铕、金纳米颗粒与蛋白质的相互作用及分析应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】研究嗅标记蛋白(Olfactory Marker Protein,OMP)对铕、金纳米颗粒的荧光增强效应,建立灵敏的测定蛋白质含量的分析方法,探讨铕、金纳米颗粒与蛋白质相互作用的机理。
     【方法】
     1.铕纳米颗粒与蛋白质的相互作用及分析应用的研究
     在Eu(NO_3)_3溶液中加入还原剂单宁酸,30℃条件下剧烈搅拌30min,冷却至室温后离心、洗涤、定容即得到铕纳米颗粒。在搅拌过程中缓慢加入修饰剂硫辛酸,冷却至室温后离心、洗涤、定容,再加入嗅标记蛋白OMP,37℃条件下水浴8h,可将OMP连接到铕纳米颗粒。研究OMP对铕纳米颗粒的荧光增强效应和OMP含量与荧光强度变化的关系。同时应用共振光散射技术、吸收光谱技术、透射电子显微技术、圆二色谱技术等手段进行机理研究和讨论。
     2.金纳米颗粒与蛋白质的相互作用及分析应用的研究
     在煮沸搅拌条件下向氯金酸溶液中加入还原剂柠檬酸三钠,继续加热搅拌15 min后停止加热,冷却至室温后离心、洗涤、定容即得到金纳米颗粒。在搅拌过程中缓慢加入修饰剂硫辛酸,冷却至室温后离心、洗涤、定容,再加入嗅标记蛋白OMP,在37℃条件下水浴8h,可制得与OMP结合的金纳米颗粒。研究OMP对金纳米颗粒近红外荧光增强作用以及OMP含量与荧光强度增强的关系。同时应用共振光散射技术、吸收光谱技术、透射电子显微技术、圆二色谱技术等手段对荧光增强效应机理进行研究和讨论。
     【结果】
     1.铕纳米颗粒与蛋白质的相互作用及分析应用的研究
     在271nm的激发波长下,OMP的加入能显著增强铕纳米颗粒在379nm处的荧光强度,且荧光增强程度与OMP的含量在一定范围内呈正比。在最佳实验条件下,测定OMP、HRP、P450、BSA和NSE的线性范围分别为2.0×10~(-8)-8.0×10~(-6)g/mL、2.0×10~(-8)-9.0×10~(-6)g/mL、6.0×10~(-8)-1.2×10~(-5)g/mL、6.0×10~(-8)-1.0×10~(-5)g/mL和3.0×10~(-8)-1.2×10~(-5)g/mL。它们的检出限分别为9.8×10~(-9)g/mL、1.0×10~(-8)/mL、2.9×10~(-8)g/mL、3.2×10~(-8)g/mL和1.2×10~(-8)g/mL。该方法用于模拟样品中OMP含量的测定,结果令人满意。机理研究表明,铕纳米颗粒、硫辛酸与OMP发生了相互作用,使得OMP的构象发生变化,形成了铕-硫辛酸-OMP络合物,在271 nm的激发波长下,体系可能发生了能量传递过程,即OMP中的色氨酸残基和酪氨酸残基将吸收的能量通过硫辛酸这个中介体传递给铕纳米颗粒,从而发射铕纳米颗粒的荧光峰,荧光强度明显增强。
     2.金纳米颗粒与蛋白质的相互作用及分析应用的研究
     实验表明,在538nm的激发波长下,OMP的加入可以显著增强金纳米颗粒在近红外区的811nm处的荧光强度,并且荧光增强程度与OMP的含量在一定范围内呈正比,可用于蛋白质含量的测定。在最佳实验条件下,检测OMP、HRP、P450、BSA和NSE的线性范围分别为2.0×10~(-8)-9.0×10~(-6)g/mL、3.0×10~(-8)-8.0×10~(-6)g/mL、8.0×10~(-8)-1.2×10~(-5)g/mL、5.0×10~(-8)-1.0×10~(-5)g/mL和5.0×10~(-8)-8.0×10~(-6)g/mL。检出限分别为6.2×10~(-9)g/mL、8.4×10~(-9)g/mL、5.5×10~(-9)g/mL、6.0×10~(-9)g/mL和9.7×10~(-9)g/mL。可见该方法有较高的灵敏度和较宽的线性范围。对模拟样品采用标准加入法测定OMP含量,并将结果和用紫外吸收法测定的结果进行比较,结果精密度和准确度均比较满意。机理研究表明,带有巯基的硫辛酸将金纳米颗粒与OMP连结起来,形成了金-硫辛酸-OMP复合物,并定向排列聚集成超晶格结构,导致表面等离子体传播特性改变,使金纳米颗粒近红外区的荧光强度显著增强。
     【结论】
     1.OMP可以显著增强铕纳米颗粒的荧光强度和金纳米颗粒在近红外区的荧光强度。
     2.利用蛋白质对铕、金纳米颗粒的荧光增强效应可以建立测定蛋白质含量的新方法,结果令人满意。
     3.在铕纳米颗粒、硫辛酸、OMP三者间的能量传递过程使铕纳米颗粒的荧光强度明显增强,而OMP对金纳米颗粒的荧光增强效应则是由表面等离子体传播特性改变引起的。
     本论文的主要特点和创新点:
     1.利用稀土元素良好的发光性能和金属纳米材料检测生物分子灵敏度高的特点制备了铕纳米颗粒,探索建立测定蛋白质含量的分析方法。
     2.在前人工作的基础上研究了蛋白质对金纳米颗粒近红外荧光强度的增强效应,提高其测定蛋白质含量的灵敏度。
     3.利用荧光技术、光散射技术、吸收光谱技术、透射电子显微技术等多种手段研究了体系作用的机理。
