补肾法、疏肝法对促性腺激素预处理小鼠排卵机制影响的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、补肾法、疏肝法对促性腺激素预处理小鼠排卵数目的影响
     目的:研究补肾调经Ⅱ号方、Ⅲ号方、逍遥丸对促性腺激素预处理小鼠排卵数目的影响,以探讨并比较补肾法、疏肝法诱发排卵的机制。
     方法:雌性未成年昆明小鼠102只,随机分为17组,每组6只。其中1-4组为补肾法组,5-8组为疏肝法组,9-12组为补肾调经Ⅱ号方+逍遥丸组,13-16组为逍遥丸+补肾调经Ⅲ号方组,17组为对照组。实验第1、2、3天,除对照组外,补肾法组和补肾调经Ⅱ号方+逍遥丸组、疏肝法组和逍遥丸+补肾调经Ⅲ号方组,每只小鼠分别灌胃Ⅱ号方(高剂量或低剂量)、逍遥丸(高剂量或低剂量)0.4 ml,共3天。实验第3天13:00所有小鼠均腹腔注射PMSG(5 IU/只);实验第4、5天补肾法组和补肾调经Ⅱ号方+逍遥丸组、疏肝法组和逍遥丸+补肾调经Ⅲ号方组,每只小鼠分别灌胃Ⅲ号方(高剂量或低剂量)、逍遥丸(高剂量或低剂量)0.4 ml共2天;第5天13:00各组小鼠均腹腔注射hCG(5 IU/只)。第6天上午8:00处死小鼠,取输卵管、卵巢,体式显微镜下刺破输卵管壶腹部,计数卵子数。
     结果:单因素方差分析:与对照组比较,补肾法以补肾调经Ⅱ号方高剂量与Ⅲ号方高剂量序贯使用排卵数目多(P=0.003);疏肝法以逍遥丸高剂量促进卵泡发育、逍遥丸低剂量诱发排卵序贯使用排卵数目多(P=0.007)。析因设计分析:补肾法促排卵使用补肾调经Ⅱ号方高剂量与低剂量有显著差异(P=0.004),Ⅱ号方、Ⅲ号方高剂量序贯使用排卵数目多,二者有交互作用(P=0.047)。疏肝法促排卵使用逍遥丸高、低剂量有显著差异(P=0.039),序贯应用高、低剂量排卵数目最多,二者有交互作用(P=0.046)。单因素方差分析:与对照组比较,逍遥丸+补肾调经Ⅲ号方组中逍遥丸低剂量与Ⅲ号方高剂量序贯使用排卵数增多(P=0.013),析因设计分析二者无交互作用(P=0.838);单因素方差分析:与对照组比较,Ⅱ号方高剂量与逍遥丸低剂量序贯使用排卵数多(P=0.039),析因设计分析二者无交互作用(P=0.604)。
     结论:对促性腺激素预处理小鼠序贯使用补肾调经Ⅱ号方、Ⅲ号方高剂量卵巢排卵数目多,与阴精盛助卵泡发育、阳气足使阴阳转化顺利有关;逍遥丸高、低剂量序贯使用排卵数目多,与血足精充促卵泡发育、疏肝理气助阴阳转化顺利有关。两法均有交互作用,即序贯使用可提高药物疗效。
     二、补肾法、疏肝法对促性腺激素预处理小鼠卵巢COX-2、PTX3、TSG-6影响的比较
     目的:研究补肾法、疏肝法对促性腺激素预处理小鼠卵巢COX-2以及透明质酸结合蛋白PTX3、TSG-6表达的影响,以探讨两法对卵丘膨胀的影响而诱发排卵的机制及其异同。
     方法:将雌性昆明种未成年小鼠96只随机分为正常组、对照组、补肾组、疏肝组,每组24只。实验第1、2、3天,补肾组、疏肝组小鼠分别灌服补肾调经Ⅱ号方高剂量、逍遥丸高剂量,对照组、正常组灌服蒸馏水,共3天;实验第3天8:00,补肾组、疏肝组、对照组小鼠腹腔注射PMSG(5 IU/只),48 h后腹腔注射hCG(5 IU/只),正常组在相同时间注射等体积生理盐水;实验第4、5天,补肾组、疏肝组小鼠分别灌服补肾调经Ⅲ号方高剂量、逍遥丸低剂量,对照组、正常组灌服蒸馏水,共2天。灌胃剂量均为0.4 ml/只。各组小鼠均在注射hCG后0、4、8、12 h处死,取双侧卵巢,液氮保存备检。RT-PCR检测COX-2、PTX-3 mRNA在卵巢的表达,免疫组化法检测COX-2、TSG-6蛋白在卵巢的表达。
