微通道反应器内精细有机合成反应及混合规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
安全、清洁、高效、节能和可持续等清洁生产是21世纪化学工业发展的一个趋势。采用微米级反应器进行化工反应的技术,简称微化工技术(Microchemical Technology),它是一门通过过程强化来实现绿色合成的新技术。相对于传统的批次反应工艺,其具有快速混合、高效传热、窄的停留时间分布、重复性好、系统响应迅速、便于自动化控制、几乎无放大效应及高安全性能等优势,已成为科研院校和企业界共同的研究热点之一。论文以微化工技术在精细有机合成中应用为目标,设计聚四氟乙烯、玻璃、不锈钢等材质的微通道反应器,研究了偶合、氧化溴化、硝化等典型的精细有机合成反应及微尺度下的物料微混合规律。
     以C.I.酸性红54为模型化合物,研究聚四氟乙烯毛细管式微通道反应器内合成偶氮染料的偶合反应过程,考察反应物流速、停留时间、管道内径和反应温度等对反应的影响,得到较优工艺条件为:在室温下进行(20℃)下,n(重氮组份):n(偶合组份)=1:1,流速v=0.18m/s,停留时间τ=11.1ls,管道内径D=1.0mm,产率达96.80%。同时,参考C.I.酸性红54较优工艺条件,固定流速v=0.18m/s,管道内径D=1.0mm,研究微通道反应器中C.I.酸性黄23、C.I.酸性紫1、C.I.活性红35、C.I.活性黄16等不同色系的酸性偶氮染料和活性偶氮染料的合成,其中酸性系列染料产率达95%以上,活性染料产率达80%以上。
     以甲苯为模型化合物,H202-HBr为溴化体系,研究聚四氟乙烯毛细管和玻璃管式微通道反应器中氧化溴化反应,考察物料配比、停留时间、光照强度等对反应的影响,在聚四氟乙烯毛细管微通道反应系统内,较优工艺条件为n甲苯:nH202:nHBr=2:1.5:1,100W白炽灯光照,停留时间5min,溴原子利用率达66.5%,苄溴的选择性达93.1%;在玻璃微通道反应器中,较优工艺条件为n甲苯:nH202;nHBr=2:1.5:1,150W白炽灯光照,停留时间5min,溴原子利用率达93.6%,苄溴的选择性达94.0%。同时,参考甲苯氧化溴化较优工艺,对均三甲苯、间二甲苯、间氯甲苯、间硝基甲苯、3,4-二氯甲苯等其它取代甲苯的氧化溴化进行探索性研究,结果均取得较好溴原子利用率和选择性,表明HBr-H2O2体系的氧化溴化反应具潜在的应用价值。
     以氯苯为模型化合物,硝硫混酸为硝化体系,研究不锈钢模块式微通道反应器中硝化反应过程,考察氯苯与硝酸摩尔比、体积流速、反应温度等对反应的影响,得到较优工艺条件为:n氯苯:n硝酸=1:1.3,n硝酸:n硫酸=1:3,反应温度80℃,物料氯苯体积流速0.5mL/min,转化率达74.8%,n(邻硝基氯苯):n(对硝基氯苯)=0.56:1。同时,参考氯苯硝化较优工艺,对其它芳烃的硝化反应进行了研究,结果表明与常规反应器相比,邻对比有明显提高,且副产物相对较少,同时微通道反应器的时空转化率比常规反应器约高4个数量级。
     以C.I.酸性红54为模型化合物,Reynolds数Re和离集指数Xs为数学模型,研究物料在聚四氟乙烯毛细管式微通道反应器的微混合规律,考察流速、内径等对微观混合的影响,结果表明流速对Reynolds数Re和离集指数Xs的影响存在一个临界值,超过这个值后,流速影响不再显著;同时,流速在最优条件下,以及内径在一定范围内,内径对离集指数Xs的影响较小,并趋于稳定值,而Reynolds数Re均大于临界数Rec。
     通过对微通道反应器内偶合、氧化溴化、硝化等典型精细有机合成反应及混合规律的研究,表明微反应技术不仅可以强化过程,大大提高生产效率,还可以提高工艺的稳定性、安全性、操作性及环境友好性等。由此,微反应技术是实现精细有机合成过程高效、节能、安全、清洁的有效手段,可为精细化工产业的绿色化可持续发展提供重要的技术基础。
Safe, clean, efficient, energy-saving and continuous production will be the trend of the development of chemical industry in the21st Century. Microchemical technology is a novel technology using microreactor in chemical reactions, to realize green synthesis through strengthening process. Compared with traditional batch reactor, microchemical technology has many advantages, such as high speed mixing, efficient heat transfer, short residence time, good repeatability, quick response, facilitate automation, almost no amplification effect and high safety performance, which makes it becomes one of the research hotspots in Chemical Engineering. The PTFE microreactor, glass microreactor and stainless steel microreactor were design and made. The reactions for synthesis of fine chemicals and mixing law of process in microreactor were studied in the dissertation.
