超临界水氧化处理印染废水实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水水量大、化学需氧量(COD)高、色度高、成分复杂多变且含有有毒有害成分,是难处理的工业废水之一,采用传统的处理方法在COD去除和脱色上存在一定难度。
     超临界水氧化(SCWO)技术处理有机废弃物,反应速度快、污染物降解率高,氧化产物对环境无污染,处理后的废水可达标排放或者回用。本文采用超临界水氧化技术处理工业印染废水,考察了超临界水氧化及热解过程中反应条件的变化对废水中总有机碳(TOC)和氨氮去除效果的影响,在实验的基础上,建立了以污染物TOC为特征参数的氧化和热解过程动力学方程,此外,以废水中总溶解固体(TDS)为特征参数,利用自建的盐分离器考察了SCWO反应同时盐分离器的操作参数对废水中无机盐(TDS)脱除效率的影响,探讨了过程出水回用于漂洗或者印染工艺的可能性,简单计算了过程的运行成本,探讨了该技术工业化应用的前景。通过以上考察主要得出结论如下:
     1.在印染废水的SCWO过程中,温度对废水中TOC和氨氮降解的影响最为显著,且温度和停留时间的改变对过氧比较小的反应影响更大。氨氮在低温下很难降解,只有在较高的反应温度下,经SCWO过程氨氮才能降解。
     2.在废水的超临界水(SCW)热降解过程中,温度同样是对TOC降解最重要的影响因素,停留时间对TOC热解效率的影响同样显著,而热解过程没有发现氨氮降解。
     3.将废水超临界水氧化与热解的降解效果进行对比可知,温度变化对热解过程TOC降解效率影响更大,且在较低反应温度下加入氧化剂对降解作用更明显,而氨氮在较低温度或者没有氧化剂的条件下几乎不降解,在同样的较低温下延长停留时间对氨氮降解也没有帮助。
     4.采用准一级动力学法建立了废水SCW热解过程的TOC降解动力学方程,采用多元非线性回归法建立了当氧化剂大量过量时废水SCWO过程的TOC降解动力学方程,在此基础上,采用龙格库塔法建立了当氧化剂按照化学计量加入时的废水SCWO过程TOC降解动力学方程,目的是考察反应过程氧化剂浓度变化对反应速度的影响。具体表达式如下:
     热解(准一级动力学法):
     氧化(多元非线性回归法):氧化(龙格库塔法):
     5.在废水脱盐过程中,温度对除盐效率的影响同样最为显著。实验条件下,在盐分离器最短停留时间50.76s内,废水超临界脱盐过程或许已经完成,停留时间的延长对脱盐率没有影响。在一定温度下,废水脱盐后出水盐含量(TDS)受到原水盐浓度变化的影响。
     6.本废水经SCWO处理后出水能够达到国家一级排放标准且可回用于漂洗过程,而用于印染过程指标尚不能满足。
     7.经过简单计算,采用SCWO法处理COD为3000mg/L的印染废水,以纯氧为氧化剂,运行成本约为20.25元/m3。
     8. SCWO技术末来具有广阔的工业应用前景,但是在待处理原料的选择,反应器设计、工艺条件的优化,反应释放能量的有效利用等方面还需进行深入研究,才能够克服盐沉积、避免材料腐蚀、节省运行费用等,使得该技术真正引起大众关注。
Dyeing wastewater is one kind of refractory industrial wastewater. Because of the characteristics of the wastewater such as large water volume, high concentration of organic pollutant, deep chromaticity, high alkalinity, changeable water quality and complex ingredient, it is difficult to remove organic substances and colority from the wastewater completely by conventional means.
     Supercritical water oxidation(SCWO) is a new and effective technology for treatment of organic waste. This technology has the advantages of high organics destruction efficiency, short reaction time and friendly environment, the effluent after treatment can discharge or reuse since it could meet the national discharge standard. In this dissertation, the dyeing wastewater obtained from a printing and dyeing mill was treated by SCWO. The effect of reaction conditions on the degradation of total organic carbon(TOC) and ammonia nitrogen was investigated in the SCW oxidation and pyrolysis processes. Based on the experiments, the kinetic equations for TOC degradation efficiency about the oxidation and pyrolysis processes in SCW were established. Besides, the effect of operation parameters of the self-built salt separator in which salts in the wastewater were removed on total dissolved solids(TDS) removal efficiency were discussed. The possibility of effluent reuse after SCWO treatment was studied and the operation cost of SCWO process was calculated simply. The application of SCWO technology in industry was discussed too. Through above analysis, the main conclusions are as follows:
     1. The effect of temperature on TOC and ammonia removal from the wastewater in SCWO process is the most remarkable. The changes of temperature and residence time have greater effect on the TOC degradation of smaller excess oxygen reaction. The degradation of ammonia nitrogen is difficult at low temperatures, it can be degraded only at high temperatures in SCWO process.
