碱基修饰核苷与血清白蛋白的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核苷类化合物具有广泛的生物活性,是一类重要的药物及药物中间体,在抗肿瘤、抗病毒和抗艾滋病药物中占有重要的地位,是目前公认的最有抗病毒潜能的一类药物。对天然核苷的修饰和改造可以极大地增强药物的活性,有关研究已成为当今药物化学、分子生物学和制药学的热点课题之一。
     血清白蛋白是动物和人体血浆中重要的存储和转运蛋白,也是血浆中含量最丰富的蛋白质。血清白蛋白可与许多药物广泛结合,药物与蛋白质的作用机制是描述药物动力学性质的一项重要参数。建立药物与蛋白质结合的体外模型,了解二者的结合机理、结合常数、结合部位、结合力、结合距离等问题,对于揭示体内的药物动力学问题、指导合理用药具有一定意义,同时对于进行药物分子设计,新药开发,也具有重要的指导意义。药物与蛋白质的相互作用在药物动力学及临床药理学上的重要意义,使得这一研究领域十分活跃。本文在前人工作的基础上,综合多种实验方法,研究了模拟生理条件下(pH 7.40,离子强度0.10 mol/L),七种碱基修饰核苷:碘苷(IDUR)、5-I-尿苷(5-IUR)、6-巯基嘌呤(6-MP)、巯基鸟嘌呤(6-TG)、氰基乙基-5-氯-尿嘧啶(CECU)、氰基乙基-尿嘧啶(CEU)和5-I-尿嘧啶(5-IU)与血清白蛋白的相互作用,研究内容共分为七部分:
     第一章:简要介绍了核苷及其碱基修饰作用、蛋白质的结构、性质和生理功能;概述了荧光光谱及计算机模拟分子对接模型在小分子和蛋白质相互作用研究中的应用原理和方法。
     第二章:在模拟生理条件下,运用荧光光谱和紫外吸收光谱研究了七种碱基修饰核苷与血清白蛋白的相互作用,确定了碱基修饰核苷对血清白蛋白内源荧光的猝灭机制并计算了不同温度下的猝灭常数。
     第三章:在确定了碱基修饰核苷与血清白蛋白相互作用机理的基础上,运用Lineweaver-Burk方程求出了七种碱基修饰核苷与血清白蛋白在不同温度下的结合常数,根据热力学方程计算出了部分热力学参数,确定了七种碱基修饰核苷与血清白蛋白间的主要作用力类型。
     第四章:基于F?ster能量转移理论和血清白蛋白的荧光光谱与碱基修饰核苷的吸收光谱的重叠光谱积分,计算了碱基修饰核苷在蛋白质上的结合位置即与色氨酸残基之间的距离r。
     第五章:根据光谱研究所得实验结果和数据,运用计算机模拟技术对碱基修饰核苷与人血清白蛋白的相互作用进行了研究,建立了碱基修饰核苷与蛋白质结合的体外模型。
     第六章:讨论了常见离子的存在对结合作用的影响。结果表明:常见离子的存在将导致碱基修饰核苷与血清白蛋白间的结合发生改变。
     第七章:总结了本论文研究得到的创新性研究成果,并对本研究领域的工作进行了展望。
Nucleosides and their derivatives exhibit significant biological activities such as antitumor, antiviral and antibacterial activities. They are a sort of important drugs and pharmaceutic intermediates. It is recognized that nucleosides have the most potential function to restrain virus. Drug activity could be greatly enhanced when the natural nucleoside have been modified and embellished, thus, the study in this field has become a focus in modern medicinal chemistry, molecular biology and medicament subject in recent years.
     Serum albumin, the most abundant protein constituent of blood plasma and serves as a protein storage component, has many important physiological functions. Serum albumin can interact with many endogenous and exogenous substances including many drugs. It is important to study the interaction of drug with the protein because protein-drug binding plays an important role in pharmacology and pharmacodynamics. the study of interaction mechanism between small molecules and protein have very important significance for the pharmacokinetic behavior and the exploitations of new drugs. Establishing the binding model of the drug with serum albumin and investigating the binding mechanism, binding constants, binding sites, binding mode and binding distance, is significant to reveal Pharmacokinetics problems and guide for design and exploit new drugs. The significance of interaction between drugs and serum albumin in the pharmacokinetics and clinical pharmacology lead the study of this aspect to an active study field.
     In this dissertation, fluorescence quenching method in combination with UV and molecular modeling were firstly used to investigate the interaction of seven nucleobase-modified nucleosides with serum albumin under simulated physiological conditions (pH 7.40, ionic strength 0.10 mol/L), they are 5-Iodo-deoxyuridine (IDUR), 5-iodouridine (5-IUR), 6-Mercaptopurine (6-MP), Thioguanine (6-TG), Cyanogen-ethylic-5-chlorinuracil uracil (CECU), Cyanogen-ethylic uracil (CEU), 5-Iodouracil (5-IU) . This dissertation consists of seven chapters.
     Chapter 1: In this chapter, the function of nucleobase-modified nucleoside, the structures, properties and functions of proteins were briefly introduced. The principle and methods of fluorescence techniques and molecular modeling for study the interaction of small molecules with proteins were described.
     Chapter 2: Under the simulated physiological conditions, the interactions were investigated between the seven nucleobase-modified nucleosides and serum albumin utilizing fluorescence quenching method in combination with UV spectrum. The quenching mechanisms of nucleobase-modified nucleosides to serum albumin were determined and the quenching constants at different temperatures were calculated.