     A model study was initiated with C.I. acid red54as substrate. The coupling reaction for synthesis of azo dyes was studied in a microchannel reactor. The effects of the reaction flow rate, the residence time, the pipe inner diameter and the reaction temperature on the single-pass conversion and selectivity were evaluated. The optimum process parameters were selected as follows:at room temperature, molar ratio of diazo components to coupling components1:1, flow rate0.18m/s, residence time11.11s, tube diameter1.0mm. The yield reached to96.80%. These conditions also applied in the synthesis of C.I. Acid Yellow23, C.I. Acid purple1, C.I. reactive red35, C.I. Reactive yellow16. The products yield of acidic series is up to95%, and up to80%for reactive dyes.
     A model study was initiated with toluene as substrate. The oxidative bromination of toluene derivatives with HBr-H2O2as brominating agent was studied in PTFE tube and glass tube microchannel reactors. The effects of molar ratio, residence time, and light intensity on the single-pass conversion and selectivity were evaluated. The optimum process parameters in PTFE-microreactor were selected as follows:molar ratio of toluene to H2O2to HBr2:1.5:1, incandescent light100W, residence time5minutes. The utilization rate of bromine atom reached to66.5%, target product's selectivity reached to93.1%. For glass-microreactor, the optimum conditions were selected as follows:molar ratio of toluene to H2O2to HBr2:1.5:1, incandescent light150W, residence time5minutes. The utilization rate of bromine atom reached to93.6%, target product's selectivity reached to94.0%. The optimum reaction conditions were also applied to oxidative bromination of other alkylbenzenes with getting a better utilization rate of bromine atom and selectivity. The result showed that this process and HBr-H2O2system has a great value of usage.
     A model study was initiated with chlorobenzene as substrate. The nitration of aromatics with nitrate-sulfuric acid as nitrating agent as nitrating agent was studied in stainless steel microchannel reactor. The effects of molar ratio, volume flow rate, reaction temperature on the single-pass conversion and selectivity were evaluated. The optimum process parameters in PTFE-microreactor were selected as follows:the molar ratio of chlorobenzene to nitric acid1:1.3, the ratio of nitric acid to sulfuric acid1:3, reaction temperature80℃, chlorobenzene's volume flow rate0.5mL/min. The single batch conversion rate of chlorobenzene reached to74.8%. The ratio of o-nitrocholobenzene to p-nitrocholobenzene was about0.56. The optimum reaction conditions were also applied in other aromatic compounds. The results showed that it was significantly improved for the ratio of o-nitrocholobenzene to p-nitrocholobenzene and decreased for byproducts. The space-time conversion (STC) in microreactor was about3.08×104times than that in conventional reactor.
     A model study was initiated with C.I. acid red54as substrate. Reynolds (Re) and Segregation index (Xs) as mathematical model, the micro-mixing was studied. The effects of flow rate, inside diameter on the micro-mixing were evaluated. The results showed that the flow rate effecting on Re and Xs existed a critical value, when the number exceeded this value, the flow rate effect was no longer significant. Under the optimum flow rate, inside diameter had little influence on Xs and tends to a stable value. At the same time, any one of Reynolds (Re) was greater than critical Reynolds (Rec).
     In summary, though the study of typical fine organic reaction, such as coupling, oxidative bromination, nitration reaction and its mixing law, it was get a conclusion that micro-technology could not only improved the production efficiency greatly, but also increased the stability, safety, operability of the process. The microreactor technology is an effective method to realize safe, clean, efficient, energy-saving and continuous production for fine organic synthesis. Thus, the research of application basis for microreactor technology can lay a theoretical basis for industrialized efficient and green production.
引文
[1]陈光文,袁权.微化工技术[J].化工学报,2003,54(4):427-439.
    [2]李金鹰,王勋章,赵英翠,陆书来,刘长清.微化工技术的研究与应用[J].化工科技,2011,19(1):72-76.
    [3]Schubert K. Chem Ing Tech,1998,27(10):124-127
    [4]Ehfreld W, Hessel V, Lowe H. Microreactors:New Technology for Modern Chemistry [M]. Weinheim:Willy-VCH,2000.
    [5]Tuckerman D B, Pease R F W. High Performance Heat Sinking for VLSI[J].IEEE Electron Device Lett,1981,Edl-2(5):126-129.
    [6]Swift G W, Migliori A, Wheatley T C. Micro Channel Cross Flow Fluid Heat Exchanger and Method for Its Fabrication [P]. US Patent:4516632,1985.
    [7]韦广梅,曾尚红.微反应器的发展现状[J].世界科技研究与发展,2005,27(5):45-50.