     结果:
     1各组促性腺激素预处理小鼠在注射hCG后0、4、8、12 h卵巢COX-2 mRNA及其蛋白的表达注射hCG后0、4、8 h,各组小鼠卵巢COX-2表达呈升高趋势,12 h均下降。注射hCG后0 h:与对照组比较,疏肝组、补肾组小鼠卵巢COX-2表达增强,有统计学意义(P<0.05)。与疏肝组比较,补肾组小鼠卵巢COX-2表达下降但无统计学差异(P>0.05)。注射hCG后4 h:与对照组比较,疏肝组和补肾组小鼠卵巢COX-2表达均下降,有统计学意义(均P<0.05)。与疏肝组比较,补肾组小鼠卵巢COX-2表达下降但无统计学差异(P>0.05)。注射hCG后8 h:与对照组比较,疏肝组小鼠卵巢COX-2表达增强,有统计学意义(P<0.01);补肾组小鼠卵巢COX-2表达降低,有统计学意义(P<0.05)。与疏肝组比较,补肾组小鼠卵巢COX-2表达降低,有统计学意义(P<0.01)。注射hCG后12 h:与对照组比较,疏肝组小鼠卵巢COX-2表达增强,有统计学意义(P<0.05);补肾组小鼠卵巢COX-2无统计学差异(P>0.05)。与疏肝组比较,补肾组小鼠卵巢COX-2表达降低,有统计学意义(P<0.05)。2各组促性腺激素预处理小鼠在注射hCG后0、4、8、12 h卵巢TSG-6蛋白的表达各时间点对照组小鼠卵巢TSG-6蛋白表达逐渐增强,各时间点间比较,除4h、8h之间无统计学差异(P>0.05)外其余时间点间比较均有统计学差异(P<0.01)。疏肝组各时间点小鼠卵巢TSG-6蛋白表达逐渐增强,各时间点之间比较,除8h、12h之间比较无统计学差异(P>0.05)外其余时间点间比较均有统计学差异(P<0.01)。补肾组各时间点小鼠卵巢TSG-6蛋白表达逐渐增强,各时间点之间比较有统计学意义(P<0.01)。注射hCG后0 h:与对照组比较,疏肝组、补肾组小鼠卵巢TSG-6蛋白表达无统计学差异(P>0.05)。注射hCG后4 h:与对照组比较,疏肝组、补肾组小鼠卵巢TSG-6蛋白表达无统计学差异(P>0.05)。与疏肝组比较,补肾组小鼠卵巢TSG-6蛋白表达增强,有统计学意义(P<0.05)。注射hCG后8 h:与对照组比较,疏肝组、补肾组小鼠卵巢TSG-6蛋白表达均增强,有统计学意义(P<0.01)。与疏肝组比较,补肾组小鼠卵巢TSG-6蛋白表达降低,无统计学差异(P>0.05)。注射hCG后12h:与对照组比较,疏肝组、补肾组小鼠卵巢TSG-6蛋白表达均增强,有统计学意义(P<0.05,P<0.01)。与疏肝组比较,补肾组小鼠卵巢TSG-6蛋白表达增强,有统计学意义(P<0.01)。
     3各组促性腺激素预处理小鼠在注射hCG后0、4、8、12 h卵巢PTX-3 mRNA的表达注射hCG后0、4、8 h,对照组小鼠卵巢PTX3 mRNA表达逐渐增强,各组之间均有统计学意义(P<0.01);注射hCG后12h,小鼠卵巢PTX3 mRNA表达降低,与注射hCG后8 h比较有统计学意义(P<0.01)。注射hCG后0、4 h:与对照组比较,疏肝组、补肾组小鼠卵巢PTX3 mRNA表达增强,有统计学意义(P<0.01)。与疏肝组比较,补肾组小鼠卵巢PTX3 mRNA表达降低,有统计学意义(P<0.01)。注射hCG后8 h:与对照组比较,疏肝组、补肾组小鼠卵巢PTX3 mRNA的表达降低,有统计学意义(P<0.01)。与疏肝组比较,补肾组小鼠卵巢PTX3 mRNA表达降低,有统计学意义(P<0.01)。注射hCG后12 h:与对照组比较,疏肝组、补肾组小鼠卵巢PTX3 mRNA的表达增强,有统计学意义(P<0.01)。与疏肝组比较,补肾组小鼠卵巢PTX3 mRNA表达降低,无统计学差异(P>0.05)。