Objective
     This research aims to study the effect of olfactory marker protein(OMP)on the fluorescence enhancement of europium and gold nanoparticles,to develop a sensitive method for the quantitative determination of proteins,and to study the interacting mechanism between europium,gold nanoparticles and proteins.
     Methods
     1.Interactions and applications between europium nanoparticles and proteins
     The Eu(NO_3)_3 solution was reduced by tannic acid under vigorous stirring at 30℃water bath for 30 min and cooled to ambient temperature.Europium nanoparticles were obtained after the solution was centrifuged,scrubbed and metered volume. Nanoeuropium-OMP conjugate was synthesized by the similar method.Lipoic acid was added while the solution was stirred and OMP was added to the solution at 37℃water bath for 8 hours.The fluorophotometer was used to observe the effect of OMP on the fluorescence enhancement of europium nanoparticles and relationship between fluorescence changes and the concentration of OMP.The resonance light scattering, absorption spectra,transmission electron microscope and circular dichroism spectra techniques were also used to study the interacting mechanism between europium nanoparticles and proteins.
     2.Interactions and applications between gold nanoparticles and proteins
     The AuCl_3 solution was reduced by trisodium citrate under vigorous stirring at boiling for 15 min and cooled to ambient temperature.Gold nanoparticles were obtained after the solution was centrifuged,scrubbed and metered volume.Nanogold-OMP conjugate was synthesized by the similar method.Lipoic acid was added while the solution was stirred and OMP was added to the solution at 37℃water bath for 8 hours.The fluorophotometer was used to observe the effect of OMP on the near-infrared fluorescence enhancement of gold nanoparticles and relationship between fluorescence changes and the concentration of OMP. The resonance light scattering,absorption spectra,transmission electron microscope and circular dichroism spectra techniques were also used to study the interacting mechanism between gold nanoparticles and proteins.