     Chapter 3: On the basis of interaction mechanism, the binding constants at the different temperatures were calculated between the seven nucleobase-modified nucleosides and serum albumin by using Lineweaver-Burk equation. The partial thermodynamic parameters were obtained according to thermodynamic equations, and the main acting forces were determined.
     Chapter 4: According to the F?rster energy transfer theory and the integral of the overlap spectra between the fluorescence spectra of serum albumin and the ultra-visible absorption spectra of the nucleobase-modified nucleoside, the binding distances between nucleobase-modified nucleoside and tryptophan residue of serum albumin were calculated.
     Chapter 5: Based on the data and the results of spectroscopic study, the interaction between nucleobase-modified nucleoside and human serum albumin were studied by using molecular modeling technique. The molecular modeling between nucleobase-modified nucleosides and serum albumin were established.
     Chapter 6: The effect of common ions on binding constants was discussed. The results indicated that the binding constants between nucleobase-modified nucleosides and serum albumin were changed in the presence of common ions.
     Chapter 7: The main innovations of this paper were summarized, and the prospects were suggested.
引文
[1] J Q Liu, J N Tian, X Tian, Z D Hu, X G Chen. Interaction of isofraxidin with human serum albumin, Bioorg. Med. Chem., 12 (2004) 469-474.
    [2] 林桂椿, 刘莉, 张亮仁, 等. 8-氯腺苷衍生物的合成及生物活性研究[J].合成化学,2002,10: 405-408.
    [3] L W Chang, F Ronald, Spanjersberg, K Jacobien. 2, 6-disubstituted and 2, 6, 8-trisubstituted purines as adenosine receptor antagonists[J]. J. Med. Mech., 2006, 49 (10) 2861-2867.
    [4] A Hasrat, A Naseem, T Guillaume, et al. Synthesis and biological activities of nucleoside-estradiol conjugates[J]. Bioorg. Med. Chem. Lett., 2006, 16, 317-319.
    [5] 沈仁权, 顾其敏, 李求堂, 方深高, 孙鸿乔. 基础生物化学[M]. 上海: 上海科学技术出版社, 1980.
    [6] 魏述众. 生物化学 [M]. 北京:中国轻工业出版社, 1996.
    [7] F L Cui, Y R Cui, H X Luo, X J Yao, J Fan, Y Lu. Interaction of APT with BSA or HSA [J]. Chin. Sci. Bull., 2006, 51, 2201–2207.
    [8] R H Mcmenamy. Albumin Stucture, function and Uses, Oxford: Dergamon press, 1977.
    [9] U Kragh-Hansen. Molecular aspect of ligand binding to serum albumin [J]. J. Pharmacol. Rev., 1981, 33(1): 17-53.
    [10] 林均材主编, 血液生物化学, 北京: 人民卫生出版社,1988.
    [11] R Garg, S P Gupta, H Gao, M S Babu, A K Debnath, C Hansch. Comparative quantitative Structure-Activity relationship Studied on Anti-HIV Drugs[J]. Chem. Rev., 1999, 99, 3525-3602.
    [12] 何娟.新型核苷类化合物的合成与研究[D]. 郑州:郑州大学,2002.
    [13] T S Mansour, R Storer. Antiviral nucleosides[J]. Current Pharmaceutical Design, 1997, 3, 227-264.
    [14] J Asakuea, M J Robins. Cerium(IV)-mediated halogenation at C-5 of uracil derivatives[J] J. Org. Chem., 1990, 55, 4928-4933.
    [15] R C Larock, Y Wang, X Y Dong, T Yao. synthesis C-5 substituted nacleosides via palladium-catalyzed coupling of dienes and amines[J]. Tetrahedron, 2005, 62, 11427-11439.
    [16] T S Lin, J C Cheng, K Ishiguro, A C Sartorelli. Purine and 8-substituted purine arabinofuranosyl and ribofuranosyl nucleoside derivatives as potential inducers of the differentiation of the friend erythroleukemia[J]. J. Med. Chem., 1985, 28, 1481-1485.
    [17] M Hocek, A Holy, I Votruba, H Dvorakova. Synthesis and cytostatic activity of substituted 6-phenylpurine bases and nucleosides: application of the Suzuki-Miyaura cross-coupling reactions of 6-chloropurine derivatives with phenylboronic acids[J]. J. Med. Chem., 2000, 43, 1817-1825.
    [18] C Pierra, S Olgen, C K Chu. Antiviral activities of enantiomeric 1-[2-(hydroxymethyl)cyclopropyl] methyl nucleosides[J]. Nucleosides, Nucleosides & Nucleic acids, 2000, 19, 252-268.
    [19] G Y Song, V paul, H Choo, C K Chu. Enantiomeric synthesis of D- and L-Cyclopentenyl nucleosides and their antiviral activity against HIV and West Nile Virus[J]. J. Med. Chem., 2001, 44, 3985-3993.
    [20] K Kato, H Hayakawa, H Tanaka, H Kumamoto,S Shindoh, S Shuto, T Miyasaka, A new entry to 2-substituted purine nucleosides based on Lithiation-Mediated stannyl transfer of 6-chloropurine nucleosides[J]. J. Org. Chem., 1997, 62, 6833-6841.