     2. For the SCW pyrolysis, temperature is the most important influence factor in TOC degradation too and the effect of the residence time can not be ignored, but degradation of ammonia nitrogen is not be found in this process.
     3. It can be seen from the comparison pyrolysis with oxidation reactions in SCW, the changes of temperature have greater influence on TOC pyrolysis and the influence of oxidant on TOC conversion is obvious at a lower temperature, but degradation of ammonia nitrogen may remain unaffected by the extension of residence time and adding oxidant in the lower temperature.
     4. A kinetic equation based on TOC removal of SCW pyrolysis was established by pseudo-first order kinetics. Another kinetic equation for TOC removal of SCWO was built up by multiple nonlinear regression when excess oxidant was added. Based on the above results, the third kinetic equation for TOC removal of SCWO was set up by using Runge-Kutta algorithm at the condition with stoichiometric oxygen supply to explore the influence of oxidant concentration on TOC conversion. Their expressions were given as follow: SCW pyrolysis (pseudo-first order kinetics): SCWO (multiple nonlinear regression): SCWO(Runge-Kutta algorithm):
     5. For the desalination process in salt separator, temperature has the most significant effects on the desalination efficiency. The process of desalination of the wastewater in supercriticality may be completed in50.76s. Under a certain temperature, the content of TDS in effluent after desalination is affected by the initial salt(TDS) concentration of the wastewater.
     6. The wastewater treated by SCWO can meet the national emission standard and be used for rinsing processes, but it can not be used in dyeing and printing process.
     7. After a simple calculation, the operating cost using SCWO for treating the dyeing wastewater is about20.25yuan/m3when CODCr of the wastewater is3000mg/L and hydrogen peroxide is used as oxidant.
     8. SCWO technology will have a broad prospect in industrial application in the future, but some respects such as the choice of raw material, design of reactor, optimization of process conditions and utilization of reaction releases energy should be studied deeply, so we will be able to overcome the salt deposition, avoid the material corrosion, save operating cost. The SCWO technology will eventually be accepted.
引文
[1]http://info.water.hc360.com/2007/05/10084682932-2.shtml
    [2]余欣,吴赞敏.国内外染废水处理情况对比研究[J].天津纺织科技,2008,4:14-17
    [3]张林生.印染废水处理技术及典型工程[M].北京:化学工业出版社,2005:20-37.
    [4]西蒙·贾德,布鲁斯·杰斐逊(编著),蔡邦肖(译).膜技术与工业废水回用[M].北京:化学工业出版社,2006:108-126.
    [5]马春燕.印染废水深度处理及回用技术研究[D].上海:东华大学,2007.
    [6]张斌,刘金海,冯晓辉.印染废水污染现状及其处理技术的发展[J].科技信息,2011,5:796-797.
    [7]王湖坤,任静.吸附-氧化联合法处理印染废水的研究[J].印染助剂,2008,25(2):28-30.
    [8]郭敏晓,孙振杰,胡小锐.混凝法处理印染生产废水的试验研究[J].中国资源综合利用,2009,27(12):17-19.
    [9]于清跃.印染废水处理研究进展[J].工业安全与环保,2011,37(8):41-43.
    [10]Qin J J, Oo M H, Kekre K A. Nanofiltration for recovering wastewater from a specific dyeing facility [J]. Sep. Purif. Technol.,2007,56 (2):199-203.
    [11]胡萃,黄瑞敏,谢春生等.印染废水回用中除盐技术的应用[J].印染助剂,2006,23(9):34-36.
    [12]郑曦,陈日耀,陈晓等.电化学法生成Fenton试剂及其在工业染料废水降解脱色中的应用[J].环境污染治理技术与设备,2001,2(4):72-76.
    [13]赵录庆,姜聚慧,郭强等.UV/Fenton试剂法处理含偶氮蓝染料模拟废水的研究[J].河南师范大学学报,2002,30(2):57-59。
    [14]李然,唐淑娟,刘桂英.印染废水电化学脱色研究[J].印染,2004(14):27-29.
    [15]戴日成,张统,郭茜等.印染废水水质特征及处理技术综述[J].工业给排水.2000,26(10):33-37
    [16]http://baike.baidu.com/view/638159.htm
    [17]单国华,贾丽霞.印染废水及其处理方法研究进展[J].针织工业,2009,7:62-80
    [18]朱虹,孙杰,李剑超.印染废水处理技术[M].北京:中国纺织出版社,2004:382-384.