     Results
     1.Interactions and applications between europium nanoparticles and proteins
     Under the excitation of 271 nm,the fluorescence intensity at 379 nm of europium nanoparticles can be greatly enhanced by the addition of OMP.Under the optimum conditions,there is a linear relationship between the enhancement of fluorescence intensity and the concentration of proteins in the range of 2.0×10~(-8)to 8.0×10~(-6)g/mL for OMP, 2.0×10~(-8)to 9.0×10~(-6)g/mL for HRP,6.0×10~(-8)to 1.2×10~(-5)g/mL for P450,6.0×10~(-8)to 1.0×10~(-5)g/mL for BSA and 3.0×10~(-8)to 1.2×10~(-5)g/mL for NSE,and their limits of detection are 9.8×10~(-9)g/mL,1.0×10~(-8)g/mL,2.9×10~(-8)g/mL,3.2×10~(-8)g/mL and 1.2×10~(-8)g/mL.This method can be used to determine the concentration of OMP in simulated sample and the result is satisfactory.The study of mechanism indicates that the interaction of europium nanoparticles,lipoic acid and OMP makes the construction of OMP change to form Eu-lipoic acid-OMP conjugate.Under the excitation of 271 nm,an energy transfer process may occur in this system,that is,tryptophane and tyrosine residue of OMP transmit the absorbed energy to europium nanoparticles through lipoic acid and notably enhance the fluorescence intensity.
     2.Interactions and applications between gold nanoparticles and proteins
     Experiment indicates that the near-infrared fluorescence intensity at 811 nm of gold nanoparticles can be significantly enhanced by the presence of OMP under the excitation of 538 nm.Based on this,a sensitive method for the quantitative determination of proteins was established.Under the optimum conditions,there is a linear relationship between the enhancement of fluorescence intensity and the concentration of proteins in the range of 2.0×10~(-8)to 9.0×10~(-6)g/mL for OMP,3.0×10~(-8)to 8.0×10~(-6)g/mL for HRP,8.0×10~(-8)to 1.2×10~(-5)g/mL for P450,5.0×10~(-8)to 1.0×10~(-5)g/mL for BSA and 5.0×10~(-8)to 8.0×10~(-6)g/mL for NSE,and their limits of detection are 6.2×10~(-9)g/mL,8.4×10~(-9)g/mL,5.5×10~(-9)g/mL, 6.0×10~(-9)g/mL and 9.7×10~(-9)g/mL.This method can be used to determine the concentration of OMP in simulated sample and the result is satisfactory.The mechanism research shows that lipoic acid connects gold nanoparticles and OMP by hydrosulfuryl to form Au-lipoic acid-OMP compound.This conjugate has crystal lattice construction and causes the change in transmission property of surface plasma,thus notably enhances the near-infrared fluorescence intensity of gold nanoparticles.
     Conclusions
     1.OMP can greatly enhance the fluorescence intensity of europium nanoparticles as well as the near-infrared fluorescence intensity of gold nanoparticles.
     2.The effect of OMP on the fluorescence enhancement of europium nanoparticles and gold nanoparticles can be used to determine the concentration of proteins and the result is satisfactory.
     3.The energy transfer among europium nanoparticles,lipoic acid and OMP may enhance the fluorescence intensity of europium nanoparticles,while the fluorescence enhancement of gold nanoparticles by OMP is caused by the change in transmission property of surface plasma.
     The main features and creative points of this thesis are as follows:
     1.Make use of good luminescent property of lanthanide and high sensitivity of nano-metal material in biomolecule detection to prepare europium nanoparticles and establish a novel method for protein determination.
     2.Study the effect of OMP on the near-infrared fluorescence enhancement of gold nanoparticles based on past research to raise sensitivity of protein determination.
     3.Use many research techniques,such as fluorescence,resonance light scattering, absorption spectra,transmission electron microscope to investigate the interacting mechanism of these systems.
引文
[1]Karlstrom,EA.Nygren.Dual labeling of a binding protein allows for specific fluorescence detection of native protein[J].Anal.Biochem.,2001,295(1):22-30.
    [2]高志宇,薛敏钊,刘燕刚,等.噻唑橙类菁染料与生物大分子结合的光谱特性的研究[J].感光科学与光化学,2002,20(4):269-275.
    [3]陈艳晶,王志玲,田延东.测定蛋白质的四溴荧光素分光光度法[J].济南大学学报(自然科学版),2007,21(2):137-139.
    [4]D.H.Li,H.H.Yang,Q.Z.Zhu,et al.Fluorimetric determination of albumin and globulin in human serum using tetra-substituted sulphonated aluminum phthalocyanine[J].Anal.Chem.Acta.,1999,401(1):185-189.
    [5]W.W.Qina,G.Q.Gonga,Y.M.Song.Determination of proteins by fluorescence quenching of Magdala Red[J].Spectrochimica Acta Part A,2000,56(5):1021-1025.
