)Ni_5块体非晶合金微反挤压试验与数值模拟,稀有金属材料与工程(2008): 813-816.
    [88]张黎楠,谌祺,柳林, Zr_(55)Cu_(30)Al_(10)Ni_(5)块体非晶合金在过冷液态区的流变行为及本构关系,金属学报(2009): 450-454.
    [89]吴晓,李建军,郑志镇,周华民, Zr基非晶合金过冷液态区的微反挤压实验研究,中国机械工程(2010): 1864-1868.
    [90]王栋,廖广兰,潘杰,彭平,柳林,史铁林,基于硅模具的Zr基非晶合金微成形工艺研究,中国机械工程(2010): 222-225.
    [91]程明,张士宏,王春举,郭晓琳,周健,单德彬,微型非晶合金齿轮微塑性成形的研究,航天制造技术(2006): 4-6.
    [92]程明,张士宏,大块非晶合金在过冷液相区微塑性成形的研究进展,材料导报(2007): 4-8.
    [93]郭斌,王春举,单德彬,孙立宁,微型三角件的微塑性成形技术研究,科学技术与工程(2005): 185-187.
    [94]单德彬,王春举,周健,郭斌,微型齿轮精密微塑性成形工艺研究,中国大连, 2005.
    [95]王春举,单德彬,郭斌,孙立宁,于君祖,耿长刚,纯铝和LY12铝合金微塑性成形性能评价试验研究,锻压技术(2005): 7-9+18.
    [96]徐杰,王春举,单德彬,郭斌,微型双齿轮成形与装配复合工艺研究,中国黑龙江哈尔滨, 2007.
    [97]郭斌,王春举,单德彬,周健,基于微塑性成形的微型零件批量制造技术,功能材料与器件学报(2008): 278-282.
    [98]郭斌,龚峰,单德彬,微成形摩擦研究进展,塑性工程学报(2009): 146-151.
    [99]周健,郭斌,单德彬,铜箔抗拉强度及延伸率的尺寸效应研究,材料科学与工艺(2010): 445-449.
    [100]李凡国,童国权,温度对黄铜微成形镦粗的影响规律研究,锻压技术(2006): 15-18.
    [101]倪红海,童国权, H62黄铜微成形镦粗实验研究,机械制造与自动化(2005): 21-23.
    [102]赵亚西,童国权,微型齿轮挤压成形,模具工业(2006): 48-50.
    [103]赵亚西,童国权,李凡国,尺寸效应对黄铜镦粗微成形影响规律的研究,电加工与模具(2006): 44-46+49.
    [104]孙振锋,齐乐华,毛军,杨方,超塑性微挤压装置温度控制系统研究,计算机工程与应用No.600(2008): 246-248.
    [105]孙敬,杨方,齐乐华,超塑性微挤压尺度效应有限元模拟与分析,航空制造技术No.364(2010): 73-75+95.
    [106]付佳伟,齐乐华,周计明,张彬,杨方,微挤压成形系统的设计与实现,塑性工程学报v.17;No.80(2010): 32-35+97.
    [107]庄俭,于同敏,王敏杰,微注塑成形中熔体充模流动分析及其数值模拟,机械工程学报(2008): 43-49.
    [108]徐斌,王敏杰,于同敏,赵丹阳,微尺度效应对聚合物熔体壁面滑移影响的研究,材料工程No.305(2008): 16-20+24.
    [109]宋满仓,王敏杰,微成形技术的现状与发展,中国机械工程(2003): 91-92+96.
    [110]刘莹,宋满仓,王敏杰,张传赞,刘军山,刘冲,微结构塑件注射成型试验研究与缺陷分析,高分子材料科学与工程v.26(2010): 104-107.
    [111]赵迎红,雷丽萍,曾攀,微塑性成形技术及其力学行为特征,塑性工程学报(2005): 1-6+16.
    [112]曾攀,石刚,娄路亮,精确成形制造中的高梯度特征与数值模拟的发展趋势,中国机械工程(2003).
    [113]曾攀,卢永进,雷丽萍,赵迎红,方刚,宏域微成形与铋系超导带材的加工,锻压技术(2007): 125-128+135.
    [114]黄克智,邱信明,姜汉卿,应变梯度理论的新进展(一)——偶应力理论和SG理论,机械强度(1999).
    [115]黄克智,邱信明,姜汉卿,应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论,机械强度(1999): 161-165.
    [116]冯秀艳,郭香华,方岱宁,王自强,微薄梁三点弯曲的尺度效应研究,力学学报39(2007): 479-485.
    [117]陈少华,王自强,应变梯度理论进展,力学进展(2003): 207-216.
