氧化锆/氧化钛改性可注射磷酸钙骨水泥的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钙骨水泥(Calcium Phosphate Cement,CPC)是由一种或几种磷酸钙盐粉末组成的混合物,与调和液发生水化凝固反应,在生理条件下具有自固化能力及降解活性、成骨活性的骨修复材料。随着临床技术的发展,对手术创口的要求越来越小,对于一些骨水泥用量少而且需要定位的“小”外科手术(如牙根管充填),若采用导管插入注射CPC来完成,手术将更方便。因此近年来,可注射CPC成为骨水泥领域内研究的重点。多数学者认为可注射性骨水泥是一种具备良好的流动性能且同时保持了普通CPC优良特性的骨水泥,可通过注射的方式,直接填入骨缺损部位,从而与骨缺损部位的宿主骨充分接触。但同时由于它与普通CPC相比具有较低的固液比,使得可注射CPC的抗压力学强度较低,不能满足大多数条件下人体骨的力学强度要求。因此,提高可注射CPC的可注射性能和抗压力学强度成为关注的重点。
     经相关文献报道,ZrO_2和TiO_2常被用来做增强材料以提高材料的强度同时具有良好的生物相容性,且柠檬酸(Citric Acid,CA)也多被作为液相成分用于CPC的制备。因此本论文采取通过在柠檬酸体系CPC中添加不同含量的TiO_2或ZrO_2,以增强可注射磷酸钙骨水泥的抗压力学强度和可注射性能,并研究了这两种可注射骨水泥的生物相容性。
     本论文根据文献选取CPC的固相:固相成分为α-TCP(α-磷酸三钙)98 wt%、HA(羟基磷灰石)2 wt%。α-TCP和HA均为本实验自制合成,烧结并经球磨后待用。液相成分选取不同浓度的CA(0.1 mol/l、0.2 mol/l、0.3 mol/l、0.5mol/l)。以不同的固液比(2 g/ml、2.5 g/ml、3 g/ml、3.5 g/ml)制备CPC,进行优化CPC的制备工艺。采用Instron 5670万能力学试验机测试CPC的抗压强度,采用维卡仪对骨水泥的初/终凝时间进行测定,根据文献提供的方法测试CPC的可注射性能(挤压注射法),优化液相成分柠檬酸的浓度和CPC的固液比。再在以此CA浓度和固液比条件下制备的CPC中,分别加入不同比例的ZrO_2和TiO_2(5%、10%、15%、20%wt),制得ZCPC和TCPC。分别测试各组试样的抗压强度,初、终凝时间和可注射性;对ZCPC和TCPC的相成分采用X'Pert Pro MPD型X射线衍射仪进行研究。用QUANTA200型扫描电镜观察骨水泥的形貌特征。用Nicolet SXFYIRI 70/Magna 550型红外监测仪对骨水泥进行红外检测。采用XSAM-800型X射线光电子能谱仪对ZCPC和TCPC中的锆元素和钛元素进行XPS高分辨检测。为了考查添加ZrO_2和TiO_2后CPC的生物相容性,进行了SBF模拟体液培养和体外细胞培养实验,用光镜观察细胞形态,并通过四甲基偶氮唑盐微量酶反应比色法(MTT法)检测成骨细胞的增殖作用。
     试验结果表明,通过优化试验表明,当CA的浓度为0.5 mol/l,固液比为3g/ml时的CPC同时具备最大的力学强度(14 MPa)和可注射性能(60%)。通过在该CA浓度和固液比条件下制备的CPC中分别加入不同比例的ZrO_2和TiO_2,制备了ZCPC和TCPC。ZCPC的初/终凝时间为分别为5-10 min和10-20 min。TCPC的初/终凝时间为分别为10-15 min和20-30 min。当ZrO_2和TiO_2的含量为15 wt%时,ZCPC和TCPC的抗压力学强度达到最高值,分别为23 MPa和38 MPa,可注射性能分别为80%和93%。通过XRD、SEM、红外分析和XPS的分析,认为ZCPC和TCPC在固化过程中,ZCPC和TCPC中的主要成分为HA,均产生了Ca(HPO_4)_2·H_2O(DCPD)和柠檬酸钙,并且在ZCPC中产生了Zr(HPO_4)_2·H_2O。对SBF模拟体液浸泡后的骨水泥材料进行XRD、红外、XPS检测,表明ZCPC和TCPC中的主要成分仍为HA,并在骨水泥的表面吸附了少量的沉积盐,但并没有影响骨水泥的固化过程。体外细胞实验表明,成骨细胞增殖良好,通过MTT检测,表明ZCPC和TCPC均比CPC具有更好的生物活性,且ZCPC比TCPC拥有更好的生物相容性。
Calcium phosphate cements(CPCs)possess the excellent biocompatibility and osteoconductivity due to their similar component as those of the natural bone and have been used as bone replacement in clinic successfully.A major disadvantage of current CPC is that they exist in hardened forms,requiring the surgeon to fit the surgical site around the implant or to carve the graft to the desired shape.This can lead to increases in bone loss,trauma to the surrounding tissue,and prolong surgical time.The injectability of CPC is important in clinical applications that involve defects with limited accessibility or narrow cavities, when there is a need for precise placement of the paste to conform to a defect area.However,the drawbacks of injectable CPC,including the lack of low strength,have limited its clinical use.According to some studies,ZrO_2 and TiO_2 often were used to improve strength of materials and both of them have good biocompatibility.Citric Acid as the liquid component was used to prepare injectable CPC.In this study,ZrO_2 or TiO_2 were added into citirc acid CPC to improve CPC properties which including strength and injectability.
