高速电气化列车高强高导接触线用Cu-Cr-Zr合金组织和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用冷变形结合中间热处理方法制备了不同Zr及Mg元素含量的Cu-0.4wt.%Cr-0.02 wt.%Si合金,通过研究不同元素含量的Cu-0.4 wt.%Cr-0.02 wt.%Si合金在不同变形量下的组织形态、强度以及电导率,分析了Zr、Mg元素对合金力学性能和电学性能的影响,进而优化合金成分。在此基础上,进一步对比不同热处理工艺参数对合金组织以及性能的影响,进一步优化合金的热处理工艺。选取最优成分采用最优热处理工艺研究了冷拉拔对Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.% Mg合金组织性能的影响以及合金强变形下的热稳定性,探讨了合金的强度、位错密度以及储存能三者之间的关系。
     四种试验合金的抗拉强度均随变形程度的增加而增加,添加Zr元素的合金抗拉强度始终高于不含Zr元素的合金,且强度上升幅度比较大。Mg元素也表现出一定的强化作用,但强化效果低于Zr元素。随变形量增加,四种合金的相对电导率大致呈下降趋势。Zr元素对合金电导率的损害作用随变形量的增加而增加,在η=6.1时,可使电导率下降约7.2 %IACS.Mg元素对相对电导率的影响比较稳定,并没有随变形量的增加有明显的改变,基本使电导率波动幅度在(2-3)%IACS.
     将η=1.8的四种试验合金在500℃进行等温退火处理,四种试验合金的显微硬度均随退火时间的延长先增大而后减小并在经过1 h退火处理后达到峰值,添加Zr元素的合金显微硬度始终高于不含Zr元素的合金,且硬度下降的幅度小于不含Zr元素的合金。四种试验合金的相对电导率均随退火时间延长先剧烈增加而后缓慢增加,且均在经过1h退火处理后增加的幅度达到最大值。
     在拉拔应变比小于6.7范围内,随着变形程度的增加,Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.%Mg合金晶粒逐渐细化,纤维状晶粒的最小晶粒尺寸约为490 nm.晶体取向逐渐背离完全退火态晶体取向,并逐渐形成<111>织构。合金的屈服强度、微应变、位错密度以及储存能随变形量增加而增加。通过热分析,计算了不同变形量合金的储存能并进一步估算合金的位错密度和屈服强度。合金储存能的释放主要是由于位错密度的降低。当变形量6.7≤η≤7.4时,Cu晶粒会有一定程度的粗化同时对应着屈服强度、位错密度、微应变和储存能的降低,这说明Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.%Mg合金在这此变形程度下发生动态回复再结晶。
     将Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.%Mg合金在不同温度下退火1 h,随着退火温度升高,纤维状的Cu晶粒逐渐被粗大的等轴晶替代。在这一过程中,硬度、微应变、屈服强度和电阻率逐渐下降。随着退火温度升高,拉拔态合金晶体取向逐渐接近完全退火态晶体取向,纵横截面硬度差值逐渐降低。储存能的释放主要由于位错密度降低,合金主要的强化机制为位错强化。
Cu-0.4 wt.%Cr-0.02 wt.%Si alloys with different contents of Zr and Mg elements were prepared by casting, heat treating and cold drawing. The drawn microstructure of the alloys was investigated at different drawing ratios. The effects of Zr and Mg elements on the microstructure, mechanical and electrical properties during drawing deformation were discussed, and the alloy composition was suitably selected. Meanwhile, the effects of intermediate heat treatments on microstructure and properties were also studied in order to improve the heat treatment process. In these alloys, Cu-0.4 wt.% Cr-0.12 wt.% Zr-0.02 wt.% Si-0.05 wt.% Mg alloy showed a more excellent match between strength and conductivity. The cold drawing behaviour and the thermal stability of Cu-0.4 wt.% Cr-0.12 wt.% Zr-0.02 wt.% Si-0.05 wt.% Mg alloy were investigated. The relationship between the stored energy and flow stress which are connected by dislocation density has been discussed.