     结论:补肾法、疏肝法对促性腺激素预处理小鼠排卵前卵巢COX-2 mRNA及其蛋白的作用机制不同,疏肝法主要上调卵巢COX-2 mRNA及其蛋白的表达,补肾法主要是下调卵巢COX-2 mRNA及其蛋白的表达。补肾法、疏肝法对卵巢TSG-6、PTX3作用机制相似,均可上调排卵前卵巢TSG-6蛋白、PTX3 mRNA的表达,从而促进了卵丘细胞外基质形成,使卵丘充分膨胀有利于排卵。疏肝法、补肾法上调TSG-6蛋白的表达可能是使排卵数目增多的原因之一。
     三、补肾法、疏肝法对促性腺激素预处理小鼠卵巢ADAMTS-1、Cat L影响的比较
     目的:研究补肾法、疏肝法对促性腺激素预处理小鼠卵巢ADAMTS-1、Cat L mRNA及其蛋白表达的影响,以探讨两种治法对排卵过程中促使卵泡壁破裂机制的排卵机制的异同。方法:动物分组及取材同第二部分。RT-PCR检测卵巢ADAMTS-1、Cat L mRNA的表达,Western blot检测卵巢ADAMTS-1、Cat L蛋白的表达,免疫组化检测卵巢PR、ADAMTS-1、Cat L蛋白的表达。
     结果:
     1各组促性腺激素预处理小鼠在注射hCG后0、4、8、12h卵巢PR蛋白的表达注射hCG后0h、8h、12h,与对照组比较,疏肝组、补肾组小鼠卵巢PR蛋白表达均增强,有统计学意义(P<0.01)。注射hCG 4 h,与对照组比较,疏肝组、补肾组小鼠卵巢PR蛋白表达均无统计学差异(P>0.05)。疏肝组与补肾组之间在4个时间点比较,小鼠卵巢PR蛋白表达均无统计学差异(P>0.05)。
     2各组促性腺激素预处理小鼠在注射hCG后0、4、8、12h卵巢ADAMTS-1 mRNA及其蛋白的表达4个时间点各组小鼠卵巢ADAMTS-1表达呈上升趋势,12h达高峰。注射hCG后0 h:各组小鼠卵巢ADAMTS-1表达不明显。注射hCG后4 h:与对照组比较,疏肝组、补肾组小鼠卵巢ADAMTS-1表达增强,有统计学意义(P<0.01,P<0.05)。与疏肝组比较,补肾组小鼠卵巢ADAMTS-1表达降低但无统计学差异(P>0.05)。注射hCG后8 h:与对照组比较,疏肝组小鼠卵巢ADAMTS-1表达增强,有统计学意义(P<0.01);补肾组小鼠卵巢ADAMTS-1表达降低但无统计学差异(P>0.05)。与疏肝组比较,补肾组小鼠卵巢ADAMTS-1表达降低,有统计学意义(P<0.01)。注射hCG后12 h:与对照组比较,疏肝组小鼠卵巢ADAMTS-1表达无统计学差异(P>0.05);补肾组卵巢ADAMTS-1表达增强,有统计学意义(P<0.01)。与疏肝组比较,补肾组小鼠卵巢ADAMTS-1表达增强,有统计学意义(P<0.01)。3各组促性腺激素预处理小鼠在注射hCG后0、4、8、12 h卵巢Cat L mRNA及其蛋白的表达4个时间点各组小鼠卵巢Cat L表达呈上升趋势,12h达高峰。注射hCG后0 h:各组小鼠卵巢Cat L表达均不明显。注射hCG后4 h:与对照组比较,疏肝组、补肾组小鼠卵巢Cat L表达均增强,有统计学意义(P<0.01)。与疏肝组比较,补肾组小鼠卵巢Cat L表达较低但无统计学差异(P>0.05)。注射hCG后8 h:与对照组比较,疏肝组小鼠卵巢Cat L表达增强,有统计学意义(P<0.01);补肾组无统计学差异(P>0.05)。与疏肝组比较,补肾组小鼠卵巢Cat L表达降低,有统计学意义(P<0.01)。注射hCG后12 h:与对照组比较,疏肝组小鼠卵巢Cat L表达增强但无统计学差异(P>0.05);补肾组小鼠卵巢Cat L表达增强,有统计学意义(P<0.01)。与疏肝组比较,补肾组小鼠卵巢Cat L表达增强,有统计学意义(P<0.015)。