    [19]杨蕴敏.关于印染废水的回用问题[J].上海纺织科技.2007.35(12):3-7
    [20]毛艳梅,奚旦立,杨晓波.印染废水深度处理技术及回用的现状和发展[J].印染,2005,8:46-48.
    [21]袁海源.纺织染整废水的再生利用研究与回用水水质标准的制定[D].上海:东华大学,2007.
    [22]Ingram M. The influence of sodium chloride and temperature on the endogenous respiration of Bacillus cereus[J]. J. Gen. Physiol.,1940,23(6):773-780.
    [23]http://www.tnc.com.cn/news/detail/5/3/d53523.html
    [24]Mizan T I, Savage P E, Ziff R M. Temperature dependence of hydrogen bonding in supercritical water[J]. J. Phys. Chem.,1996,100 (1):403-408.
    [25]Gorbaty Y E, Kalinichev A G. Hydrogen bonding in supercritical water:1. Experimental Results[J]. J. Phys. Chem.,1995,99(15):5336-5340.
    [26]Weingartner H, Franck E U. Supercritical Water as a Solvent[J]. Angew. Chem. Int. Ed.,2005,44(18): 2672-2692.
    [27]Hodes M, Marrone P A, Hong G T et al. Salt precipitation and scale control in supercritical water oxidation-Part A:fundamentals and research[J]. J. Supercrit. Fluids.,2004,29 (3):265-288.
    [28]http://baike.baidu.com/view/341791.htm
    [29]Allen M P, Tildesley D J. Computer simulation of liquid[M]. Oxford:Oxford University Press,1989.
    [30]李武,Valyashko V M,高世扬等.超临界水氧化技术[J].盐湖研究,1999,7(1):35-38.
    [31]Ding Z Y, Frisch M A, Li L. Catalytic oxidation in supercritical water [J]. Ind. Eng. Chem. Res.,1996, 35(10):3257-3279.
    [32]Serikawa R M, Usui T, Nishimura T et al. Hydrothermal flames in supercritical water oxidation: investigation in a pilot scale continuous reactor[J]. fuel,2002,81 (9):1147-1159.
    [33]Veriansyah B, KIM J D. Supercritical water oxidation for the destruction of toxic organic wastewaters: A review[J]. J. Environ. Sci.,2007,19(5):513-522.
    [34]Griffith J W, Raymond D H, The first commercial supercritical water oxidation sludge processing plant[J]. Waste Manage.,2002,22(4):453-459.
    [35]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社,2006:51-69.
    [36]Savage P E. Organic Chemical Reactions in Supercritical Water[J]. Chem. Rev.,1999,99:603-621.
    [37]Li L., Chen P, Gloyna E F. Generalized kinetic model for wet oxidation of organic compounds [J]. AIChE J.,1991,37(11):1687-1697.
    [38]Thornton T D, Savage P E. Phenol oxidation pathways in supercritical water[J]. Ind. Eng. Chem. Res., 1992,31 (11):2451-2456.
    [39]Li R, Savage P E, Szmukler D.2-Chlorophenol oxidation in supercritical water:Global kinetics and reaction products[J]. AIChE J.1993,39(1):178-187.
    [40]朱自强.超临界流体技术—原理和应用[M].北京:化学工业出版社,2000:3
    [41]Holgate H R, Tester J W. Oxidation of hydrogen and carbon monoxide in sub-and supercritical water: reaction kinetics, pathways, and water-density effects.1. Experimental results[J]. J. Phys. Chem., 1994,98 (3):800-809.
    [42]Holgate H R, Tester J W. Oxidation of hydrogen and carbon monoxide in sub-and supercritical water: reaction kinetics, pathways, and water-density effects.2. Elementary reaction modeling[J]. J. Phys. Chem.,1994,98 (3):810-822.
    [43]Savage P E, Yu J, Stylski N et al. Kinetics and mechanism of methane oxidation in supercritical water[J]. J. Supercrit. Fluids,1998,12(2):141-153.
    [44]Helling R K, Tester J W. Oxidation of simple compounds and mixtures in supercritical water:carbon monoxide, ammonia and ethanol[J]. Environ. Sci. Technol.,1988,22 (11):1319-1324.
    [45]Meyer J C, Marrone P A, Tester J W et al. Acetic acid oxidation and hydrolysis in supercritical water[J]. AIChE J.,1995,41(9):2108-2121.
    [46]Thornton T D, Savage P E. Kinetics of phenol oxidation in supercritical water[J]. AIChE J.,1992. 38(3):321-327.
    [47]Lin K S, Wang H P, Li M C. Oxidation of 2,4-dichlorophenol in supercritical water. Chemosphere. 1998,36(9):2075-2083.
    [48]Crain N, Tebbal S, Li L et al. Kinetics and reaction pathways of pyridine oxidation in supercritical water[J]. Ind. Eng. Chem. Res.,1993,32 (10):2259-2268.