     The tensile strength of the four test alloys increases with extended plastic deformation and the tensile strength of adding Zr element alloy is always higher than that of non-Zr alloys. Mg element also shows some strengthening effect, but the effect of Mg element on the strengthening is lower than Zr element. As drawing deformation increases, the relative conductivity of the four alloys generally decreases. Zr addition shows a more significant negative effect on the electrical conductivity of the alloys at higher drawing ratios and the conductivity can drop by about 7.2% IACS withη=6.1. Mg addition maintains a basically constant effect on the electrical conductivity of the alloys at different drawing ratios and the conductivity fluctuations is about 2~3% IACS.
     With annealing time extending, the hardness of the four test alloys increases first and then decreases, reaching their peak values after annealing treatments at 500℃for 1 hour. The hardness of Zr containing element alloy is always higher than that of Zr free element alloy. The relative conductivity of the four test alloy increases sharply and then slowly with increasing annealing time and reaches their peak values after 1 hour annealing treatments.
     Cold drawing was conducted at room temperature to impose high strain into Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.%Mg. An increasing cold drawing strain leads to a sharply decrease in filament size at first and then a saturation value of~490 nm. The crystal orientation is deviating from the as-cast specimens and<111> texture is gradually formed. The flow stress, microstrain, dislocation density and stored energy are gradually increasing beforeη= 6.7. The thermal analysis was carried out for the alloy at different draw ratios. The stored energy was calculated and utilized to estimate the dislocation density and the flow stress. It was found that the stored energy increases with the draw ratio rising until a peak is reached withη=6.7. The release of stored energy is primarily due to the decrease of dislocation density. The dynamic recovery has taken place as 6.7<η≤7.4, which is confirmed by the change of the crystal orientation, microstrain, stored energy, flow stress and dislocation density.
     The Cu-0.4 wt.% Cr-0.12 wt.% Zr-0.02 wt.% Si-0.05 wt.% Mg alloy was drawn toη=6.0 and annealed at different temperatures. With the annealing temperature increasing, the ribbonlike Cu crystals are gradually replaced by gross equiaxed grains, resulting in the reduction in hardness, flow stress and electrical resistivity. The crystal orientation of as-draw specimen is gradually approaching that of full annealed specimen and the hardness difference between longitudinal and transverse directions decreases as annealing temperature increasing. The release of stored energy and the reduction of resistivity are primarily due to the decrease of dislocation density. The main strengthening effect is attributed to dislocation mechanism in Cu-0.4 wt.%Cr-0.12 wt.%Zr-0.02 wt.%Si-0.05 wt.%Mg alloy.
引文
[1]瓦西里·加特洛夫,李有观.世界正在进入高速时代.城市轨道交通研究.2010,1:32-33.
    [2]郑健.中国铁路已进入高速时代.城市轨道交通研究.2010,1:1
    [3]刘新.高速铁路与可持续发展浅论.今日科苑.2010,2:46
    [4]解晓玲.高速铁路发展对道路客运的影响及对策.综合运输.2010,2:63-66.
    [5]刑纳新.世界高速铁路干线的现状与发展.国外铁道车辆.2010,47(2):1-6.
    [6]魏雅华.聚焦中国高速铁路.企业研究.2010,5:10-13.
    [7]沈志云.高速列车关键技术.轨道交通.2008,12:34-37.
    [8]刘永红.300-350km/h高速铁路牵引供电系统集成主要技术方案的探讨.铁道标准设计.2009,1:91-94.
    [9]李会杰.接触线机械可靠性研究.铁道工程学报.2008,8:75-79.
    [10]赵大军,唐丽,管桂生.我国电气化铁道用接触线的现状和发展趋势.铁道机车车辆.2008,28(5):74-77.
    [11]吴积钦.弓网系统电弧的产生及其影响.接触网.2008,2:27-29.
    [12]蒋政吴.时速250 km接触网的弓网关系特性.上海铁道科技.2007,3:59-60.
    [13]丁雨田,李来军,许广济.接触线材料的现状及研究热点.电线电缆.2004,2:3-9.
    [14]贾淑果,任伟,郭望望.纯铜接触线材料的组织和性能.河南科技大学学报.2009,30(6):5-8.
    [15]刘强,张翔,崔建忠,刘晓涛,许光是.无氧铜接触线加工工艺及产品性能研究.特种铸造及有色合金.2005,25(5):302-304.
    [16]吴承玲,王云飞,赵大军.连铸连轧法生产高速电气化铁路铜银合金接触线.新技术新工艺.2009,1:51-52.