    [118]李经天,董湘怀,微细塑性成形中第Ⅰ类尺度效应的研究,中国机械工程(2005): 168-171.
    [119]马宁,董湘怀,第Ⅱ类尺度效应对微拉深成形的影响,塑性工程学报(2007): 115-119.
    [120]申昱,于沪平,阮雪榆,微小尺度镦挤复合成形研究,塑性工程学报(2006): 58-61.
    [121]董湘怀,晶体塑性模型在板材成形计算机模拟中的应用,中国机械工程(1997): 27-30.
    [122]郑莹,董湘怀,等,晶体方位对钣料成形制耳的影响,中国机械工程(2001): 1070-1072.
    [123] E. Nakamachi, D. Xianghuai, Elastic/crystalline-viscoplastic finite element analysis of dynamic deformation of sheet metal, Eng Computation 13(1996): 308-326.
    [1] N.A. Fleck, G.M. Muler, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Matall. 42(1994): 475-487.
    [2]郭斌,周健,单德彬,王慧敏,黄铜箔拉伸屈服强度的尺寸效应,金属学报44(2008): 419-422.
    [3]于宝义,齐克敏,等,铜―钢―铜三层复合板室温轧制成形工艺及结合机制的研究,热加工工艺3(2001): 34-36.
    [4]刘理,铜/铝复合板轧制工艺与理论研究,硕士论文,东北大学, 2006.
    [5] A.G. Evans, J.W. Hutchinson, A critical assessment of theories of strain gradient plasticity, Acta Mater 57(2009): 1675-1688.
    [1] E.C. Aifantis, On the microstructural origin of certain inelastic models, Journal of Engineering Materials and Technology 106(1984): 326-330.
    [2] E.C. Aifantis, Strain gradient interpretation of size effects, Int J Fracture 95(1999): 299-314.
    [3] H.M. Zbib, E.C. Aifantis, Size effects and length scales in gradient plasticity and dislocation dynamics, Scripta Mater 48(2003): 155-160.
    [4] A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity, J Mech Phys Solids 48(2000): 1565-1595.
    [5] J.L. Bassani, A. Needleman, E. Van der Giessen, Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions, Int J Solids Struct 38(2001): 833-853.
    [6] J.L. Bassani, Incompatibility and a simple gradient theory of plasticity, J Mech Phys Solids 49(2001): 1983-1996.
    [7] A. Acharya, J.L. Bassani, A. Beaudoin, Geometrically necessary dislocations, hardening, and a simple gradient theory of crystal plasticity, Scripta Mater 48(2003): 167-172.
    [8] N.A. Fleck, G.M. Muler, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment, Acta Matall. 42(1994): 475-487.
    [9] N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity, Adv Appl Mech 33(1997): 295-361.
    [10] N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity, J Mech Phys Solids 49(2001): 2245-2271.
    [11] W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for straingradient plasticity, J Mech Phys Solids 46(1998): 411-425.
    [12] H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity - I. Theory, J Mech Phys Solids 47(1999): 1239-1263.
    [13] Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity - II. Analysis, J Mech Phys Solids 48(2000): 99-128.
    [14] Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity, Int J Plasticity 20(2004): 753-782.
    [15] N.A. Fleck, J.W. Hutchinson, A phenomenological theory for strain gradient effects in plasticity, J Mech Phys Solids 41(1993): 1825-1857.
    [16] J.S. St?lken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater 46(1998): 5109-5115.
    [17] G.I. Taylor, Plastic strain in metals, J. Inst. Metals 62(1938): 307-324.
    [18] X. Qiu, Y. Huang, W.D. Nix, K.C. Hwang, H. Gao, Effect of intrinsic lattice resistance in strain gradient plasticity, Acta Mater 49(2001): 3949-3958.
    [19] Z. Xue, Y. Huang, M. Li, Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity, Acta Mater 50(2002): 149-160.
    [20] A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density, Acta Mater 47(1999): 1597-1611.
    [21] K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J Mater Res 13(1998): 1300-1306.
    [22] Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals, J Mater Res 10(1995): 853-863.
    [23] D.M. Duan, N.Q. Wu, W.S. Slaughter, S.X. Mao, Length scale effect on mechanical behavior due to strain gradient plasticity, Mat Sci Eng a-Struct 303(2001): 241-249.
    [24] M.R. Begley, J.W. Hutchinson, The mechanics of size-dependent indentation, J Mech Phys Solids 46(1998): 2049-2068.
    [25] H. Yuan, J. Chen, Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests, Int J Solids Struct 38(2001): 8171-8187.
    [26] M.A. Haque, M.T.A. Saif, Strain gradient effect in nanoscale thin films, Acta Mater 51(2003): 3053-3061.