    [6]C.Q.Ma,K.A.Li,S.Y.Tong.Determination of proteins by fluorescence quenching of crythrosin B[J].Anal.Chem.Acta.,1996,233(1-2):83-88.
    [7]俞天智,陶祖贻.水杨酸与HAS相互作用的荧光光谱研究[J].光谱学与光谱分析,1999,19(15):453-456.
    [8]覃文物,包永军,龚国权,等.茜红素S荧光猝灭法测定蛋白质[J].分析化学,2000,28(4):526-530.
    [9]刘保生,高静,杨更亮.吖啶橙罗丹明6G荧光共振能量转移及罗丹明6G荧光猝灭法测定蛋白质[J].分析化学,2005,33(4):546-548.
    [10]F.J.Alba,A.Bermudez,S.Bartolome,et al.Detection of five nanograms of protein by two-minute nile red staining of unfixed sds gels[J].Biotechniques,1996,21(4):625-628.
    [11]林章碧,苏星光,张家骅,等.纳米粒子在生物分析中的应用[J].分析化学,2002,30(2):237-241.
    [12]陈鸿琪,夏闽.荧光染料吖啶红作测定蛋白质的生物探针[J].理化检验-化学分册,2001,37(2):53-55.
    [13]高峰,朱昌青,汪乐余,等.灿烂甲酚蓝与表面活性剂的作用及其在蛋白质测定中的应用[J].分析化学,2002,30(3):324-326.
    [14]高峰,朱昌青,王伦.耐尔蓝-十二烷基苯磺酸钠-蛋白质体系的荧光反应及其分析应用[J].分析化学,2003,31(9):1085-1088.
    [15]T.Kinoshita,J.Murayama,K.Murayama,et al.Microanalysis of proteins and peptides novel method for the fluorimetric assay of proteins using hypochlorite-thiamine reagent[J].Chem.Pharm.Bull.,1980,28(2):641-644.
    [16]S.Takaji,O.Tatsuya,I.Kayo,et al.Determination of trace amounts of albumin in human bronchoalveolar lavage fluids by fluorometry with chromazurol[J].Clin.Chem.Acta.,1994,229(1-2):37-47.
    [17]张明翠,汪乐余,李玲,等.新荧光试剂5-(4-羧基苯偶氮)-8-水杨醛缩氨基喹啉荧光增敏法测定人血清蛋白质[J].分析化学,2004,32(3):74-76.
    [18]T.H.Steinberg,R.P.Haugland,V.Singer.Applications of sypro orange and sypro red protein gel stains[J].Anal.Biochem.,1996,239(2):238-245.
    [19]J.B.Joseph.Fluorimetric microdetermination of human serum albumin[J].Anal.Chem.,1960,32(4):560-563.
    [20]J.C.Garcia-Borron,J.Escribano,M.Jimenez,et al.Quantitative determination of tryptophanyl and tyrosyl residues of proteins by second-derivative fluorescence spectroscopy[J].Analytical Biochemistry,1982,125(2):277-285.
    [21]Y.J.Luo,H.X.Chen.Study on Acridine Orange dimer as a new fluorescent probe for the determination o f protein[J].Anal.Commun.,1999,36(4):135-138.
    [22]D.L.Sacktt.Rapid purification of mbulin from tissue and tissue culture cells using solid-phase ion exchange[J].Anal.Biochem.,1995,228(2):343-348.
    [23]康四清,邹肇娥,乔小蓉.用自制新型荧光剂EPQS标记蛋白质及其荧光纸层析扫描测定[J].华西医科大学学报,1991,22(3):262-265.
    [24]林琳,孙素颜,姚桂燕,等.人血清中血红蛋白含量的分子荧光光谱法测定[J].郑州大学学报:医学版,2007,42(3):498-501.
    [25]K.J.Siepa.Terbium chelate labels for fluorescence immuno assays[J].Analyst,1989,114(4):529-531.
    [26]杨景和,朱贵云.稀土元素的共发光效应[J].山东大学学报(自然科学版),1986,21(4):133-139.