     In this study,the powder component of CPC contain 98 wt%α-TCP and HA 2 wt%and the liquid component were different concentrations citric acid(0.1 mol/1、0.2 mol/1、0.3 mol/1、0.5 mol/1)with different ratios of powder to liquid(2 g/ml、2.5 g/ml、3 g/ml、3.5 g/ml).The compress strength of CPC were tested by mechanical instrument(instron 5670).The extrusion method was used to test the injectability of CPC.The optimization concentration of citric acid and the ratio of powder to liquid were obtained.Then,different mass fracions ZrO_2 and TiO_2(5%、10%、15%、20%,wt)were added into the CPC,respectively,which named as ZCPC and TCPC.The CPC was used as the control.The Vicat was used to test the initial time and final time of as-received CPCs.The compressive strength and injectability were test as the previous description.X-ray diffraction(XRD)was employed to analyse the phase of as-prepared CPC.Scanning Electron Microscope(SEM)and Energy dispersive spertrum(EDS)were used to observe the morphology and indicate the element components of CPC.(Fourier transform infrared spectroscopy,FTIR)was worked to analyse the components of ZCPC and TCPC.X-ray Photoelectron Spectroscopy(XPS)were made to test element of Zr and Ti in the ZCPC and TCPC,respectively.The cell culture and immersed in simulation body solution(SBF)in vitro experiment were carried out to evaluate the biocompatibility and biodegradability of as-received CPCs.
     The present results show that the maximum compressive strength of CPC is 14 MPa and the injectability is 60%while citirc acid concentration was 0.5 mol/l and the powder to liquid ratio was 3 g/ml.The initial and final time of ZCPC and TCPC were 5-10 min、10-20 min and 10-15 min、20-30 min,respectivety.When the mass fraction of ZrO_2 and TiO_2 were 15 wt%,the maximum compressive strength are 23 MPa and 38 MPa for ZCPC and TCPC,respectivety,amd the injectability are 80%and 93%.XRD、SEM、FTIR and XPS analyse indicate that HA was the main product in the ZCPC and TCPC.Ca(HPO_4)_2·H_2O(DCPD)and calcium citric acid occured during CPC self-setting process.Zr(HPO_4)_2·H_2O also could be found in ZCPC.HA was the main product in the ZCPC and TCPC after immersion in SBF.Cell toxicity experiment illuminate that both of ZCPC and TCPC have good biocompatibility than normal CPC.Furthermore,ZCPC have better biocompatibility than TCPC.
引文
1.师昌绪,材料大辞典。北京:化学工业出版社,1994。
    2.Miyazaki T.Bioactive PMMA bone cement prepared by modification with methacryloxy propyltrimethoxysilane and calcium chloride.J Biomed Mater Res 2003;67(4):1417-23.
    3.Kirkpatrick DK.In vitro characteristics of tobramyin-PMMA beads:compressive strength and leaching.Orthopedics 1985;9:1130-3.
    4.Fukase Y.Setting reactions and compressive strengths of calcium phosphate cements.J Dent Res 1990;1852-6.
    5.Matsuyama Y.Vertebral reconstruction with biodegradable calcium phosphate cement in the treatment of osteoporotic vertebral compression fracture using instrumentation.J Spinal Disord Tech;2004;17:291-6.
    6.郑昌琼,冉军国,新型无机材料。北京:科学出版社,2003。
    7.Khairoun I,Boltong MG,Driessens FC.Effect of calcium carbonate on clinical comp liance of apatitic calcium pho sphate bone cement.J Biomed Mater Res 1997;38:356-60.
    8.Bai B.The Use of an Injectable,Biodegradable Calcium Phosphate Bone Subsitute for the Prophylactic Augmentation of Osteroporotic Vertebral Compression.Spine 1999;24:1521-6.