    [27] G.Z. Voyiadjis, R.K. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter, Int J Solids Struct 42(2005): 3998-4029.
    [28] J.C.M. Li, Y.T. Chou, The role of dislocation in the flow stress grain size relationships, Metallurgical and Materials Transactions B 1(1970): 1145-1159.
    [1] J.S. St?lken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater 46(1998): 5109-5115.
    [2] K. Suzuki, Y. Matsuki, K. Masaki, M. Sato, M. Kuroda, Tensile and microbend tests of pure aluminum foils with different thicknesses, Mat Sci Eng a-Struct 513-14(2009): 77-82.
    [3] W. Wang, Y. Huang, K.J. Hsia, K.X. Hu, A. Chandra, A study of microbend test by strain gradient plasticity, Int J Plasticity 19(2003): 365-382.
    [4] H.X. Zhu, B.L. Karihaloo, Size-dependent bending of thin metallic films, Int J Plasticity 24(2008): 991-1007.
    [5] J.T. Gau, C. Principe, M. Yu, Springback behavior of brass in micro sheet forming, J Mater Process Tech 191(2007): 7-10.
    [6] A. Diehl, D. Staud, U. Engel, Mechanical Characterisation of Metal Foils by Hydraulic Bulge Test, steel research international 79, Special Edition Metal Forming Conference 2008 1, Düsseldorf, Deutschland: Verlag Stahleisen GmbH, 2008, pp. 332-339.
    [7] L. Hezong, D. Xianghuai, W. Qian, S. Yu, A. Diehl, H. Hagenah, U. Engel, M. Merklein, Determination of material intrinsic length and strain gradient hardening in microbending process, Int J Solids Struct 48(2011): 163-174.
    [1] Y. Liu, B. Wang, M. Yoshino, S. Roy, H. Lu, R. Komanduri, Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale, J Mech Phys Solids 53(2005): 2718-2741.
    [2] S. Qu, Y. Huang, G.M. Pharr, K.C. Hwang, The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity, Int J Plasticity 22(2006): 1265-1286.
    [3] F. Zhang, R. Saha, Y. Huang, W.D. Nix, K.C. Hwang, S. Qu, M. Li, Indentation of a hard film on a soft substrate: Strain gradient hardening effects, Int J Plasticity 23(2007): 25-43.
    [4] V.P. Smyshlyaev, N.A. Fleck, The role of strain gradients in the grain size effect for polycrystals, J Mech Phys Solids 44(1996): 465-495.
    [5] J.Y. Shu, N.A. Fleck, The prediction of a size effect in microindentation, Int J Solids Struct 35(1998): 1363-1383.
    [6] J.Y. Shu, N.A. Fleck, Strain gradient crystal plasticity: size-dependent deformation of bicrystals, J Mech Phys Solids 47(1999): 297-324.
    [7] A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity, J Mech Phys Solids 48(2000): 1565-1595.
    [8] R.A. Regueiro, D.J. Bammann, E.B. Marin, K. Garikipati, A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects, J Eng Mater-T Asme 124(2002): 380-387.
    [9] K. Shizawa, H.M. Zbib, A thermodynamical theory of gradient elastoplasticity with dislocation density tensor. I: Fundamentals, Int J Plasticity 15(1999): 899-938.
    [10] K. Shizawa, K. Kikuchi, H.M. Zbib, A strain-gradient thermodynamic theory of plasticity based on dislocation density and incompatibility tensors, Mat Sci Eng a-Struct 309(2001): 416-419.
    [11] A. Menzel, P. Steinmann, On the continuum formulation of higher gradient plasticity for single and polycrystals, J Mech Phys Solids 48(2000): 1777-1796.
    [12] M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J Mech Phys Solids 50(2002): 5-32.
    [13] J.S. St?lken, A.G. Evans, A microbend test method for measuring the plasticity lengthscale, Acta Mater 46(1998): 5109-5115.
    [14] H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity - I. Theory, J Mech Phys Solids 47(1999): 1239-1263.
    [15] H.H.M. Cleveringa, E. Van der Giessen, A. Needleman, A discrete dislocation analysis of bending, Int J Plasticity 15(1999): 837-868.
    [16] C.S. Han, H.J. Gao, Y.G. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - I. Theory, J Mech Phys Solids 53(2005): 1188-1203.
    [17] C.S. Han, H.J. Gao, Y.G. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - II. Analysis, J Mech Phys Solids 53(2005): 1204-1222.
    [18] F.T. Meissonnier, E.P. Busso, N.P. O'Dowd, Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains, Int J Plasticity 17(2001): 601-640.