    [17]刘辉,胡忠卫,樊刚,段坤祥.铜银合金接触线(CTHA)的性能研究.云南冶金.2004,33(3):34-37.
    [18]刘强,崔建忠,许光明.用上引连铸法生产铜银合金接触线的实验研究.东北大学学报.2004,25(9):844-847.
    [19]赵大军.高速电气化铁道用铜锡合金接触线的开发.中国有色冶金.2007,5:56-59.
    [20]徐宗斌,谭业明.铜锡合金接触线生产技术.电气化铁道.2006,z1:280-282.
    [21]吴予才.高速电气化铁路接触网用铜锡合金线坯生产实践.稀有金属.2006,30:168-171.
    [22]卢利平,运新兵,杨俊英,宋宝韫.铜镁合金线材连续挤压扩展变形行为研究.金属铸锻焊技术.2010,39(15):92-95.
    [23]张强.高速铁路用铜镁接触线的引进与自主创新.铁道机车车辆.2009,29(3):77-79.
    [24]吴成三.铜镁合金的高强度接触线.铁道工程学报.1996,4:99-104.
    [25]启明.电车导电线用铜-镁合金.金属功能材料.2004,5:12
    [26]张强,王作祥.铜镁合金接触线的引进与技术自主再创新.电气化铁道.2009,1:23-27.
    [27]傅声华,陆峰,李询.IC引线框架用Cu-Cr-Zr系材料的研究现状与发展.稀有金属快报.2008,27(4):1-6.
    [28]姜锋,陈小波,陈蒙等.高强高导Cu-Cr-Zr系合金纳米析出相及其作用机理的研究进展.材料导报.2009,23(1):72-76.
    [29]U. Holzwarth, H. Stamm. The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing. J. Nucl. Mater.2000,279:31-45.
    [30]J.Q. Deng, X.Q. Zhang, S.Z. Shang, F. Liu, Z.X. Zhao, Y.F. Ye. Effect of Zr addition on the microstructure and properties of Cu-lOCr in situ composites. Mater. Des.2009,30: 4444-4449.
    [31]H.T. Zhou, J.W. Zhong, X. Zhou, Z.K. Zhao, Q.B. Li. Microstructure and properties of Cu-1.0Cr-0.2Zr-0.03Fe alloy. Mater. Sci. Eng. A.2008,498:225-230.
    [32]J.H. Su, Q.M. Dong, P. Liu, H.J. Li, B.X. Kang. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy. Mater. Sci. Eng.A.2005,392:422-426.
    [33]F.X. Huang, J.S. Ma, H.L. Ning, Z.T. Geng, C. Lu, S.M. Guo, X.T. Yu, T. Wang, H. Li, H.F. Lou. Analysis of phases in a Cu-Cr-Zr alloy. Scripta Mater.2003,48:97-102.
    [34]C.A. Poblano-Salas, J.D.O. Barceinas-Sanchez. Stress relaxation study of water atomized Cu-Cr-Zr powder alloys consolidated by inverse warm extrusion. J. Alloy. Compd.2009, 485:340-345.
    [35]C. Watanabe, R. Monzen, K. Tazaki. Mechanical properties of Cu-Cr system alloys with and without Zr and Ag. J. Mater. Sci.2008,43:813-819.
    [36]A.Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing. Acta Mater. 2002,50:1639-1651.
    [37]C.T. Kwok, P.K. Wong, H.C. Man and F.T. Cheng. Effect of pH on corrosion behavior of CuCrZr in solution without and with NaCl. J. Nucl. Mater.2009:39452-62.
    [38]M.M. Li, M.A. Sokolov, S.J. Zinkle. Tensile and fracture toughness properties of neutron-irradiated CuCrZr. J. Nucl. Mater.2009,393:36-46.
    [39]D.J. Edwards, B.N. Singh, J.B. Bilde-Sorensen. Initiation and propagation of cleared channels in neutron-irradiated pure copper and a precipitation hardened CuCrZr alloy. J. Nucl. Mater.2005,342:164-178.
    [40]汪玉成.接触网用稀土铝合金接触线的研究.电线电缆.1983,4:8-10.
    [41]王卫东,郭立华,武现军.电力牵引用内包式钢铝接触线磨耗计算.电线电缆.2005,4:44-45.