    [8]DeMello A J. Control and Detection of Chemical Reactions in Microfluidic Systems [J]. Nature,442(7101):394-402.
    [9]Schneider M A, Stoessel R. Determination of the Kinetic Parameters of Fast Exothermal Reactions Using a Novel Ntis-based calorimeter [J]. Chem. Eng. J.,2005,115(1/2):73-83.
    [10]Janicke M T, Kestenbaum H, Hagendorf U, et al. The Controlled Oxidation of Hydro-gen from an Explosive Mixture of Gases Using a Microstructured Reactor/Heat Exchanger and Pt/Al2O3 Catalyst [J]. J Catalysis,2000,191(12):282-293.
    [11]Pieters B, Andrieux G, Eloy J C. The Impact of Microtechnologies on Chemical and Pharmaceutical Production Processes [J]. Chem. Eng. Technol.,2007,30(3):407-409
    [12]Hessel V, Lowe H. Organic Synthesis with Microstructured Reactors [J]. Chem. Eng. Technol.,2005,28(3):267-284.
    [13]Brivio M, Verboom W, Reinhoudt D N. Miniaturized Continuous Flow Reaction Vessels: Influence on Chemical Reactions [J]. Lab on a Chip,2006,6(3):329-344.
    [14]Raghunath H, Adeniyi L, Reddy D. Nitration of Toluene in a Microreactor [J]. Catal. Today, 125(1-2):74-80.
    [15]Chambers R D, Fox M A, Sandford G. Elemental fluorine:Part 20. Direct Fluorination of Deactivated Aromatic Systems Using Microreactor Techniques [J]. Journal of Fluorine Chemistry, 128(1):29-33.
    [16]Kobayashi J, Mori Y, Okamoto K. A Microfluidic Device for Conducting Gas-liquid-solid Hydrogenation Reactions [J]. Science,304(5675):1305-1308.
    [17]Hemantkumar R S, Jason G K, Klavs F J. Multistep Continuous-Flow Microchemical Synthesis Involving Multiple Reactions and Separations[J]. Angewandte Chemie,2007,119(30): 5806-5810.
    [18]Wootton R C R, Fortt R, de Mello A J. A Microfabricated Nanoreactor for Safe, Continuous Generation and Use of Singlet Oxygen [J]. Org. Proc. Res. Dev.,2002,6 (2):187-189
    [19]McGovern S, Gadre H, Pai C S, Mansfield W, Pau S, Besser R S. Catalyst-Trap Microreactor for Hydrogenation of a Pharmaceutical Intermediate. Proceedings of the 2006 Spring Meeting (2006), American Institute of Chemical Engineers.
    [20]Fukuyama T, Shinmen M, Nishitani S. A Copper-free Sonogashira Coupling Reaction in Ionic Liquids and Its Application to a Microflow System for Efficient Catalyst Recycling [J]. Org. Lett., 2002,4(10):1691-1694.
    [21]Liu S F, Fukuyama T, Sato M. Continuous Microflow Synthesis of Butyl Cinnamate by a Mizoroki-Heck Reaction Using a Low-viscosity Ionic Liquid as the Recycling Reaction Medium [J]. Org. Process Res. Dev.2004,8(3):477-481.
    [22]Nieuwland P J, Koch K, van Hest J C M, Rutjes F P J T. Multi-Phase Two-Step Synthesis in Microreactors. Proceedings of the 10th International Conference on Miniaturised Systems for Chemistry and Life Sciences (2006), Tokyo, JAPAN,870-872.
    [23]Matsushita Y, Kumada S, Wakabayashi K. Photocatalytic Reduction in Microreactors [J]. Chem. Lett.,2006,35(4):410-411.
    [24]Miller P W, Long N J, de Mello A J, Vilar R, Passchier J. Rapid formation of amides via carbonylative coupling reactions using a microfluidic device [J]. Chem. Commun.,2006,5, 546-548.
    [25]Charpentier J C. In the Frame of Globalization and Sustainability, Process Intensification, a Path to the Future of Chemical and Process Engineering (Molecules into Money) [J]. Chem. Eng. J., 2007,134(1-3):84-92
    [26]Kralisch D, Kreisel G. Assessment of the ecological potential of microreaction technology [J]. Chem. Eng. Sci.,2007,62(4):1094-1100
    [27]Holladay J D, Brooks K P, Wegeng R. Microreactor Development for Martian in Situ Propellant Production [J]. Catal. TODAY,2007,120(1):35-44.
    [28]Besser R S, Ouyang X, Surangalikar H. Hydrocarbon Hydrogenation and Dehydrogenation Reactions in Microfabricated Catalytic Reactors [J]. Chem. Eng. Sci.,2003,58(1):19-26.