     结论:补肾法、疏肝法均可上调促性腺激素预处理小鼠排卵前卵巢PR蛋白的表达,在注射hCG后12h,补肾法上调PR蛋白表达的作用较疏肝法强。补肾法、疏肝法均可上调促性腺预处理小鼠卵巢排卵关键蛋白水解酶ADAMTS-1、Cat L mRNA及其蛋白的表达,促进了排卵斑的形成、卵泡破裂而有利于排卵。补肾法两种蛋白酶表达高峰在排卵时(注射hCG后12h),疏肝法两种蛋白酶表达在排卵前(注射hCG后8h)迅速达到高水平并缓慢增高至排卵时。补肾法卵巢ADAMTS-1、Cat LmRNA及其蛋白的表达高峰高于疏肝法。据此可指导补肾法、疏肝法的临床用药时点。
PartⅠEffects of Bushen Treatment and Shugan Treatment on Ovulation Number in Gonadotropin Pretreatment Mice
     Objective: To study the effects of BushenTiaojingⅡRecipe,ⅢRecipe and Xiaoyao Pill on ovulation number of Gonadotropin pretreatment mice.
     Methods: One hundred and two female immature mice were randomly divided into 17 groups with 6 mice each group. 1 to 4 were Bushen Treatment groups, 5 to 8 were Shugan Treatment groups, 9 to 12 were BushenTiaojingⅡRecipe add Xiaoyao Pill groups, 13 to 16 were Xiaoyao Pill add BushenTiaojingⅢRecipe groups, 17 was control group. All groups except control group were treated by BushenTiaojingⅡRecipe (high or low does) or Xiaoyao Pill (high or low does) 0.4 ml or during the 1-3 day to promot follicular development. All groups were injected PMSG (5IU/each) by intraperitoneal at 1pm 3rd day, and then with HCG (5 IU/each) after 48 h. All groups except control group were treated with 0.4 ml BushenTiaojingⅢRecipe (high or low does) or Xiaoyao Pill (high or low dose) on the 4-5 day. Mice were executed at 8am of the 6th day, and ampulla portion of uterine tubes were punctured with somatotype microscope to count the number of ovulated oocytes.