    [42]运新兵,宋宝韫,刘元文.铜包钢接触线坯连续挤压包覆成形的实验研究.塑性工程学报.2004,11(6):55-57.
    [43]徐振越,樊志新,宋宝韫,夏天.铜包钢接触线的感应加热控制模型研究.工业炉.2006,28(1):1-6.
    [44]孙洋,运新兵.铜包钢接触线坯连续包覆工艺优化设计.塑性工程学报.2008,15(3): 204-207.
    [45]翟秋亚,杨扬,徐锦锋,郭学锋.快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.物理学报.2007,56(10):6118-6123.
    [46]周志明,陈元芳,刘春,曹敏敏,王亚平.快速凝固Cu-Cr合金的研究进展.电工材料.2009,2:26-29.
    [47]钟建伟,周海涛,赵仲恺,李庆波,周啸.形变热处理对Cu-Cr-Zr合金时效组织和性能的影响.中国有色金属学报.2008,18(6):1032-1038.
    [48]陈讲彪,刘平,贾淑果,田保红,任凤章,陈小红.Cu-Cr-Zr形变原位复合材料的微观结构及热稳定性研究.热加工工艺.2008,37(4):13-16.
    [49]陈一胜,魏梅红,闫丰,段鹏征.Cu-Cr-Zr-Mg-RE合金的形变热处理工艺试验.金属热处理.2008,33(2):60-63.
    [50]周海涛,钟建伟,周啸,赵仲恺,李庆波.多级形变时效对Cu-Cr-Zr合金时效组织和性能的影响.材料热处理学报.2009,30(3):141-145.
    [51]马旭,王顺兴,刘勇,郭海明.变形量对Cu-Cr-Zr合金连续加热时效动力学的影响.热加工工艺.2009,38(6):141-146.
    [52]刘城.快速凝固技术的应用和发展.广东有色金属学报.2005,15(4):37-40.
    [53]顾成万.铸造生产过程中的快速凝固技术浅析.青海科技.2007,6:59-62.
    [54]唐兴风.快速凝固技术对铸件微观组织的影响研究,中小企业管理与科技,2010,3:252.
    [55]罗海荣,崔华,李永兵,郝斌,蔡元华,张济山.喷射沉积快速凝固技术制备镁合金的研究现状及展望.材料导报.2006,20(8):119-121.
    [56]李晓历,李金山,胡锐,寇宏超,傅恒志.定向凝固Cu-1.0%Cr合金中带状组织及其形成机制.金属学报.2007,42(12):1256-1260.
    [57]毕晓勤,胡锐,李金山,朱琦,傅恒志.定向凝固Cu-Cr自生复合材料的微观组织演变.材料科学与工艺.2005,13(2):153-157.
    [58]王庆娟,徐长征,黄美权,郑茂盛.Cr分布对Cu-Cr合金性能的影响.功能材料.2007,38(7):1125-1131.
    [59]王东锋,汪定江,潘庆军,康布熙,刘平.Cu-3.2Ni-0.75Si-0.30Zn合金强化相的析出行为分析.金属热处理.2006,31(1):43-45.
    [60]F. Heringhaus, H.J. Schneider-Muntau, G. Gottstein. Analytical modeling of the electrical conductivity of metal matrix composites:application to Ag-Cu and Cu-Nb. Materials Science and Engineering A.2003,347:9-20.
    [61]刘嘉斌,孟亮,张雷.等温退火对纤维相复合强化Cu-12%Ag合金组织、力学性能及电导率的影响.稀有金属材料与工程.2005,34(9):1460-1464.
    [62]陶业卿,刘平,贾淑果,陈小红.高强度高导电Cu-Cr-Zr合金的现状研究.热加工工艺.2010,39(14):31-36.
    [63]黄金亮,叶权华,刘平,刘勇,田保红.用导电率研究Cu-Cr-Zr-Y合金的相变动力学.材料热处理学报.2006,27(2):132-136.
    [64]李伟,刘平,苏娟华,刘勇,康布熙,田保红.Cu-Cr-Zr-Ce合金时效特性的研究.热加 工工艺.2004,6:3-4.
    [65]王永,米绪军,谢水生,李彦利.热处理形变对Cu-0.4Cr-0.15Zr合金性能的影响.稀有金属.2006,30(6):881-883.