    [27]C.X.Sun,J.H.Yang,X.Wu.The fluorescent enhancement effect in terbium-gadolinium-protein-cetylpyridine bromide system and its application for the determination of protein at nanogram level[J].Biochimie,2004,86(8):569-578.
    [28]高建华,翟海云,陈彬.杯[8]芳烃与铈形成的镧系超分子作荧光探针测定蛋白质[J].分析化学,2002,30(3):295-297.
    [29]R.A.Evangelista,A.Pallak,B.Allore,et al.A new europium chelate for protein labeling and time-resolved fluorometric applications[J].Clin.Biochem.,1988,21(3):173-178.
    [30]R.Esther,S.Yehezkel,R.Mohabir,et al.Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxlic acid as label[J].Anal.Chem.,1988,60(10):1069-1074.
    [31]E.P.Diamandis,R.C.Monton,E.Reichstein,et al.Multiple fluorescence labeling with europium chelators:Application to time-resolved fluoroimmunoassays[J].Anal.Chem.,1989,61(1):48-53.
    [32]Y.X.Ci,W.B.Wang,X.D.Yang.Fluorescence labeling with europium chelate of β-diketones and application in time-resolved fluoroimmunoassays[J].Journal of Immunological Methods,1995,179(2):233-241.
    [33]S.F.Liu,J.H.Yang,X.Wu.Fluorometric determination of proteins using the yttrium(Ⅲ)-Sodium Lauryl Sulfate-Rutin-protein system[J].Journal of Luminescence,2006,117(2):217-224.
    [34]A.Confi,M.P.Bailey,B.F.Rocks.Multiple labeling of immunoglobulin G,Albumin and testosterone with a fluorescent Terbium chelate for fluorescence immunoassays[J].Analyst,1989,114(11):1407-1411.
    [35]D.S.Stegehuis,U.R.Tjaden,C.M.B.Van den Beld,et al.Bioanalysis of the neuropeptide des-enkephalin-γ-endorphin by high-performance liquid chromatography with on-line sample pretreatment using gel permeation and solid-phase isolation[J].J.Chromatogr.A.,1991,549:185-193.
    [36]H.Koning,H.Wolf,K.Venema,et al.Automated precolumn derivatization of amino acids,small peptides,brain amines and drugs with primary amino groups for reversed-phased high-performance liquid chromatography using naphthalenedialdehyde as the fluorogenic label[J].J.Chromatogr.,1990,533:171-178.
    [37]D.M.Pinto,E.A.Arriaga,D.Craig,et al.Picomolar assay of native proteins by capillary electrophoresis precolumn labeling,submicellar separation and laser-induced fluorescence detection[J].Anal.Chem.,1997,69(15):3015-3021.
    [38]J.P.Liu,Y.Z.Hsieh,D.Wiesler,et al.Design of 3-(4-carboxybenzoyl)-2-quinolinecarboxaldehyde as a reagent for ultrasensitive determination of primary amines by capillary electrophoresis using laser fluorescence detection[J].Anal.Chem.,1991,63(5):408-412.
    [39]T.Toyooka,M.Ishibashi,T.Terao.Sensitive determination of n-terminal prolyl peptides by high-performance liquid-chromatography with laser-induced fluorescence detection[J].J.Chromatogr.A.,1994,661(1-2):105-112.
    [40]G.R.Rhodes,V.K.Boppana.High-performance liquid-chromatographic analysis of arginine-containing peptides in biological-fluids by means of a selective post-column reaction with fluorescence detection[J].J.Chromatogr.,1988,444:123-131.
    [41]C.M.B.Van den Beld,U.R.Tjaden,N.J.Reinhoud,et al.Determination of some β-endorphin fragments in human plasma by high-performance liquid-chromatography with laser-induced fluorescence detection[J].J.Control.Release.,1993,13:129-139.
    [42]S.A.Cohen,D.P.Michaud.Synthesis of a fluorescent derivatizing reagent,6-aminoquinilyl-n-hydroxysuccinimidyl carbamate and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography[J].Anal.Biochem.,1993,211(2):279-287.