     Results: Compared with control group by One way ANOVA, ovulation number was more in BushenTiaojingⅡRecipe high-dose add BushenTiaojingⅢRecipe high-dose of Bushen Treatment(P=0.003) and Xiaoyao Pill high-dose group add Xiaoyao Pill low-dose group of Shugan Treatment(P=0.007). Factorial experiment design analysis in each group, treatment BushenTiaojingⅡRecipe high-dose and low-dose group had significant difference(P=0.004), and treatment Xiaoyao Pill high-dose group and low-dose group in induced ovulation had significant differenc(eP=0.039), and they have interaction(P=0.047, P=0.046). Compared with control group by one way ANOVA, ovulation number in Xiaoyao Pill low-does addⅢRecipe high-does group andⅡRecipe high-does add Xiaoyao Pill low-does group were significantly more(P=0.013, P=0.039), but they had no interaction by factorial design analysis(P=0.838, P=0.604).
     Conclusions: Ovulation number in BushenTiaojingⅡaddⅢRecipe high-dose group was more, related to YinJing was magnificent to promote follicle’s development and YangQi was easy to transformation between Yin and Yang. Xiaoyao Pill high-dose promoted follicular development, while low-dose induced ovulation, and ovulation number in this group was the most. Jing and Xue was magnificent to ovarian follicle’s development; adjusted liver was useful to transformation between Yin and Yang. Two methods had interaction, so can improve curative effect.
     PartⅡEffects of Bushen Treatment and Shugan Treatment on COX-2、PTX3、TSG-6 in Gonadotropin Pretreatment Mice Ovary
     Objective: To study and compare the effects of Bushen Treatment and Shugan Treatment on COX-2、PTX3、TSG-6 of gonadotropin pretreatment mice ovary in ovulatory processes.
     Methods: Ninety-six female immature KM mice were randomly divided into normal group, control group, Bushen group and Shugan group of 4 mice. Bushen group and Shugan group were treated with BushenTiaojingⅡRecipe high-dose and Xiaoyao Pill high-dose respectively for 3 days from experiment started, while normal group and control group gave distilled water. All groups except normal group were injected intraperitoneally with PMSG (5 IU/each) at 8am on the 3rd day, and 48h later injected with hCG (5 IU), and the normal group injected with distilled water at the same time. On the 4-5 day, Bushen group and Shugan group were treated with BushenTiaojingⅢRecipe and Xiaoyao Pill low-does 0.4 ml respectively, and normal group and control group were treated with distilled water 0.4 ml. Mice were executed respectively at 0h、4h、8h、12h after injecting hCG, and ovaries were preserved in liquid nitrogen. Examined expression of COX-2、PTX-3 mRNA with RT-PCR and COX-2、TSG-6 protein with Immunohistochemical method.