    [66]程智刚,王自冬,林国标,张鸿,赵美,张茂奎.热处理工艺对Cu-Cr-Zr合金组织及性能的影响.铸造.2008,57(2):122-125.
    [67]行如意,康布喜,苏娟华,田保华,刘平.时效参数和变形量对Cu-Cr-Zr-Mg合金性能和组织的影响.热加工工艺.2004,3:1-5.
    [68]叶权华,刘平,刘勇,田保红.固溶温度对Cu-Cr-Zr-RE合金性能和组织的影响,金属热处理.2005,30增刊:218-220.
    [69]陈一胜,魏梅红,闫丰,段鹏征.Cu-Cr-Zr-Mg-RE合金的形变热处理工艺试验.金属热处理.2008,33(2):60-63.
    [70]M.B. Bever, D.L. Holt, A.L. Titchene. Stored energy of cold work. Prog. Mater. Sci.1972, 17:5-177.
    [71]R.O. Wiliiams. The stored energy in deformed copper:the effect of grain size and silver content. Acta Mater.1961,9:949-957.
    [72]. L. Liu, I. Baker. The dependence of recrystallization temperature and stored energy on rolling strain in polycrystalline copper. Scripta Mater.1993,28:197-200.
    [73]Y. Zhang, J.T. Wang, C. Cheng, J.Q. Liu. Stored energy and recrystallization temperature in high purity copper after equal channel angular pressing. J. Mater. Sci.2008,43:7326-7330.
    [74]. I. Baker, L. Liu, D. Mandal. The effect of grain-size on the stored energy of cold work as a function of strain for polycrystalline nickel. Scripta Mater.1995,32:167-171.
    [75]. M. Verdier, I. Groma, L. Flandin, J. Lendvai, Y. Brechet, P. Guyot. Dislocation densities and stored energy after cold rolling of Al-Mg alloys:Investigations by resistivity and differential scanning calorimetry. Scripta Mater.1997,37:449-454.
    [76]. F. Scholz, J.H. Driver, E. Woldt. The stored energy of cold rolled ultra high purity iron. Scripta Mater.1999,40:949-954.
    [77]D. Mandal, I. Baker. Measurement of the energy of grain-boundary geometrically-necessary dislocations in copper. Scripta Mater.1995,33:831-836.
    [78]A. Godfrey, W.Q. Cao, N. Hansen, Q. Liu. Stored energy, microstructure, and flow stress of deformed metals. Metall. Mater. Trans. A.2005,36A:2371-2378.
    [79]Y. Zhang, N.R. Tao, K. Lu. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles. Acta Mater.2008,56:2429-2440.
    [80]J.E. Bailey, P.B. Hirsch. Recrystallization process in some polycrystalline metals. Proc. R. Soc.A.1962,267:11.
    [81]M.F. Ashby. The deformation of plastically non-homogeneous materials. Philos. Mag.1970, 21:399-424.
    [82]S.H. Choi. Simulation of stored energy and orientation gradients in cold-rolled interstitial free steels. Acta Mater.2003,51:1775-1788.
    [83]. A.R. Pelton, F.C. Laabs, W.A. Spitzig, C.C. Cheng. Microstructural analysis of in-situ Cu-Nb composite wires. Ultramicroscopy 1987,22:251-265.
    [84]. C.L. Trybus, W.A. Spitzig. Characterization of the strength and microstructual evolution of a heavily cold rolled Cu-20% Nb composite. Acta Mater.1989,37:1971-1981.
    [85]F.K. Lotgering. Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal structures.I. J. Inorg. Nucl. Chem.1959,9:113.
    [86]A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa, V.I. Kopylov. Structure and properties of ultra-fine grain Cu-Cr-Zr alloy produced by equal-channel angular pressing. Acta Mater. 2002,50:1639-1651.
    [87]G.C. Smith. Age hardening of metals. Progress in Metal Physics.1949,2:163-243.
    [88]G.K. Willimson, R.E. Smallman. Dislocation density in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag.1956,1: 34-46.
    [89]J. Gubicza, N.Q. Chinh, G. Krallics, I. Schiller, T. Ungar. Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation. Curr.Appl. Phys.2006, 6:194-199.