    [29]Tanaka K, Motomatsu S, Koyama K, Tanaka S I. Large-Scale Synthesis of Immunoactivating Natural Product, Pristane, by Continuous Microfluidic Dehydration as the Key Step [J]. Org. Lett.,2007,9(2):299-302.
    [30]Daniel M R, Edward R M., Manish J, Daniel A S, Klavs F J. Microreactor-Based Reaction Optimization in Organic Chemistry-Glycosylation as a Challenge [J]. Chem. Commun.,2005,5: 578-580.
    [31]Jonsson C, Lundgren S, Haswell S J, Moberg C. Asymmetric Catalysis in a Micro Reactor-Ce, Yb and Lu Catalysed Enantioselective Addition of Trimethylsilyl Cyanide to Benzaldehyde [J]. Tetrahedron,2004,60(46):10515-10520.
    [32]Mikamia K, Yamanakaa M, Islama Md N, Tonoia T, Itoha Y. Nanoflow Microreactor for Dramatic Increase not only In Reactivity But also in Selectivity:Baeyer-Villiger Oxidation by Aqueous Hydrogen Peroxide Using Lowest Concentration of a Fluorous Lanthanide Catalyst [J]. J. Fluorine Chem.,2006,127(4):592-596.
    [33]Ikushima Y, Hatakeda K, Sato M, Sato O, Arai M. Innovation in a Chemical Reaction Process Using a Supercritical Water Microreaction System:Environmentally Friendly Production of E-Caprolactam [J]. Chem. Commun.,2002,19:2208-2209.
    [34]Wilesa C, Wattsa P, Haswella S J, Pombo-Villarb E. The Preparation and Reaction of Enolates within Micro Reactors [J]. Tetrahedron,2005,61(45):10757-10773.
    [35]Lowe H, Hessel V, Lob P, Hubbard S. Addition of Secondary Amines to α,β-Unsaturated Carbonyl Compounds and Nitriles by Using Microstructured Reactors [J]. Org. Process Res. Dev.,2006,10 (6):1144-1152.
    [36]Wiles C, Watts P, Haswell S J, Pombo-Villar E. Stereoselective Alkylation of an Evans Auxiliary Derivative within a Pressure-Driven Micro Reactor [J]. Lab Chip,2004,4:171-173.
    [37]Kawai K, Ebata T, Kitazume T. The Synthesis of Fluorinated Materials in Microreactors [J]. J. Fluorine Chem.,2005,126(6):956-961.
    [38]Miyake N, Kitazume T. Microreactors for the Synthesis of Fluorinated Materials [J]. J. Fluorine Chem.,2003,122(2):243-246.
    [39]Skelton V, Greenway G M, Haswell S J, Styring P, Morgan D O, Warrington B. The Preparation of a Series of Nitrostilbene Ester Compounds Using Micro Reactor Technology [J]. Analyst,2001, 126(1):7-10.
    [40]Garcia-Egido E, Wong S Y F, Warrington B H. A Hantzsch Synthesis of 2-Aminothiazoles Performed in a Heated Microreactor System [J]. Lab on a Chip.2(1):31-33.
    [41]Schwalbe T, Autze V, Hohmann M. Stirner W. Novel Innovation Systems for a Cellular Approach to Continuous Process Chemistry from Discovery to Market [J]. Org. Proc. Res. Dev.,2004.8 (3): 440-454.
    [42]Wiles C, Watts P, Haswell S J. The Application of Microreactor Technology for the Synthesis of 1, 2-Azoles [J]. Org. Proc. Res. Dev.,2004,8(1):28-32.
    [43]Fernandez-Suarez M, Wong S Y F, Warrington B H. Synthesis of a Three-Member Array of Cycloadducts in a Glass Microchip Under Pressure Driven Flow [J]. Lab Chip,2002,2(3): 170-174.
    [44]Bremner W S, Organ M G. Multicomponent Reactions to Form Heterocycles by Microwave-Assisted Continuous Flow Organic Synthesis [J]. J. Comb. Chem.,2007,9 (1):14-16.
    [45]Watts P, Wiles C, Haswell S J, Pombo-Villar E. Solution Phase Synthesis of B-Peptides Using Micro Reactors [J]. Tetrahedron,2002,58(27):5427-5439.
    [46]Flogel O, Codee J D C, Seebach D, Seeberger P H. Microreactor Synthesis of β-Peptides [J]. Angew. Chem. Int. Ed.,2006,45(42):6935-7097.
    [47]Fukuyama T, Shinmen M, Nishitani S, Sato M, Ryu I. A Copper-free Sonogashira Coupling Reaction in Ionic Liquids and Its Application to a Microflow System for Efficient Catalyst Recycling [J]. Org. Lett.,2002,4 (10):1691-1694.
    [48]Liu S, Fukuyama T, Sato M, Ryu I. Continuous Microflow Synthesis of Butyl Cinnamate by a Mizoroki-Heck Reaction Using a Low-Viscosity Ionic Liquid as the Recycling Reaction Medium [J]. Org. Proc. Res. Dev.,2004,8 (3):477-481.