    [49]Norton T S, Dryer F L. An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor[J]. Int. J. Chem. Kinet.,1992,24(4):319-344.
    [50]Webley P A, Tester J W. Fundamental kinetics of methane oxidation in supercritical water[J]. Energy Fuels,1991,5(3):411-419.
    [51]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003,61-66
    [52]Gopalan S, Savage P E. A reaction network model for phenol oxidation in supercritical water[J]. AIChE J.,1995,41(8):1864-1873.
    [53]杜新.超临界水氧化处理高浓度焦化废水的研究[D].太原:中国科学院山西煤化所,2011.
    [54]Gong W, Li F, Xi D L. Oxidation of industrial dyeing wastewater by supercritical water oxidation in transpiring-wall reactor[J]. Water Environ. Res.,2008,80(2):186-192.
    [55]Veriansyah B, Park T J, Lim J S et al. Supercritical water oxidation of wastewater from LCD manufacturing process:kinetic and formation of chromium oxide nanoparticles[J]. J. Supercrit, Fluids, 2005,34(1):51-61.
    [56]Sanchez-Oneto J, Mancini F, Portela J R et al. Kinetic model for oxygen concentration dependence in the supercritical water oxidation of an industrial wastewater[J]. Chem. Eng. J.,2008,144 (3):361-367.
    [57]Erkonak H, Sogut O O, Akgun M. Treatment of olive mill wastewater by supercritical water oxidation[J]. J. Supercrit. Fluids,2008,46(2):142-148.
    [58]吴锦华,韦朝海.催化超临界水氧化废水处理技术的研究进展.环境工程,2002,8(20):7-10.
    [59]DiNaro J L, Tester J W, Howard J B et al. Experimental measurements of benzene oxidation in supercritical water[J]. AIChE J.,2000,46(11):2274-2284.
    [60]Yu J, Savage P E. Kinetics of catalytic supercritical water oxidation of phenol over TiO2[J]. Environ. Sci. Technol.,2000,34 (15):3191-3198.
    [61]Ding Z Yi, Aki S N V K, Abraham M A. Catalytic supercritical water oxidation:phenol conversion and product selectivity[J]. Environ. Sci. Technol.,1995,29 (11):2748-2753.
    [62]Lin K S, Wang H P. Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+cations and copper oxide clusters[J]. Environ. Sci. Technol.,2000,34 (22):4849-4854.
    [63]郭小华,葛红光,李江等.Mn2+催化超临界水氧化对氨基苯酚[J].陕西理工学院学报,2006,3(22):80-82
    [64]林春绵,陶雪文,徐明仙.催化超临界水氧化处理1,5-萘二磺酸[J].环境工程,2006,24(1):7-10.
    [65]Aki S, Abraham M A. Catalytic supercritical water oxidation of pyridine:comparison of catalysts[J]. Ind. Eng. Chem. Res.,1999,38 (2):358-367.
    [66]Ding Z Yi, Li L, Wade D et al. Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst[J]. Ind. Eng. Chem. Res.,1998,37 (5):1707-1716.
    [67]Yu J, Savage P E. Kinetics of MnO2-catalyzed acetic acid oxidation in supercritical water[J]. Ind. Eng. Chem. Res.,2000,39 (11):4014-4019
    [68]Gizir A M, Clifford A A, Bartle K D. The catalytic role of transition metal salts on supercritical water oxidation of phenol and chlorophenols in a titanium reactor[J]. React. Kinet. Catal. Lett.,2003,78(1): 175-182.
    [69]郭小华,葛红光,李星彩等.Mn2+催化超临界水氧化偏二甲肼[J].化工时刊,2006,20(1):36-38.
    [70]Armellini F J, Tester J W. Precipitation of sodium chloride and sodium sulfate in water from sub-to supercritical conditions:150 to 550℃,100 to 300 bar[J]. J. Supercrit. Fluids,1994,7(3):147-158.
    [71]Armellini F J, Tester J W. Solubility of sodium chloride and sulfate in sub-and supercritical water vapor from 450-550℃ and 100-250 bar[J]. Fluid Phase Equilib.,1993,84(1):123-142.
    [72]DiPippo M M, Sako K, Tester J W. Ternary phase equilibria for the sodium chloride-sodium sulfate-water system at 200 and 250 bar up to 400℃ [J]. Fluid Phase Equilib.,1999,157(2):229-255.
    [73]Schubert M, Regler J W, Vogel F. Continuous salt precipitation and separation from supercriticalwater. Part 1:Type 1 salts [J].J. Supercrit. Fluids,2010,52(1):99-112.