    [21] 朱铿, 李娜, 李克安, 童沈阳. 蛋白质与有机小分子反应机理的研究[M]. 化学试剂, 1999, 21(1): 17-21.
    [22] J X He, D C Carter. Atomic structure and chemistry of human serum albumin[J]. Nature, 1992, 258(16): 209-215.
    [23] D C Carter, J X Ho. Structure of serum albumin [J]. Adv. Protein chem., 1994, 45: 153-203.
    [24] G Colmenarejo. In silico prediction of drug-binding strengths to human serum albumin [J]. Med. Res. Rev., 2003, 23(3): 275-301.
    [25] G Sudlow, D J Birkett, D N Wade. The characterization of two specific drug binding sites on human serum albumin [J]. Mol. Pharmacol., 1975, 11(6): 824-832.
    [26] G Sudlow, D J Birkett, D N Wade. Further characterization of specific drug binding sites on human serum albumin [J]. Mol. Pharmacol., 1976, 12(6): 1052-1061.
    [27] 高敏. 分光光度法测定蛋黄提取物中蛋白质的含量[J]. 光谱实验室,2003,20(2): 284-286.
    [28] 刘典梅, 李舒婷, 赵书林. 钡(II)-偶氮氯膦Ⅲ络合物探针分光光度法测定蛋白质[J]. 分析化学, 2004, 32(2): 187-190.
    [29] 胡庆红, 刘绍璞, 范莉. 蛋白质对铬蓝SE的褪色反应及其分析应用[J]. 分析化学, 2002(1): 42-45.
    [30] A Sulkowska. Interaction of drugs with bovine and human serum albumin[J]. J. Mol. Struct., 2002, 614(1-2): 227-232.
    [31] J H Tang, F Luan, X G Chen. Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling[J]. Bioorg. Med. Chem., 2006, 14(9): 3210-3217.
    [32] 郭宗儒. 药物化学总论 [M]. 北京: 中国医药科技出版社, 1994.
    [33] S D Nelson. Metabolic activation and drug toxicity[J]. J. Med. Chem., 1982, 25(7): 752-765.
    [34] R B Beemen, C Fenselau, W Mogilevsky, G B Odell. Reaction of bilirubin glucuronides with serum albumin[J]. J. Chromatogr. B, 1986, 383(2): 387-392.
    [35] J A Wstt, R G Dickinson. Reactivity of diflunisal acyl glucuronide in human and rat plasma and albumin solutions[J]. Biochem. Pharmacol., 1990, 39(6): 1067-1075.
    [36] B C Sallustio, K M Knights, B J Roberts, R Zacest. In vivo covalent binding of clofibric acid to human plasma proteins and rat liver proteins[J]. Biochem. Pharmacol., 1991, 42(7): 1421-1425.
    [37] S Toshiaki, Y Keishi, S Tomoko, K H Ulrich, S Ayaka, O Masaki. Interaction mechanism between indoxyl sulfate, a tipical uremic toxin bound to site II, and ligands bound to site I of human serum albumin[J]. Pharm. Res., 2001, 18(4): 520-524.
    [38] A M L Zaton, J P Villamor. Study of heterocycle rings binding to human serum albumin[J]. Chem. Biol.Interact., 2000, 124(1): 1-11.
    [39] J P Villamor, A M L Zaton. Data plotting of warfarin binding to human serum albumin[J]. J. Biochem. Biophys. Methods, 2001, 48(1): 33-41.
    [40] M Tanaka, Y Asahi, S Masuda, K Minagawa. Binding position of tolbutamide to human serum albumin[J]. Chem. Pharm. Bull., 1998, 46(5): 817-821.
    [41] D Hage. High-performance affinity chromatography: a powerful tool for studying serum protein binding[J]. J. Chromatogr. B, 2002, 768(1): 3-30.
    [42] M Guo, X Y Su, L Kong, X Li, H F Zou. Characterization of interaction property of multicomponents in ChineseHerb with protein by microdialysis combined with HPLC[J]. Anal. Chim. Acta, 2006, 556(1): 183-188.
    [43] 刘峥, 夏之宁. 光谱法在分子间相互作用中的应用[J]. 激光杂志, 2001, 22(6): 9-11.
    [44] Y J Hu, Y Liu, T Q Sun, A M Bai, J Q Lü, Z P Pi. Binding of anti-inflammatory drug cromolyn sodium to bovine serum albuminInternational[J]. J. Biol. Macromol., 2006, 39(4-5): 280-285
    [45] A Caballero-Quintero, A Pineyro-Lopez, N Waksman. In vitro binding studies of the peroxisomicine A1-BSA and –HSA interactions[J]. Int. J. Pharm., 2001, 229(1-2): 23-28.
    [46] P B Kandagal, S Ashoka, J Seetharamappa, S M T Shaikh, Y Jadegoud, O B Ijare. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach[J]. J. Pharm. Biomed. Anal., 2006, 41(2): 393-399.
    [47] S M T Shaikh, J Seetharamappa, P B Kandagal, S Ashoka. Binding of the bioactive component isothipendyl hydrochloride with bovine serum albumin[J]. J. Mol. Struct., 2006, 786(1): 46-52.
    [48] Y Li, W Y He, Y M Dong, F L Shenga, Z D Hu. Human serum albumin interaction with formononetin studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods[J]. Bioorg. Med. Chem., 2006, 14(5): 1431-1436.