    9.Ishikawa K.Self-setting barrier membrane for guided tissue regeneration method:Initial evaluation of alginate membrane made with sodium alginate and calcium chloride aqueous solutions.J Biomed Mater Res 1999;47:111-5.
    10.Oomsa EM,Verdonschotb N,Wolke JGC.Enhancement of initial stability of press-fit femoral stems using injectable calcium phosphate cement:an in vitro study in dog bones.Biomaterials 2004;25:3887-94.
    11.Dennis P,Juliette VD.Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles.Biomaterials 2006;27:4941-47.
    12.Oomsa EM,Egglezosb EA,Wolke JGC.Soft-tissue response to injectable calcium phosphate cements.Biomaterials 2003;24:749-57.
    13.Xu HHK,Michael D.Injectable and macroporous calcium phosphate cement scaffold.Biomaterials 2006;27:4279-87.
    14.Leroux L.Effects of various adjuvants(lactic acid,glycerol,and chitosan)on the injectability of a calcium pho sphate cement.Bone 1999;25:31-4.
    15.Sarda S,Fernandez E.Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent.J Mater Sci Mater Med 1999;10:223-30.
    16.Khairoun I,Mltong GB,Riessens FCD.Effect of calcium carbonate on clinical comp liance of apatitic calcium pho sphate bone cement.J Biomed Mater Res 1997;38:356-60.
    17.Briak H,Durand D.Study of a hydraulic dicalcium phosphate dihydrate/calcium oxide-based cement for dental applications.J Biomed Mater Res 2002;63:447-53.
    18.Gbureck U,Spatz K,Thull R.Improvement of mechanical properties of self setting calcium phosphate bone cement mixed with different metal oxides.Mat.-wiss.u.Werkstofftech 2003;34:1036-40.
    19.Yokoyama A,Yamamoto S,Kawasaki T,Development ofcalcium phosphate cement using chitosan and citric acid for bone substitute materials.Biomaterials 2002;23:1091-01.
    20.Doi Y.Development of a new calcium phosphate cement that contains sodium calcium phosphate.Biomaterials 2001;22:847-54.
    21.沈卫,刘昌胜,顾燕芳。磷酸钙骨水泥的水化反应、凝结时间及抗压强度。硅酸盐学报 1998;26:129-35。
    22.刘昌胜,陈飞跃。原料颗粒对磷酸钙骨水泥水化硬化过程的影响。硅酸盐学报 1999;27:139-47。
    23.沈卫,顾燕芳,刘昌胜。磷酸钙骨水泥的制备条件对抗压强度的影响。华东理工大学学报 1997;23:580-4。
    24.Rohanizadeh R,Padrines M,Bouler JM.Apatite precipitation after incubation of biphasic calcium-phosphate ceramic in various solutions:influence of seed species and proteins.J Biomed Mater Res 1998;42:530-9.
    25.Liu CS,Shen W.Effect of crystal seeding on the hydration of calcium phosphate cement.J Mater Sci:Mater Med 1997;8:803-7.
    26.Yang Q,Troczynski T.Influence of apatite seeds on the synthesis of calcium phosphate cement.Biomaterials 2002;23:2751-60.
    27.陈德敏。羟磷灰石骨水泥固化液组成变化对压缩强度的影响。口腔材料器械杂志 1999;8:118-9。
    28.Gburecka U,Jake E,Kerstin S.Ionic modification of calcium phosphate cement viscosity.Part Ⅰ:hypodermic injection and strength improvement of apatite cemen.Biomaterials 2004;25:2187-95.
    29.Khairoun I,Driessens FCM,Boltong MG.Addition of cohesion promotors to calcium phosphate cements.Biomaterials 1999;20:393-8.
    30.Li YW,Leong JCY,and Lu WW.A novel injectable bioactive bone cement for spinal surgery:a developmental and preclinical study.J Biomed Mater Res 2000;52:164-70.
    31.Xu HHK,Quinn JB.Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity.Biomaterials 2002;23: 193-02.
    