    [74]Schubert M, Regler J W, Vogel F. Continuous salt precipitation and separation from supercritical water. Part 2:Type 2 salts and mixtures of two salts[J]. J. Supercrit. Fluids,2010,52 (1):113-124.
    [75]Goemans M G E, Li L, Gloyna E F. Separation of inorganic salts from supercritical water by cross-flow microfiltration[J]. Sep. Sci. Technol.,1995,30(7-9):1491-1509.
    [76]Goemans M G E, Tiller F M, Li L et al. Separation of metal oxides from supercritical water by crossflow microfiltration[J]. J. Membr. Sci.1997,124(1):129-145.
    [77]Marrone P A, Hodes M, Smith K A et al. Salt precipitation and scale control in supercritical water oxidation-part B:commercial/full-scale applications[J]. J. Supercrit. Fluids,2004,29(3):289-312.
    [78]Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions:a review[J]. J. Supercrit. Fluids,2004,29(1-2):1-29.
    [79]Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO) existing problems, possible solutions and new reactor concepts[J]. Chem. Eng. J.,2001,83(3):207-214.
    [80]Kritzer P, Boukis N, Dinjus E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures[J]. Corrosion,2000,56(11):1093-1104.
    [81]Mitton D B, Yoon J H, Latanision R M. Overview of corrosion phenomena in SCWO systems for hazardous waste destruction[J]. Corros. Eng.2000,49(3):130-137.
    [82]Boukis N, Diem V, Habieht W et al. Methanol reforming in supercritical water. Ind. Eng. Chem. Res, 2003,42(4):728-735.
    [83]Minowa T, Inoue S. Hydrogen production from biomass by catalytic gasification in hot copressed water. Renew. Energ.,1999,16(1-4):1114-1117.
    [84]Tang H Q, Kitagawa K. Supercritical water gasification of biomass:thermodynamic analysis with direct Gibbs free energy minimization.Chem. Eng. J.,2005,106(3):261-267.
    [85]Zhang R, Ren H, Sun D et al. Pyrolysis of a high-ash peat in supercritical water. Journal of Fuel Chemistry and Technology.2008,36(2):129-133
    [86]曲先锋,彭辉,毕继诚等.生物质在超临界水中热解行为的初步研究[[J].燃料化学学报,2003,31(3):230-233.
    [87]赵玉龙,张荣,毕继诚.超临界水中聚乙烯降解油化的研究和开发进展[J].石油化工,2005,34(1):78-83.
    [88]杜昭辉,孙淑芳.废橡胶超临界裂解与传统裂解工艺的比较[J].辽宁石油化工大学学报,2006,26(2):15-18.
    [89]Modell M. Fundamentals of thermochemical biomass conversion[M]. Amsterdam:Elsevier,1985,95.
    [90]Schmieder H, Abeln J. Supercritical water oxidation:state of the art[J]. Chem. Eng. Technol.,1999, 22(11):903-908.
    [91]Gloyna E F, Li L. Supercritical water oxidation:an engineering update[J].Waste Manage.,1993, 13(5-7):379-394.
    [92]Griffith J W, Raymond D H. The first commercial supercritical water oxidation sludge processing plant[J]. Waste Manage.,2002,22 (4):453-459.
    [93]Casal V, Schmidt H. SUWOX-a facility for the destruction of chlorinated hydrocarbons[J]. J. Supercrit. Fluids,1998,13 (1-3):269-276.
    [94]王涛,何胜悦,刘崇义等.超临界水氧化法处理对苯二酚废水的初步研究[J].化工学报,1996,47(3),381-384。
    [95]向波涛,王涛,沈忠耀.含乙醇废水的超临界水氧化反应动力学及反应机理[J].化工学报,2003,54(1):80-85.
    [96]林春棉,金耀门,潘志彦.超临界水中苯酚的氧化分解[J].高校化学工程学报,1998,12(1):86-89.
    [97]丁军委,陈丰秋,吴素芳等.苯胺在超临界水中氧化反应动力学的研究[J].高校化学工程学报,2001,15(1):66-70
    [98]韦朝海,李登勇,施华顺等.对氯苯酚超临界水脱氯的反应动力学及机理分析[J].中国科技论文在线,2010,5(6):441-447.
    [99]马承愚,李艳华,李丹等.超临界水氧化法处理活性染料生产废水[J].化学世界,2006,12:723-725.
    [100]彭文才.超临界水氧化法处理焦化废水[D].北京:中国科学院研究生院,2006.
    [101]贾华,田江霞等.超临界水氧化(SCWO)工业化设备研究及进展[C].中国环境科学学会出版社.中国环境科学学会学术年会优秀论文集.北京:中国环境科学出版社,2007:197-200.