    [49] J Kang, Y Liu, M X Xie, S Li, M Jiang, Y D Wang. Interactions of human serum albumin with chlorogenic acid and ferulic acid[J]. Biochim. Biophys. Acta, 2004, 1674(2): 205-214.
    [50] Y Liu, X Yu, R Zhao, D H Shangguan, Z Y Bo, G Q Liu. Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents[J]. Bios. Bioelectron., 2003, 19(1): 9-19.
    [51] C Galbusera, D D Chen. Molecular interaction in capillary electrophoresis[J]. Curr. Opin. Biotech., 2003, 14(1): 126-130.
    [52] M A Martínez-Gómez, M M Carril-Avilés, S Sagrado, R M Villanueva-Cama?as, M J Medina-Hernández. Characterization of antihistamine–human serum protein interactions by capillary electrophoresis[J]. J. Chromatogr. A, 2007, 1147(2): 261-269.
    [53] R L Rich, Y S N Day, T A Morton, D G Myszka. High-resolution and high throughput protocols for measuring drug/human serum albumin interaction using BIACORE[J]. Anal. Biochem., 2001, 296(2): 197-207.
    [54] G Scatchard, I H Scheiberg, S H Armstrong. Phyisical chemistry of Protein solution. IV. The communation of human serum albumin with chloride Ion[J]. J. Am. Chem. Sco. 1950, 72: 535-540.Interact., 2000, 124(1): 1-11.
    [39] J P Villamor, A M L Zaton. Data plotting of warfarin binding to human serum albumin[J]. J. Biochem. Biophys. Methods, 2001, 48(1): 33-41.
    [40] M Tanaka, Y Asahi, S Masuda, K Minagawa. Binding position of tolbutamide to human serum albumin[J]. Chem. Pharm. Bull., 1998, 46(5): 817-821.
    [41] D Hage. High-performance affinity chromatography: a powerful tool for studying serum protein binding[J]. J. Chromatogr. B, 2002, 768(1): 3-30.
    [42] M Guo, X Y Su, L Kong, X Li, H F Zou. Characterization of interaction property of multicomponents in ChineseHerb with protein by microdialysis combined with HPLC[J]. Anal. Chim. Acta, 2006, 556(1): 183-188.
    [43] 刘峥, 夏之宁. 光谱法在分子间相互作用中的应用[J]. 激光杂志, 2001, 22(6): 9-11.
    [44] Y J Hu, Y Liu, T Q Sun, A M Bai, J Q Lü, Z P Pi. Binding of anti-inflammatory drug cromolyn sodium to bovine serum albuminInternational[J]. J. Biol. Macromol., 2006, 39(4-5): 280-285
    [45] A Caballero-Quintero, A Pineyro-Lopez, N Waksman. In vitro binding studies of the peroxisomicine A1-BSA and –HSA interactions[J]. Int. J. Pharm., 2001, 229(1-2): 23-28.
    [46] P B Kandagal, S Ashoka, J Seetharamappa, S M T Shaikh, Y Jadegoud, O B Ijare. Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach[J]. J. Pharm. Biomed. Anal., 2006, 41(2): 393-399.
    [47] S M T Shaikh, J Seetharamappa, P B Kandagal, S Ashoka. Binding of the bioactive component isothipendyl hydrochloride with bovine serum albumin[J]. J. Mol. Struct., 2006, 786(1): 46-52.
    [48] Y Li, W Y He, Y M Dong, F L Shenga, Z D Hu. Human serum albumin interaction with formononetin studied using fluorescence anisotropy, FT-IR spectroscopy, and molecular modeling methods[J]. Bioorg. Med. Chem., 2006, 14(5): 1431-1436.
    [49] J Kang, Y Liu, M X Xie, S Li, M Jiang, Y D Wang. Interactions of human serum albumin with chlorogenic acid and ferulic acid[J]. Biochim. Biophys. Acta, 2004, 1674(2): 205-214.
    [50] Y Liu, X Yu, R Zhao, D H Shangguan, Z Y Bo, G Q Liu. Quartz crystal biosensor for real-time monitoring of molecular recognition between protein and small molecular medicinal agents[J]. Bios. Bioelectron., 2003, 19(1): 9-19.
    [51] C Galbusera, D D Chen. Molecular interaction in capillary electrophoresis[J]. Curr. Opin. Biotech., 2003, 14(1): 126-130.
    [52] M A Martínez-Gómez, M M Carril-Avilés, S Sagrado, R M Villanueva-Cama?as, M J Medina-Hernández. Characterization of antihistamine–human serum protein interactions by capillary electrophoresis[J]. J. Chromatogr. A, 2007, 1147(2): 261-269.
    [53] R L Rich, Y S N Day, T A Morton, D G Myszka. High-resolution and high throughput protocols for measuring drug/human serum albumin interaction using BIACORE[J]. Anal. Biochem., 2001, 296(2): 197-207.
    [54] G Scatchard, I H Scheiberg, S H Armstrong. Phyisical chemistry of Protein solution. IV. The communation of human serum albumin with chloride Ion[J]. J. Am. Chem. Sco. 1950, 72: 535-540.
    [71] J Ruso, D Attwood, M Garcya, G proeto, F Sarmiento, P Taboada, L M Varela, V Mosquera. Interaction of amphiphilic propranolol hydrochloride with haemoglobin and albumin in aqueous solution[J]. Langmuir, 2000, 16(26): 10449-10455.