    [43]M.A.Cichy,D.L.Stegmeier,H.Veening,et al.High-performance liquid chromatographic separation of biogenic polyamines using 2-(1-pyrenyl)ethyl chloroformate as a new fluorogenic derivatizing reagent[J].J.Chromatogr.B.,1993,613(1):15-21.
    [44]A.J.Faulkner,H.Veening,H.D.Becker.2-(9-Anthryl)ethyl chloroformate:a precolumn derivatizing reagent for polyamines determined by liquid chromatography and fluorescence detection[J].Anal.Chem.,1991,63(3):292-296.
    [45]M.J.Baar,G.Patonay.Ultrasensitive detection of closely related angiotensin in peptides using capillary electrophoresis with near-infrared laser-induced fluorescence detection[J].Anal.Chem.,1999,71(3):667-671.
    [46]A.J.G.Mank,H.T.C.Vander Laan,H.Lingeman,et al.Visible diode laser-induced fluorescence detection in liquid chromatography after precolumn derivatization of amines[J].Anal.Chem.,1995,67(10):1742-1748.
    [47]郑洪,李东辉,陈秋影,等.一种近红外花菁染料的合成及其应用于生物大分子的测定[J].应用化学,1999,16(3):17-20.
    [48]郑洪,朱昌青,李东辉,等.人血清中总蛋白的近红外荧光测定[J].福州大学学报(自然科学版),1999,27(S1):118-119.
    [49]K.D.Volkova,V.B.Kovalska,A.O.Balanda,et al.Cyanine dye-protein interactions:Looking for fluorescent probes for amyloid structures[J].Journal of Biochemical and Biophysical Methods,2007,70(5):727-733.
    [50]林旭聪,郭良洽,张丽盆,等.一种新的磺酸吲哚菁染料的荧光光谱分析及其应用研究[J].光谱实验室,2007,24(3):471-476.
    [51]E.Terpetschnig,H.Szmacinski,A.Ozinskas,et al.Synthesis of squaraine-n-hydroxysuccinimide esters and their biological application as long-wavelength fluorescent labels[J].Anal.Biochem.,1994,217(2):197-204.
    [52]E.Terpetschnig,H.Szmacinski,J.R.Lakowicz.Synthesis,spectral properties and photostabilities of symmetrical and unsymmetrical squarines;a new class of fluorophores with long-wavelength excitation and emission[J].Anal.Chim.Acta.,1995,282(3):633-641.
    [53]陈小兰,杨黄浩,朱庆枝,等.四胺基铝酞菁作为过氧化物酶模拟酶新型红外区荧光底物的研究[J].分析化学,2001,22(7):1120-1121.
    [54]魏玲,杨黄浩,陈小兰,等.四磺基铝酞菁与爱尔新蓝的缔合作用在核酸定量中的应用[J].分析化学,2002,30(8):946-949.
    [55]M.B.Brown,T.E.Edmonds,J.N.Miller,et al.Novel instrumentation and biomedical applications of very near infrared fluorescence[J].Analyst,1993,118(4):407-410.
    [56]T.Higashijima,T.Fuchigami,T.Imasaka,et al.Determination of amino acids by capillary zone electrophoresis based on semiconductor laser fluorescence detection[J].Anal.Chem.,1992,64(7):711-714.
    [57]S.I.Kink,L.Grave,D.N.Reinhoudt,et al.A systematic study of the photophysical processes in polydentate triphenylene-functionalized Eu~(3+),Tb~(3+),Nd~(3+),Yb~(3+),and Er~(3+)complexes[J].J.Phys.Chem.A.,2000,104(23):5457-5468.
    [58]C.J.Murphy.Optical sensing with quantum dots[J].Anal.Chem.,2002,74:520A-526A.
    [59]L.B.Rangs.New developments in particle-based immunoassays:introduction[J].Pure Appl.Chem.,1996,68(10):1873-1879.
    [60]W.C.W.Chan,S.M.Nie.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281(5385):2016-2018.
    [61]C.B.Murray,D.J.Norris,M.G.Bawendi.Synthesis and characterization of nearly monodisperse CdE semiconductor nanocrystallites[J].J.Am.Chem.Soc.,1993,115(19):8706-8715.
    [62]G.T.Hermanson.Bioconjugate Techniques[M].New York,Academic Press:1996.