    [1]Harvey A H, Peskin A P, Klein S A. NIST/ASME Steam Properties, NIST Standard Reference Database 10, Version 2.2. Gaithersburg, MD:National Institute of Standard and Technology.2000.
    [2]崔玉川.水的除盐方法与工程应用[M].北京:化学工业出版社,2008:9-11.
    [1]Sakkayawong N, Thiravetyan P, Nakbanpote W. Adsorption mechanism of synthetic reactive dye wastewater by chitosan[J]. J.Colloid Interf. Sci.,2005,286(1):36-42.
    [2]Ciardelli G, Corsi L, Marcucci M. Membrane separation for wastewater reuse in the textile industry[J]. Resour. Conserv. Recy.,2001,31(2):189-197.
    [3]Meric S, Selcuk H, Belgiorno V. Acute toxicity removal in textile finishing wastewater by Fenton's oxidation, ozone and coagulation-flocculation processes[J]. Water Res.,2005,39(6):1147-1153.
    [4]Ciardelli G, Ranieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation[J]. Water Res.,2001,35(2):567-572.
    [5]Ghoreishi S M, Haghighi R. Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent[J]. Chem. Eng. J.,2003,95(1-3):163-169.
    [6]Sogut O. O, Akgiin M. Treatment of dyehouse waste-water by supercritical water oxidation:a case study[J]. J.Chem. Technol. and Biotechnol.,2010,85(5):640-647.
    [7]Sogiit O. O, Akgiin M. Removal of C.I. Basic Blue 41 from aqueous solution by supercritical water oxidation in continuous-flow reactor[J]. J. Ind. Eng. Chem.2009,15(6):803-808.
    [8]Sogiit O O, Akgun M. Treatment of textile wastewater by SCWO in a tube reactor. J. Supercrit. Fluids, 2007,43(1):106-111.
    [9]龚为进.蒸发壁式超临界水氧化反应器处理高浓度有机废水实验研究[D].上海:东华大学,2008.
    [10]Benjamin K M, Savage P E. Hydrothermal reactions of methylamine[J]. J. Supercrit. Fluids, 2004,31(3):301-311.
    [11]Ahmed N S E, Youssef Y A, El-Shishtawy R M et al. Urea/alkali-free printing of cotton with reactive dyes[J]. Color. Technol.,2006,122(6):324-328.
    [12]Provost J R. Effluent improvement by source reduction of chemicals used in textile printing[J]. J. Soc. Dyers Colour.,1992,108 (5-6):260-264.
    [13]Harvey A H, Peskin A P, Klein S A. NIST/ASME Steam Properties, NIST Standard Reference Database 10, Version 2.2. Gaithersburg, MD:National Institute of Standard and Technology.2000.
    [14]Du X, Zhang R, Gan Z et al. Treatment of high strength coking wastewater by supercritical water oxidation[J]. Fuel,2013,104:77-82.
    [15]Bermejo M D, Cantero F, Cocero M J. Supercritical water oxidation of feeds with high ammonia concentrations:Pilot plant experimental results and modeling[J]. Chem. Eng. J.,2008,137(3): 542-549.
    [16]Segond N, Matsumura Y, Yamamoto K. Determination of ammonia oxidation rate in sub-and supercritical water[J]. Ind. Eng. Chem. Res.,2002,41 (24):6020-6027.
    [17]Thornton T D, Savage P E. Phenol oxidation in supercritical water[J]. J. Supercrit. Fluids,1990,3(4): 240-248.
    [18]Koo M, Lee W K, Lee C H. New reactor system for supercritical water oxidation and its application on phenol destruction[J]. Chem. Eng.Sci.,1997,52(7):1201-1214.
    [19]Al-Duri B, Pinto L, Ashraf-Ball N H et al. Thermal abatement of nitrogen-containing hydrocarbons by non-catalytic supercritical water oxidation (SCWO) [J]. J. Mater. Sci.,2008,43(4):1421-1428.
    [20]Qi X H, Zhuang Y Y, Yuan Y C et al. Decomposition of aniline in supercritical water[J]. J. Hazard. Mater.,2002,90(1):51-62.
    [21]Heiling R K, Tester J W. Oxidation of simple compounds and mixtures in supercritical water:carbon monoxide, ammonia, and ethanol[J]. Environ. Sci. Technol.,1988,22 (11):1319-1324.
    [22]Veriansyah B, Park T J, Limb J S et al. Supercritical water oxidation of waste-water from LCD manufacturing process:kinetic and formation of chromium oxide nanoparticles[J]. J. Supercrit. Fluids, 2005,34(1):51-61.
    [23]Shin Y H, Shin N C, Veriansyah B et al. Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant[J]. J. Hazard. Mater.,2009,163(2-3):1142-1147.