    [72] 耿信笃, 白泉, 王超展. 蛋白质折叠液相色谱法[M]. 北京: 科学出版社,2006.
    [73] 陶慰孙, 李惟, 姜涌明. 蛋白质分子基础(第二版)[M]. 北京: 高等教育出版社,1995.
    [74] 李东辉, 杨黄浩, 郑洪, 陈宾, 李秋影, 许金钩. 用四磺基铝酞菁直接测定血清中白蛋白[J].分析化学, 1999, 27(9): 1018-1021.
    [75] H Liu, B Y Cho, I S Krull, S A Cohen. Homogeneous fluorescent derivatization of large proteins[J]. J. Chromatogr. A, 2001, 927(1): 77-89.
    [76] S F Liu, J H Yang, X Wu, F Wang, F Wang, Z Jia. Fluorometric determination of proteins using the yttrium(III)–sodium lauryl sulfate–rutin–protein system[J]. J. Lumin., 2006, 117(2): 217-222.
    [77] C Xu, A P Zhang, W P Liu. Binding of phenthoate to bovine serum albumin and reduced inhibition on acetylcholinesterase[J]. Pestic. Biochem. Phys., 2007, 88(2): 176-180.
    [78] H D Bian, M Li, Q Yu, Z F Chen, J N Tian, H Liang. Study of the interaction of artemisinin with bovine serum albumin[J]. Int. J. Biol. Macromol. 2006, 39(4-5): 291-297.
    [79] Y L Wei, J Q Li, C Dong, S M Shuang, D S Liu, C W Huie. Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy[J]. Talanta, 2006, 70(2): 377-382.
    [80] Y J Hu, Y Liu, Z B Pi, S S Qu. Interaction of cromolyn sodium with human serum albumin: A fluorescence quenching study[J]. Bioorg. Med. Chem., 2005, 13(24): 6609-6614.
    [81] J N Tian, J Q Liu, J P Xie, X J Yao, Z D hu, X G Chen. Binding of wogonin to human serum albumin: a common binding site of wogonin in subdomain IIA[J]. J. Photoch. Photobio. B, 2004, 74(1): 39-45.
    [82] N Seedher, S Bhatia. Reversible binding of celecoxib and valdecoxib with human serum albumin using fluorescence spectroscopic technique[J]. Pharm. Res., 2006, 54(2): 77-84.
    [83] W Y He, Y Li, J N Tian, H X Liu, Z D Hu, X G Chen. Spectroscopic studies on binding of shikonin to human serum albumin[J]. J. Photoch. Photobio. A, 2005, 174(1): 53-61.
    [84] S Surs, L D Rabbani, L Libman. Fluorescence studies of native and modified neurophysins. Effect of piptides and pH[J]. Biochem., 1979, 18(6): 1026-1035.
    [85] B Berry, W K Rodeny, R W Miriam. Correction for light absorption in fluorescence studies of protein ligand interactions[J]. Anal. Biochem., 1983, 132(2): 353-361.
    [86] 徐岩, 黄汉国, 沈含熙. 喹诺酮类药物对人血清白蛋白的荧光猝灭研究[J]. 分析化学, 1998, 26(12): 1494-1497.
    [87] J R Lakowica. Principles of fluorescence spectroscopy 2nd[M]. New York: Kluwer/plenum, 1999.
    [88] 陈国珍, 黄贤智, 郑朱梓, 许金钩, 王尊本. 荧光分析法(第二版)[M]. 北京: 科学出版社, 1990.
    [89] M R Eftink, C A Ghiron. Does the fluorescence quencher acrylamide bind to proteins[J]. Biochim. Biophys. Acta, 1987, 916(3): 343-349.
    [90] P Dobryszycki, M Rymarczuk, G Bulaj, M Kochman. Effect of acrylamide on aldolase structure. I.Induction of intermediate states[J]. Biochim. Biophys. Acta, 1999, 1431(2): 338-350.
    [91] 王守业, 余华明, 陈真龙, 张祖德, 吴双顶, 刘清亮. 皖南尖吻蝮蛇蛇毒纤溶组分中结合态钙的生化特性[J]. 生物化学与生物物理学报,1998, 30(3): 303-306.
    [92] 陈真龙, 张利民, 丁兰, 余华明, 赵大庆, 王守业, 刘清亮. 皖南尖吻蝮蛇(Agkistrodon acutus)蛇毒出血毒素III(AaH III)的荧光淬灭研究[J]. 化学物理学报, 1998, 11(5): 465-470.
    [93] 张保林, 王文清, 白风莲. 蒽醌及黄酮类化合物与人血清白蛋白的结合反应研究[J].高等学校化学学报, 1994, 15(3): 373-378.
    [94] 易平贵, 商志才, 俞庆森, 邵爽, 林瑞森. 丝裂霉素C与牛血清白蛋白结合作用的研究[J]. 化学学报, 2000, 58(12): 1649-1653.
    [95] 朱铿, 童沈阳. 吡哌酸、氟哌酸与 HSA, IgG 相互作用的研究[J]. 化学学报, 1997, 55(4): 405-411.
    [96] G Scatchard. The attractions of proteins for small molecules and ions[J]. Ann. N.Y. Acad. Sci., 1949, 51(4): 660-672.