    [49]Comer E, Organ M G. A Microreactor for Microwave-Assisted Capillary (Continuous Flow) Organic Synthesis [J]. J. Am. Chem. Soc.,2005,127 (22):8160-8167.
    [50]Mauger C, Buisine O, Caravieilhes S, Mignani G Successful Application of Microstructured Continuous Reactor in the Palladium Catalysed Aromatic Amination [J]. J. Organomet. Chem., 2005,690(16):3627-3629.
    [51]Basheer C, Vetrichelvan M, Suresh V, Lee H K. Ionic-liquid Supported Oxidation Reactions in a Silicon-Based Microreactor [J]. Tetrahedron Lett.,2006,47(6):957-961.
    [52]Lu H, Schmidt M A, Jensen K F. Photochemical Reactions and On-Line UV Detection in Microfabricated Reactors [J]. Lab Chip,2001,1(1):22-28.
    [53]Ehrich H, Linke D, Morgenschweis K, Baerns M. Application of Microstructured Reactor Technology for the Photochemical Chlorination of Alkylaromatics [J]. Chimia,2002,56(11), 647-653.
    [54]Fukuyama T, Hino Y, Kamata N, Ryu I. Quick Execution of [2+2] Type Photochemical Cycloaddition Reaction by Continuous Flow System Using a Glass-made Microreactor [J]. Chem. Lett.,2004,33(11):1430-1431.
    [55]Mukae H, Maeda H, Mizuno K. One-Step Synthesis of Benzotetra-and Benzopentacyclic Compounds through Intramolecular [2+3] Photocycloaddition of Alkenes to Naphthalene [J]. Angew. Chem. Int. Ed.,2006,45(39):6558-6560.
    [56]Wootton R C R, Fortt R., de Mello A J. A Microfabricated Nanoreactor for Safe, Continuous Generation and Use of Singlet Oxygen [J]. Org. Process Res. Dev.,2002,6 (2):187-189.
    [57]Jahnisch K, Dingerdissen U. Photochemical Generation and [4+2]-Cycloaddition of Singlet Oxygen in a Falling-Film Micro Reactor [J]. Chem. Eng.& Technol,2005,28(4):426-427.
    [58]Meyer S, Tietze D, Rau S, Schafer B, Kreisel G. Photosensitized Oxidation of Citronellol in Microreactors [J]. J. Photochem. Photobiol., A,2007,186(2-3):248-253.
    [59]Matsushita Y, Kumada S, Wakabayashi K, Sakeda K, Ichimura T. Photocatalytic Reduction in Microreactors [J]. Chem. Lett.,2006,35(4):410-411.
    [60]Takei G, Kitamori T, Kim H B. Photocatalytic Redox-Combined Synthesis of L-Pipecolinic Acid with a Titania-Modified Microchannel Chip [J]. Catal. Commun.,2005,6(5):357-360.
    [61]Ueno K, Kitagawa F, Kitamura N. Photocyanation of Pyrene Across an Oil/Water Interfaces in a Polymer Microchannel Chip [J]. Lab Chip,2002,2(4):231-234.
    [62]Sugimoto A, Sumino Y, Takagi M, Fukuyama T, Ryu I. The Barton Reaction Using a Microreactor and Black Light Continuous-Flow Synthesis of a Key Steroid Intermediate for an Endothelin Receptor Antagonist [J]. Tetrahedron Lett.,2006,47(35):6197-6200.
    [63]Lowe H, Ehrfeld W. State-of-the-art in Microreaction Technology:Concepts, Manufacturing and Applications [J]. Electrochim. Acta,1999,44(21-22):3603-3962.
    [64]Paddon C A, Pritchard G J, Thiemann T, Marken F. Paired Electrosynthesis:Micro-Flow Cell Processes with and without Added Electrolyte [J]. Electrochem. Commun.,2002,4(10):825-831.
    [65]He P, Watts P, Marken F, Haswell S J. Self-Supported and Clean One-Step Cathodic Coupling of Activated Olefins with Benzyl Bromide Derivatives in a Micro Flow Reactor [J]. Angew. Chem. Int. Ed.,2006,45(25):4146-4149.
    [66]He P, Watts P, Marken F, Haswell S J. Electrolyte Free Electro-Organic Synthesis:the Cathodic Dimerisation of 4-Nitrobenzylbromide in a Micro-Gap Flow Cell [J]. Electrochem. Commun., 2005,7(9):918-924.
    [67]He P, Watts P, Marken F, Haswell S J. Electrosynthesis of Phenyl-2-Propanone Derivatives from Benzyl Bromides and Acetic Anhydride in an Unsupported Micro-Flow Cell Electrolysis Process [J]. Green Chem.,2007,9(1),20-22.