    [19] Y.S. Choi, T.A. Parthasarathy, D.M. Dimiduk, M.D. Uchic, Numerical study of the flow responses and the geometric constraint effects in Ni-base two-phase single crystals using strain gradient plasticity, Mat Sci Eng a-Struct 397(2005): 69-83.
    [20] W.B. Lee, Y.P. Chen, Simulation of micro-indentation hardness of FCC single crystals by mechanism-based strain gradient crystal plasticity, Int J Plasticity 26(2010): 1527-1540.
    [21] E.P. Busso, F.T. Meissonnier, N.P. O'Dowd, Gradient-dependent deformation of two-phase single crystals, J Mech Phys Solids 48(2000): 2333-2361.
    [22] E. Orowan, The Plastic Behavior of Crystal, Z.Phys. 89(1934): 634-651.
    [23] R.J. Asaro, J.R. Rice, Strain localization in ductile single crystals, J Mech Phys Solids 25(1977): 309-338.
    [24] J.W. Hutchinson, Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials, Proc. R. Soc. Lond. A 348(1976): 101-107.
    [25] D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids, Acta Metallurgica 31(1983): 1951-1976.
    [26] W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J Mech Phys Solids 46(1998): 411-425.
    [27] Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity - II. Analysis, J Mech Phys Solids 48(2000): 99-128.
    [28] Y. Huang, Z. Xue, H. Gao, W.D. Nix, Z.C. Xia, A study of microindentation hardness tests by mechanism-based strain gradient plasticity, J Mater Res 15(2000): 1786-1796.
    [29] Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity, Int J Plasticity 20(2004): 753-782.
    [30] K.C. Hwang, Y. Guo, H. Jiang, Y. Huang, Z. Zhuang, The finite deformation theory of Taylor-based nonlocal plasticity, Int J Plasticity 20(2004): 831-839.
    [31] Y. Guo, Y. Huang, H. Gao, Z. Zhuang, K.C. Hwang, Taylor-based nonlocal theory of plasticity: numerical studies of the micro-indentation experiments and crack tip fields, Int J Solids Struct 38(2001): 7447-7460.
    [32] H.J. Gao, Y.G. Huang, Taylor-based nonlocal theory of plasticity, Int J Solids Struct 38(2001): 2615-2637.
    [33] Y. Wang, D.O. Northwood, An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments, Int J Hydrogen Energ 32(2007): 895-902.
    [34] X. Qiu, Y. Huang, W.D. Nix, K.C. Hwang, H. Gao, Effect of intrinsic lattice resistance in strain gradient plasticity, Acta Mater 49(2001): 3949-3958.
    [35] Z. Xue, Y. Huang, M. Li, Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity, Acta Mater 50(2002): 149-160.
    [36] H. Wang, K.C. Hwang, Y. Huang, P.D. Wu, B. Liu, G. Ravichandran, C.S. Han, H. Gao, A conventional theory of strain gradient crystal plasticity based on the Taylor dislocation model, Int J Plasticity 23(2007): 1540-1554.
    [37] R.K. Abu Al-Rub, G.Z. Voyiadjis, A direct finite element implementation of the gradient-dependent theory, Int J Numer Meth Eng 63(2005): 603-629.
    [1] K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J Mater Res 13(1998): 1300-1306.
    [2] Y. Huang, Z. Xue, H. Gao, W.D. Nix, Z.C. Xia, A study of microindentation hardness tests by mechanism-based strain gradient plasticity, J Mater Res 15(2000): 1786-1796.
    [3] O. Casals, J. Ocenasek, J. Alcala, Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals, Acta Mater 55(2007): 55-68.
    [4] W.B. Lee, Y.P. Chen, Simulation of micro-indentation hardness of FCC single crystals by mechanism-based strain gradient crystal plasticity, Int J Plasticity 26(2010): 1527-1540.
    [5] A. Bolshakov, W.C. Oliver, G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations, J Mater Res 11(1996): 760-768.
    [6] R.J. Asaro, A. Needleman, Texture Development and Strain Hardening in Rate Dependent Polycrystals, Acta Metallurgica 33(1985): 923-953.
    [7] W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J Mech Phys Solids 46(1998): 411-425.
    [8] J.S. St?lken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater 46(1998): 5109-5115.
    [9] K. Suzuki, Y. Matsuki, K. Masaki, M. Sato, M. Kuroda, Tensile and microbend tests of pure aluminum foils with different thicknesses, Mat Sci Eng a-Struct 513-14(2009): 77-82.
    [10] J.T. Gau, C. Principe, M. Yu, Springback behavior of brass in micro sheet forming, J Mater Process Tech 191(2007): 7-10.
    [11] M. Kuroda, V. Tvergaard, On the formulations of higher-order strain gradient crystal plasticity models, J Mech Phys Solids 56(2008): 1591-1608.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700