    [97] M H Rahman, T Maruyama, T Okada, K Yamasaki. Study of interaction of carprofen and its enantiomers with human serum albumin-I mechanism of binding studied by dialysis and spectroscopic methods[J]. Biochem. Pharm., 1993, 46(10): 1721-1731.
    [98] B Sengupta, P K Sengupta. The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study[J]. Biochem. Bioph. Res. Co., 2002, 299(3): 400-403.
    [99] 张勇, 张贵珠, 王月梅, 鲁继新. 光谱法研究丝裂霉素、血清蛋白以及金属离子间的相互作用[J]. 分析科学学报,2000, 16(6): 445-448.
    [100] 魏晓芳, 刘会洲. Triton X-100 与牛血清白蛋白的相互作用[J]. 分析化学,2000, 28(6): 699-701.
    [101] J N Tian, J Q Liu, J Y Zhang, Z D Hu, X G Chen. Fluorescence studies on the interactions of barbaloin with bovine serum albumin [J]. Chem. Pharm. Bull., 2003, 51(5): 579-582.
    [102] 聂丽华, 赵慧春, 王学赋, 王旭. 荧光法研究氟罗沙星与牛血清白蛋白的相互作用[J]. 北京师范大学学报(自然科学版),2001, 37(1): 87-91.
    [103] C Q Jiang, M X Gao, J X He. Study of the interaction between terazosin and serum albumin synchronous fluorescence determination of terazosin[J]. Anal. Chim. Acta, 2002, 452(2): 185-189.
    [104] A Su?kowska. Interaction of drugs with bovine and human serum albumin[J]. J. Mol. Struct., 2002, 614(1-2): 227-232.
    [105] J Q Liu, J N Tian, J Y Zhang, Z D Hu, X G Chen. Interaction of magnolol. with bovine serum albumin: a fluorescence-quenching study[J]. Anal. Bioanal. Chem., 2003, 376(6): 864-867.
    [106] P D Ross, S Subramanian. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochem., 1981, 20(11): 3096-3102.
    [107] H Aki, M Yamamoto. Thermodynamics of the binding of phenothiazines to human plasma, human serum albumin and alpha 1-acid glycoprotein: a calorimetric study[J]. J. Pharm. Pharmacol. 1989, 41(10): 674-679.
    [108] P Gilli, V Ferretti, G Gilli. Enthalpy-entropy compensation in drug-receptor binding[J]. J. Phys.Chem., 1994, 98(5): 1515-1518.
    [109] J Gonzalez, J Zmenoz, C I Jacquotteh. Fluorescence quenching studies on binding fluoreno-9-spiro-oxazolidinedione to human serum albumin[J]. Chem. Biol. Interact., 1992, 84(3): 221-228.
    [110] Otagiri, K Masuda, T Imai, Y Imamura, M Yamasaki. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques[J]. Biochem. Pharmacol., 1989, 38(1): 1-7.
    [111] G Sudlow, D J Birkett, D N Wade. The characterization of two specific drug binding sites on human serum albumin[J]. Mol. Pahrmacol., 1975, 11(6): 824-832.
    [112] G Sudlow, D J Birkett, D N Wade. Further characterization of specific drug binding sites on human serum albumin[J]. Mol. Pahrmacol., 1976, 12(6): 1052-1061.
    [113] T F?rster. In: O. Sinanoglu (Ed), Modern Quantum Chemistry, Vol.3, New York: Academic Press, 1996.
    [114] E S Souza, I Y Hirata, L Juliano, A S Ito. End-to-end distance distribution in bradykinin observed by F?rster resonance energy transfer[J]. Biochim. Biophys. Acta, 2000, 1471(2): 251-261.
    [115] S Y Wang, Q L Liu, Z L Chen, Y H Zhang. Fluorescent studies on the binding-Ca2+ in fibrinolytic principle separated from snake venom[J]. Spectrochim. Acta Part A, 2000, 56(9): 1843-1849.
    [116] W D Jr Horrocks, W E Collier. Lanthanide ion luminescence probes measurement of distance between intrinsic protein fluorophores and bound metal ions quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in the calcium-binding protein parvalbumin[J]. J. Am. Chem. Soc., 1981, 103(10): 2856-2862.
    [117] F L Cui, Y R Cui, H X Luo, X J Yao, J Fan, Y Lu. The interaction between N-n-undecyl-N'- (sodium p-aminobenzenesulfonate) thiourea and serum albumin studied using spectroscopies and molecular modeling method[J]. Biopolymers, 2006, 83(2): 170-181.
    [118] F L Cui, J L Wang, Y R Cui, J P Li. Fluorescent investigation of the interactions between N-(p-chlorophenyl)-N′-(1-naphthyl) thiourea and serum albumin: Synchronous fluorescence determination of serum albumin[J]. Anal. Chim. Acta, 2006, 571(2): 175-183.
    [119] F L Cui, J L Wang, Y R Cui, J P Li, Y Lu, J Fan, X J Yao. The binding of 3-(p-bromophenyl)-5-methyl-thiohydantoin with human serum albumin: investigation by fluorescence spectroscopy and molecular model[J]. J. Lumin., 2007, 127 (2),409–415.