    [68]Mengeaud V, Bagel O, Ferrigno R, Girault H H, Haider A. A Ceramic Electrochemical Microreactor for the Methoxylation of Methyl-2-Furoate with Direct Mass Spectrometry Coupling [J]. Lab Chip,2002,2,39-44.
    [69]Horcajada R, Okajima M, Suga S, Yoshida J. Microflow Electroorganic Synthesis Without Supporting Electrolyte [J]. Chem. Commun.,2005,10,1303-1305.
    [70]Horii D, Atobe M, Fuchigami T, Marken F. Self-Supported Methoxylation and Acetoxylation Electrosynthesis Using a Simple Thin-Layer Flow Cell [J]. J. Electrochem. Soc.,2006 153(8): D 143-D 147.
    [71]Suga S, Okajima M, Fujiwara K, Yoshida J. "Cation Flow" Method:A New Approach to Conventional and Combinatorial Organic Syntheses Using Electrochemical Microflow Systems [J]. J. Am. Chem. Soc.,2001,123 (32):7941-7942.
    [72]Suga S, Okajima M, Fujiwara K, Yoshida J. Electrochemical Combinatorial Organic Syntheses Using Microflow Systems [J]. QSAR & Comb. Sci.,2005,24(6):728-741.
    [73]Nagaki A, Togai M, Suga S, Aoki N, Mae K, Yoshida J. Control of Extremely Fast Competitive Consecutive Reactions using Micromixing Selective FriedeI-Crafts Aminoalkylation [J]. J. Am. Chem. Soc.,2005,127(33):11666-11675.
    [74]Suga S, Nagaki A, Tsutsui Y, Yoshida J. "N-Acyliminium Ion Pool" as a Heterodiene in [4+2] Cycloaddition Reaction [J]. Org. Lett.,2003,5 (6):945-947.
    [75]Midorikawa K, Suga S, Yoshida J. Selective Monoiodination of Aromatic Compounds with Electrochemically Generated I+ Using Micromixing [J]. Chem. Commun.,2006,36,3794-3796.
    [76]Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J. Cation Pool-Initiated Controlled/Living Polymerization Using Microsystems [J]. J. Am. Chem. Soc.,2004,126(45): 14702-14703.
    [77]Fukushima T, Asaka K, Kosaka A, Aida T. Fully Plastic Actuator through Layer-by-Layer Casting with Ionic-Liquid-Based Bucky Gel [J]. Angew. Chem. Int. Ed.,2005,44(16):2410-2413.
    [78]Wakami H, Yoshida J. Grignard Exchange Reaction Using a Microflow System:From Bench to Pilot Plant [J]. Org. Process Res. Dev.,2005,9 (6):787-791.
    [79]ElSheikh S, Schmalz H G. Halogen-Lithium Exchange Reactions Under in Situ-Quench Conditions:A Powerful Concept for Organic Synthesis [J]. Curr. Opin. Drug Discovery Dev., 2004,7(6):882-895.
    [80]Hessel V, Hofmann C, Lowe H, Meudt A, Scherer S, Schonfeld F, Werner B. Selectivity Gains and Energy Savings for the Industrial Phenyl Boronic Acid Process Using Micromixer/Tubular Reactors [J]. Org. Proc. Res. Dev.,2004,8 (3):511-523.
    [81]Percec V, Kawasumi M. Synthesis and Characterization of a Thermotropic Nematic Liquid Crystalline Dendrimeric Polymer [J]. Macromol.,1992.25(15):3843-3850
    [82]Reina A, Gerken A, et al. Newpolymer Syntheses,101 Liquid-Crystalline Hyperbranched and Potentially Biodegradable Polyesters Based on Phloreticacid and Gallic Acid [J]. Macromol. Chem. Phys,1999,200(7):1784-1791
    [83]程万里.染料化学[M].北京:中国纺织出版社,2010.
    [84]Stevelmans S, van Hest J C M, Jansen J, et al. Synthesis Characterization and Guest-Host Properties of Inverted Unimolecular Dendritic Mecelles [J]. J. Am. Chem. Soc.,1996,118(31): 7398-7399.
    [85]Quintana A, Raczka E. Design and Function of a Dendrimer-Based Therapeutic Nanodevice Targeted to Tumor Cells Through the Folate Receptor [J]. Pharm. Res.2002,19(9):1310-1316
    [86]Hawker C J, Wooley K L, Frechet J M J. Solvatochromism as a Probe of the Microenviroment in Dendritic Polyrthers:Transition from an Extended to a Globular Structure [J]. J. Am. Chem. Soc. 1993,115(10):4375-4376.
    [87]乐一鸣,刘仁祥,李琴.染料分析化工[M].北京:化学工业出版社,2007.