    [90]A. Rohatgi, K.S. Vecchio. The variation of dislocation density as a function of the stacking fault energy in shock-deformed FCC materials. Mater. Sci. Eng. A.2002,328:256-266.
    [91]A. Rohatgi, K.S. Vecchio, G.T. Gray. A metallographic and quantitative analysis of the influence of stacking fault energy on shock-hardening in Cu and Cu-Al alloys. Acta Mater. 2001,49:427-438.
    [92]D.L. Zhang, K. Mihara, S. Tsubokawa, H.G. Suzuki. Precipitation characteristics of Cu-15Zr-0.15Zr in situ composite. Mater. Sci. Technol.2000,16:357-363.
    [93]W.X. Qi, J.P. Tu, F. Liu, Y.Z. Yang, N.Y. Wang, H.M. Lu, X.B. Zhang, S.Y. Guo, M.S. Liu. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr alloy. Mater. Sci. Eng. A. 2003,343:89-96.
    [94]S.G. Mu, F.A. Guo, Y.Q. Tang, X.M. Cao, M.T. Tang. Study on microstructure and properties of aged Cu-Cr-Zr-Mg-RE alloy. Mater. Sci. Eng. A.2008,475:235-240.
    [95]P. Marmy. In-beam mechanical testing of CuCrZr. J. Nucl. Mater.2004,329A:188-192.
    [96]S.Tahtinen, M. Pyykkonen, P. Karjalainen-Roikonen, B.N. Singh, P. Toft. Effect of neutron irradiation on fracture toughness behaviour of copper alloys. J. Nucl. Mater.1998,258: 1010-1014.
    [97]S.A. Fabritsiev, A.S. Pokrovsky, D.J. Edwards, S.J. Zinkle. The effect of neutron does, irradiation and testing temperature on mechanical properties of copper alloys. J. Nucl. Mater. 1998,258:1015-1021.
    [98]V.L. Niranjani, K.C. Hari Kumar, V. Subramanya Sarma. Development of high strength Al-Mg-Si AA6061 alloy through cold rolling and aging. Mater. Sci. Eng. A.2009,515: 169-174.
    [99]G. Veltl, B. Scholz, H.D. Kunze. Amorphization of Cu-Ta alloys by mechanical alloying. Mater. Sci. Eng. A.1991,134:1410-1413.
    [100]F. Dalla Torre, R. Lapovok, J. Sandlin, P.E. Thomson, C.H.J. Davies, E.V. Pereloma. Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes. Acta Mater.2004,52:4819-4832.
    [101]J.Y. Huang, Y.K. Wu, H.Q. Ye. Deformation structures in ball milled copper. Acta Mater. 1996,44:1211-1221.
    [102]L.H. Qian, S.C. Wang, Y.H. Zhao, K. Lu. Microstrain effect on thermal properties of nanocrystalline Cu. Acta Mater.2002,50:3425-3434.
    [113]S.I. Hong, M.A. Hill. Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites. Mater. Sci. Eng. A.1999,264:151-158.
    [104]Y.S. Kim, J.S. Song, S.I. Hong. Thermo-mechanical processing and properties of Cu-Fe-Cr microcomposites. J. Mater. Process. Technol.2002,130:278-282.
    [105]M.S. Lim, J.S. Song, S.I. Hong. Microstructural and mechanical stability of Cu-6 wt.%Ag alloy. J. Mater. Sci.2000,35:4557-4561.
    [106]J.B. Liu, L. Meng. The characteristics of Cu-12 wt.%Ag filamentary microcomposite in different isothermal process. Mater. Sci. Eng. A.2006,418:320-325.
    [107]T. Tsuru, Y. Shibutani. Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys. Rev. B 2007,75: 035415(1-6).
    [108]C.F. Gu, C.H.J. Davies. Thermal stability of ultrafine-grained copper during high speed micro-extrusion. Mater. Sci. Eng. A.2010,527:1791-1799.
    [109]L.E. Murr. Interfacial Phenomena in Metals and Alloys. Addison-Wesley, Reading, MA, 1975.
    [110]H. Margolin. Recrystallization, Grain Growth and Textures. American Society for Metals, Metals Park. OH,1965.
    [111]E. Schafler, G. Steiner, E. Korznikova, M. Kerber, M.J. Zehetbauer. Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry. Mater. Sci. Eng. A.2005,410:169-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700