    [120] F L Cui , J L Wang , Y R Cui , J P Li , Investigation of the Interaction between N,N'-di(4-chlorophenyl)thiourea and Human serum albumin by Fluorescence Spectroscopy: Synchronous Fluorescence Determination of Human serum albumin[J]. J. Chin. Chem. Soc., 2007, 54 (2), 533-539.
    [121] F L cui, J L Wang, X J Yao, L Wang, Q Z Zhang, G R Qu. Spectroscopic and Molecular Modeling Studies of the Interaction between Cytidine and Human Serum Albumin and Its Analytical Application[J]. Biopolymers, 2007, 87 (2-3), 174-182.
    [122] F L Cui, J L Wang, Y R Cui, X J Yao, G R Qu, Y Lu. Investigation of interaction between humanChem., 1994, 98(5): 1515-1518.
    [109] J Gonzalez, J Zmenoz, C I Jacquotteh. Fluorescence quenching studies on binding fluoreno-9-spiro-oxazolidinedione to human serum albumin[J]. Chem. Biol. Interact., 1992, 84(3): 221-228.
    [110] Otagiri, K Masuda, T Imai, Y Imamura, M Yamasaki. Binding of pirprofen to human serum albumin studied by dialysis and spectroscopy techniques[J]. Biochem. Pharmacol., 1989, 38(1): 1-7.
    [111] G Sudlow, D J Birkett, D N Wade. The characterization of two specific drug binding sites on human serum albumin[J]. Mol. Pahrmacol., 1975, 11(6): 824-832.
    [112] G Sudlow, D J Birkett, D N Wade. Further characterization of specific drug binding sites on human serum albumin[J]. Mol. Pahrmacol., 1976, 12(6): 1052-1061.
    [113] T F?rster. In: O. Sinanoglu (Ed), Modern Quantum Chemistry, Vol.3, New York: Academic Press, 1996.
    [114] E S Souza, I Y Hirata, L Juliano, A S Ito. End-to-end distance distribution in bradykinin observed by F?rster resonance energy transfer[J]. Biochim. Biophys. Acta, 2000, 1471(2): 251-261.
    [115] S Y Wang, Q L Liu, Z L Chen, Y H Zhang. Fluorescent studies on the binding-Ca2+ in fibrinolytic principle separated from snake venom[J]. Spectrochim. Acta Part A, 2000, 56(9): 1843-1849.
    [116] W D Jr Horrocks, W E Collier. Lanthanide ion luminescence probes measurement of distance between intrinsic protein fluorophores and bound metal ions quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in the calcium-binding protein parvalbumin[J]. J. Am. Chem. Soc., 1981, 103(10): 2856-2862.
    [117] F L Cui, Y R Cui, H X Luo, X J Yao, J Fan, Y Lu. The interaction between N-n-undecyl-N'- (sodium p-aminobenzenesulfonate) thiourea and serum albumin studied using spectroscopies and molecular modeling method[J]. Biopolymers, 2006, 83(2): 170-181.
    [118] F L Cui, J L Wang, Y R Cui, J P Li. Fluorescent investigation of the interactions between N-(p-chlorophenyl)-N′-(1-naphthyl) thiourea and serum albumin: Synchronous fluorescence determination of serum albumin[J]. Anal. Chim. Acta, 2006, 571(2): 175-183.
    [119] F L Cui, J L Wang, Y R Cui, J P Li, Y Lu, J Fan, X J Yao. The binding of 3-(p-bromophenyl)-5-methyl-thiohydantoin with human serum albumin: investigation by fluorescence spectroscopy and molecular model[J]. J. Lumin., 2007, 127 (2),409–415.
    [120] F L Cui , J L Wang , Y R Cui , J P Li , Investigation of the Interaction between N,N'-di(4-chlorophenyl)thiourea and Human serum albumin by Fluorescence Spectroscopy: Synchronous Fluorescence Determination of Human serum albumin[J]. J. Chin. Chem. Soc., 2007, 54 (2), 533-539.
    [121] F L cui, J L Wang, X J Yao, L Wang, Q Z Zhang, G R Qu. Spectroscopic and Molecular Modeling Studies of the Interaction between Cytidine and Human Serum Albumin and Its Analytical Application[J]. Biopolymers, 2007, 87 (2-3), 174-182.
    [122] F L Cui, J L Wang, Y R Cui, X J Yao, G R Qu, Y Lu. Investigation of interaction between human4225-4229.
    [138] M Saitoh, K Nagai, K Nakagawa, T Yamamura, S Yamamoto, T Nishizaki. Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activaton of AMP-activated protein kinas[J]. Biochem. Pharmaco., 2004, 67, 2005-2011.
    [139] I H Zwain, P Amato. cAMP-INDUCED APOPTOSIS IN GRANULOSA CELLS IS ASSOCIATED WITH UP-REGULATION OF P53 AND BAX AND DOWN-REGULATION OF CLUSTERIN[J]. Endocr. Res., 2001, 27, 233-249.
    [140] C P Barry, S E Lind. Adenosine-mediated Killing of Cultured Epithelial Cancer Cells[J]. Cancer Res., 2000, 60 (7), 1887-1894.
    [141] S M Schrier, E W V Tilbury, H V Meulen, A P Ijzerman, G J Mulder, J F Nagelkerke. Extracellular adenosine-induced apoptosis in mouse neuroblastoma cells studies on involvement of adenosine receptors and adenosine uptake[J]. Biochem. Pharmacol., 2001, 61, 417-425.