    [88]克拉里安特国际有限公司.在微型反应器中制备偶氮着色剂的方法[P].中国专利:01804731.9,2003-02-19.
    [89]Wootton R C R, Fortt R, d de Mello A J. On-Chip Generation and Reaction of Unstable Intermediates-Monolithic Nanoreactors for Diazonium Chemistry:Azo Dyes [J]. Lab Chip,2002, 2(1):5-7.
    [90]陈巍.氧化溴化反应研究[D].南京理工大学,2006.
    [91]Smith M B, Guo L. Regioselective One-Pot Bromination Of Aromaticaxnines [J]. Org. Let.,2002, 4(14):23212-323.
    [92]Pingalia S R K, Madhava M, Jursic B S. An Efficient Regioselective NBS Aromatic Bromination in the Presence of an Ionic Liquid [J]. Tetrahedron Lett.2010,51(10):1383-1385.
    [93]Daisuke K, Satoshi S, Yasutaka I. An Alternative Method for the Selective Bromination of Alkylbenzenes Using NaBrO3/NaHSO3 Reagent [J]. Org. Chem.,1998,63,6023-6026.
    [94]李斌栋,吕春绪.溶剂法合成对溴甲苯[J].淮海工程院学报,2000,9(4):24-25.
    [95]Zhang S J, Le Z G. A Simple and Selective Procedure for Alpha-Bromination of Alkanones with [Bmim]Br3 as a Promoter under Solvent-Free Conditions [J]. Chin. Chem. Lett.,2005,16(12): 1590-1592.
    [96]张国富,王涌.芳香化合物氧化溴化研究进展[J].有机化学,2011,31(6):804-813.
    [97]UPasana B, Gopal B. Regioselective Bromination of Organic Substrates by Terabutylammonium Bromide Promoted by V2O5-H2O2 an Environmentally Favorable Synthetic Protocol [J]. Org. Lett. 2000,2(3):247-249.
    [98]Amiram G. Use of Sodium Bromate for Aromatic Bromination:Research and Development [J]. Org. Process Res Dev.2000,4(1):30-33.
    [99]Ajda P, Marko Z, Jernej I. Oxidative Halogenation with "Green" Oxidants:Oxygen and Hydrogen Peroxide [J]. Angew. Chem. Int. Ed.2009,48,8424-8450.
    [100]Bogdal D, Lukasiewicz M, Pielichowski J. Halogenation of Carbazole and Otheraromatic Compounds with Hydrohalic Acids and Hydrogen Peroxide Undermicrowave Irradiation [J]. Green Chem.,2004,6(2):110-113.
    [101]Choudary B M, Someshwar T, Reddy C V, Kantam M L, Ratnam K J, Sivaji L V. The first example of bromination of aromatic compounds with unprecedented atom economy using molecular bromine [J]. Appl. Catal., A,2003,251(2),397-409.
    [102]Moriuchi T, Yamaguchi M, Kikushima K, Hirao T. An efficient vanadium-catalyzed bromination reaction [J]. Tetrahedron Lett.2007,48(15),2667.
    [103]Firouzabadi H, Iranpoor N, Kazemi S, Ghaderi A, Garzan, A. Highly Efficient Haloge-nation of Organic Compounds with Halides Catalyzed by Cerium(Ⅲ) Chloride Heptahydrate Using Hydrogen Peroxide as the Terminal Oxidant in Water [J]. Adv. Synth. Catal.,2009,351(11-12), 1925-1932.
    [104]Halberstadt E S, Hughes E D, Ingold C K. Kinetics and Mechanism of Aromatic Nitration [J]. J. Chem. Soc.,1950,72(6):2441-2452.
    [105]Sparks A K. p-Nitrohalobenzenes [P]. USP:3140319,1964-07-07.
    [106]Schumacher I. Chloronitrobenzene [P]. DEP:2422305,1974-11-28.
    [107]Schumacher, I. Chloronitrobenzene [P]. DEP:2422306,1974-11-28.
    [108]Suzuki H., Tomaru J, Murashima T. Ozone-Mediated Nitration of Benzoic Acid, Its Alkali and Alkaline Earth Metal Salt, Ester, Acid Chloride, Nitrile and Amide with Nitrogen Dioxide [J]. J. Chem. Soc, Perkin Trans.,1(17),1994,2413-2416.
    [109]蔡春,吕春绪.五氧化二氮对一元取代苯的硝化研究[J].火炸药学报,2000,25-27.
    [110]Suzuki H, Mort T. Nitration of Nonactivated Arenes with a Ternary System NO-NO2-O2 Mechanistic Implications of the Kyodai Nitration [J]. J. Chem. Soc, Perkin Trans.1,1995,4, 291-293.
    [111]Landau M V, Kogan S B, Tavor D, et al. Selectivity in Heterogeneous Catalytic Processes [J]. Catalysis Today,1997,36:497-510.