    [24]Veriansyah B, Kim J D. Supercritical water oxidation for the destruction of toxic organic wastewaters: A review[J]. J. Environ. Sci.,2007,19(5):513-522.
    [I]Sogut O. O, Akgun M. Treatment of dyehouse waste-water by supercritical water oxidation:a case study[J]. J.Chem. Technol. and Biotechnol.,2010,85(5):640-647.
    [2]Sogut O.O, Akgun M.. Removal of C.I. Basic Blue 41 from aqueous solution by supercritical water oxidation in continuous-flow reactor[J]. J. Ind. Eng. Chem.,2009,15(6):803-808.
    [3]Boukis N, Diem V, Habieht W et al. Methanol Reforming in Supercritical Water[J]. Ind. Eng. Chem. Res.,2003,42(4):728-735.
    [4]Minowa T, Inoue S. Hydrogen production from Biomass by catalytic gasification in hot compressed water[J]. Renew Energy,1999,16(1-4):1114-1117.
    [5]Tang H Q, Kitagawa K. Supercritical water gasification of biomass:thermodynamic analysis with direct Gibbs free energy minimization[J]. Chem. Eng. J.,2005,106(3):261-267.
    [6]Savage P E. Organic Chemical Reactions in Supercritical Water[J]. Chem. Rev.,1999,99:603-621.
    [7]Torry L A, Kaminsky R, Klein M T et al. The effect of salts on hydrolysis in supercritical and near-critical water:reactivity and availability[J]. J. Supercrit. Fluids,1992,5(3):163-168.
    [8]Townsend S H, Abraham M A, Huppert G L et al. Solvent effects during reactions in supercritical water[J]. Ind. Eng. Chem. Res.,1988,27(1):143-149.
    [9]Benjamin K M, Savage P E. Hydrothermal reactions of methylamine[J]. J. Supercrit. Fluids,2004, 31(3):301-311.
    [10]Heiling R K, Tester J W. Oxidation of simple compounds and mixtures in supercritical water:carbon monoxide, ammonia, and ethanol[J]. Environ. Sci. Technol.,1988,22 (11):1319-1324.
    [11]Du X, Zhang R, Gan Z et al. Treatment of high strength coking wastewater by supercritical water oxidation[J]. Fuel,2013,104:77-82.
    [12]Sogiit O. O, Akgiin M. Treatment of dyehouse waste-water by supercritical water oxidation:a case study[J]. J.Chem. Technol. and Biotechnol.,2010,85(5):640-647.
    [1]Veriansyah B, Kim J D, Lee Y W. Decomposition kinetics of dimethyl methylphospate (chemical agent simulant) by supercritical water oxidation[J]. J. Environ. Sci.,2006,18(1):13-16.
    [2]Sogut O. O, Akgun M. Treatment of dyehouse waste-water by supercritical water oxidation:a case study[J]. J.Chem. Technol. and Biotechnol.,2010,85(5):640-647.
    [3]Sogut O. O, Akgun M. Removal of C.I. Basic Blue 41 from aqueous solution by supercritical water oxidation in continuous-flow reactor[J]. J. Ind. Eng. Chem.2009,15(6):803-808.
    [4]Sogut O O, Akgun M. Treatment of textile wastewater by SCWO in a tube reactor. J. Supercrit. Fluids, 2007,43(1):106-111.
    [5]Sanchez-Oneto J, Mancini F, Portela J R et al. Kinetic model for oxygen concentration dependence in the supercritical water oxidation of an industrial wastewater[J]. Chem. Eng. J.,2008,144(3):361-367.
    [6]Mateos D, Portela J R, Mercadier J et al. New approach for kinetic parameters determination for hydrothermal oxidation reaction[J]. J. Supercrit. Fluids,2005,34(1):63-70.
    [1]Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO):Existing problems, possible solutions and new reactor concepts[J]. Chem. Eng. J.,2001,83(5):207-214.
    [2]http://database.texnet.com.cn/db-technology/detail--1437.html
    [3]Armellini F J, Tester J W. Precipitation of sodium chloride and sodium sulfate in water from sub-to supercritical conditions:150 to 550℃,100 to 300 bar[J]. J. Supercrit. Fluids,1994,7(3):147-158.
    [4]Armellini F J, Tester J W. Solubility of sodium chloride and sulfate in sub-and supercritical water vapor from 450-550℃ and 100-250 bar[J]. Fluid Phase Equilib.,1993,84(1):123-142.
    [5]Armellini F J, Tester J W. Experimental Methods for Studying Salt Nucleation and Growth from Supercritical Water[J]. J. Supercrit. Fluids,1991,4(4):254-264.
    [6]Daman E L. Process and apparatus for supercritical water oxidation[P]. U.S. Patent:5571423, 1996-11-05.