    [142] D C Carter, J X Ho. Advances in protein Chemistry (Schumaker, V.N., Ed.) [M]. San Diego: Academic press, CA, 1994, 45.
    [143] S Curry, H Mandelkow, P Brick, N Franks. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites[J]. Nat. Struct. Biol., 1998, 5(9): 827-835.
    [144] H P Rang, M M Dale, J Ritter. Molecular Pharmacology (3rd ed.)[M]. New York: Churchill Livingstone, 1995.
    [145] H G Mahesha1, S A Singh, N Srinivasan, A G A Rao. A spectroscopic study of the interaction of isoflavones with human serum albumin[J]. FEBS J., 2006, 273(3): 451-467.
    [146] J C Li, N Li, Q H Wu, Z Wang, J J Ma, C Wang, L J Zhang. Study on the interaction between clozapine and bovine serum albumin[J]. J. Mol. Struct., 2007, 833(1-3): 184-188.
    [147] S M T Shaikh, J Seetharamappa, S Ashoka, P B Kandagal. A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods[J]. Dyes. Pigments, 2007, 73(2): 211-216.
    [148] P B Kandagal, J Seetharamappa, S Ashoka, S M T Shaikh, D H Manjunatha. Study of the interaction between doxepin hydrochloride and bovine serum albumin by spectroscopic techniques[J]. Int. J. Biol. Macromol., 2006, 39(4-5): 234-239.
    [149] Y S Wang, L Feng, C Q Jiang. Fluorimetric study of the interaction between human serum albumin and quinolones–terbium complex and its application[J]. Spectrochim. Acta Part A, 2005, 61(13-14): 2909-2914.
    [150]张晓威, 赵凤林, 李克安. 环丙沙星与牛血清白蛋白相互作用研究[J]. 高等学校化学学报, 1999, 20(7): 1063-1067.
    [151] J R Lakowica, G Weber. Quenching of fluorescence by oxygen-probe for structural luctuations in macromolecules[J]. Biochem., 1973, 12(21): 4161-4170.
    [152] W R Ware. Oxygen quenching of fluorescence in solution-an experimental study of diffusionprocess[J]. J. Phys. Chem., 1962, 66(3): 455-458.
    [153] M M Yang, P Yang, L W Zhang. Study on interaction of caffeic acid series medicine and albumin by fluorescence method[J]. Chin. Sci. Bull., 1994, 39(9): 734-739.
    [154] G Neméthy, H A. Scheraga. The structure of water and hydrophobic bonding in protein. III The thermodynamic properties of hydrophobic bonds in proteins[J]. J. Phys. Chem., 1962, 66(10): 1773–1789.
    [155] S N Timasheff, Thermodynamic of protein interactions[M]. In: Proteins of Biological Fluids (Ed. Peeters H.), Oxford: Pergamon Press, 1972: 511-519.
    [156] I D Kuntz, E C Meng, B K Shoichet. Structure-based strategies for drug design and discovery[J]. Acc. Chem. Res., 1994, 27, 117-123.
    [157] I D Kuntz. Structure-based strategies for drug design and discovery[J]. Science, 1992, 257: 1078-1082.
    [158] S Baroni, M Mattu, A Vannini, R Cipollone, S Aime, P Ascenzi, M Fasano. Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin A spectroscopic study[J]. Eur. J. Biochem., 2001, 268: 6214-6220.
    [159] F Zsila, B Zsolt, S Miklos. Molecular basis of the cotton effects induced by the binding of curcumin to human serum albumin[J]. Tetrahedron: asymmetry, 2003, 14: 2433-2444.
    [160] I Petitpas, A A Bhattacharya, S Twine, M East, S Curry. Crystal structure analysis of warfarin binding to human serum albumin[J]. J. Bio. Chem., 2001, 276(25): 22804-22809.
    [161] SYBYL Software, Version 6.9.1, St. Louis, Tripos Associates Inc, 2003.
    [162] 宋琤. Ag(Ⅰ)、Au(Ⅲ)与血清白蛋白的结合平衡,Cu(Ⅱ)和 Zn(Ⅱ)离子与牛血清白蛋白结合竞争研究[D]. 广西师范大学, 2002.
    [163] H Liang, J Huang, C Q Tu, M Zhang, Y Q Zhou, P W Shen. The subsequent effect of interaction between Co(2+) and human serum albumin or bovine serum albumin[J]. J. Inorg. Biochem., 2001, 85(2-3): 167-171.
    [164] S Aime, S Canton, S G Crich, E Terreno. 1H and 17O relaxometric investigations of the binding of Mn(II) ion to human serum albumin[J]. Magn. Reson. Chem., 2002, 40(1): 41-48.
    [165] H Sun, K Y Szeto. Binding of bismuth to serum proteins: implication for targets of Bi(III) in blood plasma[J]. J. Inorg. Biochem., 2003, 94(1-2): 114-120.
    [166] F Q Cheng, Y P Wang, Z P Li, C Dong. Fluorescence study on the interaction of human serum albumin with bromsulphalein[J]. Spectrochim. Acta Part A, 2006, 65(5): 1144-1147.
    [167] P B Kandagal, S Ashoka, J Seetharamappa, V Vani, S M T Shaikh. Study of the interaction between doxepin and human serum albumin by spectroscopic methods[J]. J. Photochem. Photobiol. A: Chem., 2006, 179(1-2): 161-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700