    32. Xu HHK, Quinn JB, Takagi S. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 2004;25:1029-37.
    
    33. Bidwell JP, Alvarez M. Suppression of osteoblast function by titanium particles. J Bone Jt Surg 1997;79:107-12.
    
    34. Gbureck U, Spatz K. Improvement of mechanical properties of self setting calcium phosphate bone cement mixed with different metal oxides. Mat.-wiss.u.Werkstofftech 2003 ;34:1036-40.
    
    35. Chow LC. Calcium phosphate cements: Chemistry, properties, and applications. Mat Res Symp Proc 2000;59:27-37.
    
    36. Carey LE, Xu HHK, Simon CG. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005;26:5002-14.
    
    37. Friedman CD, Costantino PD, Takagi S, BoneSource hydroxyapatite cement:a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res (Appl Biomater) 1998;43:428-32.
    
    38. Fernandez E, Sarda S, Hamcerencu M. High-strength apatitic cement by modification with superplasticizers. Biomaterials 2005;26:2289-96.
    
    39. Friberg J, Fernandez E, Sarda S. An experimental approach to the study of the rheology behaviour of synthetic bone calcium phosphate cements. Key Eng Mater 2001 ;22:192-5.
    
    40. Sarda S, Fernandez E, Nilsson M. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. Journal of Biomedical Materials Research 2002;61:653-9.
    
    41. Xu HHK, Takagi S, Quinn JB. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res 2004;68:725-34.
    
    42. Carey LE, Xu HHK, Simon CG. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials 2005;26:5002-14.
    
    43. Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res; 1997;35:273-7.
    
    44. Khairoun I, Boltong MG, Driessens FCM. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci: Mater in Med 1998;9:425-8.
    