    [7]Daman E L. Process and apparatus for supercritical water oxidation[P]. U.S. Patent:5723045, 1998-03-03.
    [8]Marrone P A, Hodes M, Smith K A et al. Salt precipitation and scale control in supercritical water oxidation-part B:commercial/full-scale applications[J]. J. Supercrit. Fluids,2004,29(3):289-312.
    [9]Du X, Zhang R, Gan Z et al. Treatment of high strength coking wastewater by supercritical water oxidation[J]. Fuel,2013,104:77-82.
    [10]Rogak S N, Teshima P. Deposition of sodium sulfate in a heated flow of supercritical water[J]. AIChE J,1999,45(2):240-247.
    [11]Hodes M, Marrone P A, Hong G T et al. Salt precipitation and scalecontrol in supercritical water oxidation-Part A:fundamentals and research[J]. J. Supercrit. Fluids,2004,29(3):265-288.
    [12]DiPippo M M, Sako K, Tester J W. Ternary phase equilibria for the sodium chloride-sodium sulfate-water system at 200 and 250 bar up to 400℃[J]. Fluid Phase Equilib.,1999,157(2):229-255.
    [13]Schubert M, Regler J W, Vogel F. Continuous salt precipitation and separation from supercritical water. Part 2. Type 2 salts and mixtures of two salts[J]. J. Supercrit. Fluids,2010,52 (1):113-124.
    [14]马春燕.印染废水深度处理及回用技术研究[D].上海:东华大学,2007.
    [15]http://www.env.go.jp/en/water/wq/nes.html.
    [16]Mattioli D, Malpei F, Bortone G et al. Water minimization and reuse in the textile industry. In P. Lens, L. Hulshoff Pol, P. Wilderer and T. Asono, (eds.) water recycling and resource recovery in industry[M]. London:IWA Publishing,2002:545-584.
    [17]沈晓芳,马春元,王志强等.利刚超临界水氧化反应系统处理有机废液的经济性分析[J].环境工程,2010,28(1):47-51.
    [18]西蒙·贾德,布鲁斯·杰斐逊(编著),蔡邦肖(译).膜技术与工业废水回用[M].北京:化学工业出版社,2006:209-213.
    [1]孟令辉,许银华,黄玉东.国外超临界水氧化法在有机危险废物处理上的应用[J].化工环保,2000,20(5):16-18.
    [2]Schmieder H, Abeln J. Supercritical water oxidation:state of the art[J]. Chem. Eng. Technol.,1999, 22(11):903-908.
    [3]Lilac W D, Lee S. Kinetics and mechanisms of styrene monomer recovery from waste polystyrene by supercritical water partial oxidation[J]. Adv. Environ. Res.,2001,6(1):9-16.
    [4]Bermejo M D, Cocero M J. Supercritical water oxidation:A technical review[J]. AIChE J.,2006, 52(11),3933-3951.
    [5]Kupferer D N. An evaluation of supercritical water oxidation technology[D]. Master Thesis, Michigan:University of Michigan,2000.
    [6]Griffith J W, Raymond D H. The first commercial supercritical water oxidation sludge processing plant[J]. Waste Manage.,2002,22(4):453-459.
    [7]Gloyna E F, Li L. Supercritical water oxidation research and development update[J]. Environ. Prog.,1995,14(3):182-192.
    [8]Vogel F, Blanchard J L D N, Marrone P A et al. Critical review of kinetic data for the oxidation of methanol in supercritical water[J]. J. Supercrit. Fluids,2005,34(3),249-286.
    [9]Phenix B D, DiNaro J L, Tester J W et al. The effects of mixing and oxidant choice on laboratory-scale measurements of supercritical water oxidation kinetics[J]. Ind. Eng. Chem. Res.,2002,41(3), 624-631.
    [10]Casal V, Schmidt H. SUWOX-a facility for the destruction of chlorinated hydrocarbons [J]. J. of Supercrit. Fluids,1998,13(1-3),269-276.
    [11]Chang K C, Li L, Gloyna E F. Supercritical water oxidation of acetic acid by potassium permanganate[J]. J. Hazardous Mat.,1993,33(1):51-62.
    [12]马承愚,李丹,李艳华等.超临界水氧化技术与开发污染物资源的研究[J].应用化工,2006,35(3):222-224.
    [13]Lavrica E D, Weyten H, Ruyck J D et al. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process[J]. Energy Convers. Manage.,2005,46(9-10): 1345-1364.
    [14]Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO) existing problems, possible solutions and new reactor concepts[J]. Chem. Eng. J.,2001,83(3):207-214.
    [15]沈晓芳,马春元,王志强等.利用超临界水氧化反应系统处理有机废液的经济性分析[J].环境工程,2010,28(1):47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700