    [112]赵志换,王志忠.固体酸催化硝化合成硝基氯苯[J].太原理工大学学报,2003,34(6):747-749.
    [113]Chouday B M, Sateesh M, Lakshmi M. Selective Nitration of Aromatic Compounds by Solid Acid Catalysts [J].Chem. Commun.,2000,25-26.
    [114]Esakkidurai T, Kumarraja M, Pitchumani K. Regioselective nitration of aromatic substrates in zelite cages [J]. J. Chem. Sci.,2003,115(2):113-121.
    [115]程广斌,吕春绪.SO42-/WO3-ZrO2催化剂上硝基氯苯的区域选择性合成研究[J].含能材料,2002,10(4):168-170.
    [116]程广斌,吕春绪,彭新华.一硝基氯苯的区域选择性合成研究(Ⅰ)硝酸硝化[J].应用化学,2002,19(3):271-275.
    [117]潘声成SO42-/TiO2固体超强酸催化甲苯硝化的研究[J].精细石油化工进展,2003,4(6):17-19.
    [118]彭新华,吕春绪.Menke条件下氯苯的固体酸催化选择性硝化[J].火炸药,1995,3,13-14.
    [119]John R B, Colin R. A Microreactor for the Nitration of Benzene and Toluene [J]. Chem. Eng. Commun.,2002,189(12):1611-1628.
    [120]Panke G, Schwalbe T, Stirner T, et al. A Practical Approach of Continuous Processing to High Energetic Nitration Reactions in Microreactors [J]. Synth.2003,2827-2830.
    [121]Antes J, Boskovic D, Krause H, et al. Analysis and Improvement of Strong Exothermic Nitrations in Microreactors [J]. Chem. Eng. Res. Des.,2003,81(7):760-765.
    [122]Antes J, Tuercke T, Marioth E, Lechner F, Scholz M, et al. Microreaction Technology-IMRET 5: Proceedings of the 5th International Conference on Microreaction Technology[C]. Springer, Berlin,2001, p:446.
    [123]Antes J, Tuercke T, Marioth E, Schmid K, et al. Microreaction Technology-IMRET 5: Proceedings of the 4th International Conference on Microreaction Technology, American Institute of Chemical Engineers Topical Conference Proceedings [C].2000, p.194.
    [124]Ducry L, Roberge, D M. Controlled Autocatalytic Nitration of Phenol in a Microreactor [J]. Angew. Chem. Int. Ed.,2005,44(48),7972-7975.
    [125]Antes J, Turcke T, Kerth J, Marioth E, Schnurer F, Krause H H, Lobbecke S. International Annual Conference of ICT,32nd (Energetic Materials) [C].2001,146,1-10.
    [126]乐军,陈光文,袁权.微混合技术的原理与应用[J].化工进展,2004,2(12):1271-1276.
    [127]Roberge D M, Ducry L, Bieler N, et al. Microreactor Technology:A Revolution for the Fine Chemical and Pharmaceutical Industries [J]. Chem. Eng. Technol.,2005,28(3):318-323.
    [128]Bourne J R. Mixing and the selectivity of chemical reactions [J]. Org. Process Res. Dev.,2003, 7(4):471-508.
    [129]Chen J F, Zheng C, Chen G T. Interaction of Macro-Andnlicrorabdng on Particle Size Distribution in Reactive Precipitation [J]. Chem. Eng. Sci.,1996,51(10):1957-1966.
    [130]王琦安,王洁欣,余文,邵磊,陈建峰.微通道反应器微观混合效率的实验研究[J].北京化工大学学报(自然科学版),2009,36(3):1-5.
    [131]Foumier M C, Falk L, Villermanx J. A New Paralld Competing Reaction System for Assessing Micromixing Efficiency-Experimental Approach [J]. Chem. Eng. Sci.,1996,51(22):5053-5064.
    [132]Guichardon P, Falk L. Characterisation of Micromixing Efficiency by the Iodide-Iodate Reaction System. Part Ⅰ:Experimental Procedure [J]. Chem. Eng. Sci.,2000,55(19): 4233-4243.
    [133]Guichardon P, Falk L, Villermaux J. Characterisation of Micromixing Efficiency by the Iodide-Iodate Reaction System. Part Ⅱ:Kinetic study [J]. Chem. Eng. Sci.,2000,55(19): 4245-4253.
    [134]赵玉潮,应盈,陈光文,袁权.T形微混合器内的混合特性[J].化工学报,2006,57(8):1884-1890.
    [135]韩非.并流式微反应器中叔胺裂解、芳烃硝化反应的研究[D].浙江工业大学,2008.
    [136]李浩莹.偶氮染料活性黑KN-B的合成[D].北京化工大学,2010.
    [137]陈桂子.金属套管式微反应器气液传质性能研究[D].北京化工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700