    45. Ginebra MP, Rilliard A. Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. J Biomed Mater Res 2001 ;57:113-8.
    
    46. Xu HHK, Quinn JB, Takagi S. Strong and macroporous calcium phosphate cement: Effects of porosity and fiber reinforcement. J Biomed Mater Res 2001;57:457-66.
    47.ASTM Designation D790-03.Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials.ASTM:2003.
    48.Xu HHK,Quinn JB,Takagi S.Processing and properties of strong and non-rigid calcium phosphate cement.Journal of Dental Research 2002;81:219-24.
    49.Gburecka U,Sofia D,Roger T.Factors influencing calcium phosphate cement shelf-life.Biomaterials 2005;26:3691-97.
    50.Hua HC,Chiu CY,Tuan WH.Structural stability of calcium phosphate cement during aging in water.Materials Science and Engineering 2008;18:429-33.
    51.Sarda S,Fernandez E,Nilsson M.Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent.J Biomed Mater Res 2002;28:244-9.
    52.Fernandez E,Gil FJ,Best S.The cement setting reaction in the CaHPO_4-α-Ca_3(PO_4)_2 system:An X-ray diffraction study.J Biomed Mater Res 1998;22:212-18.
    53.Ishnawa K,Asaoka K.Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement.J Biomed Mater Res 1995;29:1537-41.
    54.Barraleta JE,Grovera LM.Ionic modification of calcium phosphate cement viscosity.Part Ⅱ:hypodermic injection and strength improvement of brushite cement.Biomaterials 2004;25:2197-03.
    55.Verlaan JJ,Cumhur F.Anterior spinal column augmentation with injectable bone cements.Biomaterials 2006;27:290-01.
    56.Ishikawa K.Effects of spherical tetracalcium phosphate on injectability and basic properties of apatitic cement.Key Eng Mater 2003;42:369-72.
    57.Baroud G,Cayer E,Bohner M.Rheological characterization of concentrated aqueous β-tricalcium phosphate suspensions:The effect of liquid-to-powder ratio,milling time.and additives.Acta Biomaterial 2005;1:357-63.
    58.闫洪,窦明民,李和平。二氧化锆陶瓷的相变增韧机理和应用。陶瓷学报 2000;21:1123-5。
    59.Sivakumar M,Manjubala I,Preparation of hydroxyapatite/fluoroapatite-zirconia composites using Indian corals for biomedical applications.Materials Letters 2001;50:199-05.
    60.Pioletti DP,Takei H.The effects of calcium phosphate cement particles on osteoblast functions.Biomaterials 2000;21:1103-14.
    61.Bidwell JP,Alvarez M,Feister H.Suppression of osteoblast function by titanium particles.J Bone Jt Surg 1997;79:107-12.
    62.Takahashi K,Fujishiro Y,Yin S.Preparation and compressive strength of α-tricalcium phosphate based cement dispersed with ceramic particles.Ceramics International 2004;30:199-03.
    63.Ginebra MP,Driessens FCM,Planell JA.Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement:a kinetic analysis.Biomaterials 2004;25:3453-62.
    64.Liu CS,Shao HF,Chen FY.Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry.Biomaterials 2006;27:5003-13.
    65.Bohnera M,Baroud G.Injectability of calcium phosphate pastes.Biomaterials 2005;26:1553-63.
    66.Kokubo T.Apatite formation on organic polymers by a biomimetic process.Eur J Solid State Inorg Chem 1995;32:819-27.
    67.Li JG,Liao HH,Sjosrom M.Characterization of calcium phosphate precipitated from simulated body fluid of different buffering capacities.Biomaterials 1997;18:743-7.
    68.Kokubo T,Yamamuro T.Growth bonelike apatite layer on a substrate by a biomimetic process.J Am Ceram Soc 1995;78:1049-53.
    69.Kneser U,Voogd A,Ohnolz J.Fibrin gel-immobilized primaryos teoblas ts in calcium phosphate bone cement:in vivo evaluation withregard to application as injectable biological bone subs titute.Cells Tissues Organs 2005;4:158-169.
    70.Daqing W,Yu Z,Dechang J.Biomimetic apatite deposited on microarc oxidized anatase-based ceramic coating.Ceramics International 2008;34:1139-44.
    71.Lu X,Leng Y.Theoretical analysis of calcium phosphate precipitation in simulated body fluid.Biomaterials 2005;26:1097-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700