    [63]M.B.Brown Jr,M.Moronne,P.Gin,et al.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281:2013-2016.
    [64]H.Q.Chen,L.Wang,L.Y.Wang,et al.Preparation of novel composite nanoclusters and their application in the ultrasensitive detection of proteins[J].Analytical Chimica Acta,2004,521(1):9-15.
    [65]C.Q.Zhu,D.H.Zhao,J.L.Chen,et al.Application of L-cysteine-capped nano-ZnS as a fluorescence probe for the determination of proteins[J].Analytical and Bioanalytical Chemistry,2004,378(3):811-815.
    [66]L.Y.Wang,L.Wang,L.Dong,et al.Direct fluorimetric determination of gamma-globulin in human serum with organic nano-particle biosensor[J].Spectrochimica acta Part A,2005,61(1-2):129-133.
    [67]E.A.Medcalf,D.J.Newman,E.G.Gorman,et al.Rapid,robust method for measuring low concentrations of albumin in urine[J].Clin.Chem.,1990,36(3):446-449.
    [68]J.R.Taylor,M.M.Fang,S.Nie.Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles[J].Anal.Chem.,2000,72(9):1979-1986.
    [69]段菁华,王柯敏,谭蔚泓,等.新型有机荧光染料嵌合的核壳荧光纳米材料的研制[J].高等学校化学学报,2003,24(2):255-259.
    [70]A.L.Crumbliss.Colloidal gold as a biocompatible immobilizationmatrix suitable for the fabrication of enzyme electrodes by electrodeposition[J].Biotechnol.Bioeng.,1992,40:483-490.
    [71]K.R.Brown,A.RFox,M.J.Natan.Morphology-dependent electrochemistry of cytochrome C at Au colloid-modified SnO2 electrodes[J].J.Am.Chem.Soc.,1996,118(5):1154-1157.
    [72]窦晓兵,范春雷,胡林峰,等.胶体金-荧光素双标配体法研究细胞低密度脂蛋白受体的功能[J].中国药学杂志,2007,42(10):729-732.
    [73]Z.Gryczynski,J.Malicka,et al.Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces[J].Analytical Biochemistry,2004,334(2):303-311.
    [74]李庆福,黄世华,刘舒曼,等.ZnO:Eu~(3+)纳米晶的制备及其光谱分析[J].激光与红外,2003,33(2):145-147.
    [75]F.Wang,W.Huang.Determination of curcumin by its quenching effect on the fluorescence of Eu~(3+)-tryptophan complex[J].J.Pharm.Biomed.Anal.,2007,43(1):393-398.
    [76]V.Venkatramu,RBabu,C.K.Jayasankar.Fluorescence properties of Eu~(3+)ions doped borate and fluoroborate glasses containing lithium,zinc and lead[J].Spectrochim.Acta.A Mol.Biomol.Spectrosc.,2006,63(2):276-281.
    [77]F.Dang,W.Liu,J.Zheng.Study on the new fluorescence enhancement system of Tb -N-(2-pyridinyl)ketoacetamide-Et3N-Zn and its application[J].J.Fluoresc.,2007,17(1):89-95.
    [78]X.F.Lv,Y.B.Zhao,Q.F.Zhou,et al.Determination of alkali-labile phosphoprotein phosphorus from fish plasma using the Tb~(3+)-tiron complex as a fluorescence probe[J].J.Environ.Sci.,2007,19(5):616-621.
    [79]H.J.Mattoussi,J.M.Mauro,E.R.Goldman,et al.Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J].J.Am.Chem.Soc.,2000,122(49):12142-12150.
    [80]N.T.K.Thanh,Z.Rosenzweig.Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles[J].Anal.Chem.,2002,74(7):1624-1628.
    [81]M.C.Daniel,D.Astmc.Gold nanoparticles:Assembly,supramolecular chemistry,quantum-size-related properties,and applications toward biology,catalysis,and nanotechnology[J].Chem.Rev.,2004,104(1):293-346.
    [82]朱健,王永昌,王勤.胶体金纳米颗粒的荧光光谱特性[J].光子学报,2003,32(3):357-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700