     Results:
     1 Expression of COX-2 mRNA and protein in each group at 0h, 4h, 8h, 12 h after injecting hCG Expression of COX-2 was increased at 0h、4h、8h after injecting hCG,and decreased at 12h. Compared with control group, expression of COX-2 in Bushen group and Shugan group were significantly increased(P<0.05). Expression of COX-2 in Bushen group was decreased but had no significant difference(P>0.05)at 0h after injecting hCG. At 4 h, expression of COX-2 in Bushen group and Shugan group were significantly decreased(P<0.05)when compared with control group. Expression of COX-2 in Bushen group was decreased but had no significant difference(P>0.05)when compared with Shugan group. At 8h, compared with control group, expression of COX-2 in Shugan group were significantly increased(P<0.01), and Bushen group was decreased(P<0.05). Compared with Shugan group, expression of COX-2 in Bushen group was significantly decreased(P<0.01). At 12h, compared with control group, expression of COX-2 in Shugan group were significantly increased(P<0.05), Bushen group was decreased but had no significant difference(P>0.05). Compared with Shugan group, expression of COX-2 in Bushen group was significantly decreased(P<0.05). 2 Expression of TSG-6 protein expression in each group at 0h, 4h, 8h, 12h after injecting HCG Expression of TSG-6 protein in control group was gradually increased, but had no significant difference between 4h and 8h(P>0.05). Expression TSG-6 protein in Shugan group was gradually increased, but had no significant difference between 8h and 12h(P>0.05). At 0h, expression TSG-6 protein in Bushen group was gradually increased, and all group had significant difference(P<0.01). Expression TSG-6 protein in Bushen group and Shugan group had no significant difference(P>0.05)when compared with control group. At 4h, expression TSG-6 protein in Bushen group and Shugan group had no significant difference(P>0.05)when compared with control group, and in Bushen group was significantly increased(P<0.05)when compared with Shugan group. At 8h, expression TSG-6 protein in Bushen group and Shugan group were significantly increased(P<0.01)when compared with control group, and in Bushen group was decreased but had no significant differenc(eP>0.05)when compared with Shugan group. At 12h, expression TSG-6 protein in Bushen group and Shugan group were significantly increased(P<0.05, P<0.01)when compared with control group, and expression TSG-6 protein in Bushen group was significantly increased(P<0.01)when compared with Shugan group.
     3 Expression of PTX-3 mRNA in each group at 0h, 4h, 8h, 12h after injecting hCG Expression of PTX-3 mRNA in control group was gradually increased, and had significant difference among 0h、4h、8h after injecting hCG(P<0.01). Expression of PTX-3 mRNA at 12 h was significantly decreased(P<0.01)when compared with that at 8h. At 0h、4h, expression of PTX-3 mRNA in Bushen group and Shugan group were significantly increased(P<0.01 ) when compared with control group, and in Bushen group was significantly decreased(P<0.01)when compared with Shugan group. At 8h, expression of PTX-3 mRNA in Bushen group and Shugan group were significantly decreased(P<0.01)when compared with control group, and in Bushen group was significantly decreased(P<0.01)when compared with Shugan group. At 12h, expression of PTX-3 mRNA in Bushen group and Shugan group were significantly increased(P<0.01)when compared with control group, and in Bushen group had no significant difference(P>0.05)when compared with Shugan group.
     Conclusions: Bushen Treatment can up-regulate COX-2 expression, while Shugan Treatment reduce it. Both of Bushen Treatment and Shugan Treatment could up-regulate expression of TSG-6 protein and PTX3 mRNA. Both of Bushen Treatment and Shugan Treatment could up-regulate expression of TSG-6 protein, and this maybe one reason to influence ovulation number.
     PartⅢEffects of Bushen Treatment and Shugan Treatment on ADAMTS-1、Cat L in Gonadotropin pretreatment mice Ovary
     Objective: To study the effects of Bushen Treatment and Shugan Treatment on the expression of ADAMTS-1、Cat L mRNA and protein of Gonadotropin pretreatment mice. To analyze the mechanisms of those two treatments in prompting follicle break.
     Methods: Group and materials are the same as that in partⅡ. Reverse transcription-polymerase chain reaction (RT-PCR) was used to semiquantitatively detect the expression of ADAMTS-1 mRNA and Cat L mRNA during ovulation, and Western blot was used to detect the expression of the protein. Immunohistochemical method was used to detect the expression of PR, ADAMTS-1 and Cat L protein.
     Results:
     1 Expression of PR protein in each group ovary at 0h, 4h, 8h, 12h after injecting hCG At 0h, 8h and 12h after injecting hCG, expression of PR in Bushen group and Shugan group ovary were significantly increased(P<0.01)when compared with control group. At 4h, expression PR protein in Bushen group and Shugan group had no significant difference(P>0.05)when compared with control group. At 0h, 4h, 8h, 12h after injecting hCG, expression of PR protein in Bushen group had no significant difference(P>0.05)when compared with Shugan group. 2 Expression of ADAMTS-1 mRNA and its protein in each group ovary at 0h, 4h, 8h, 12h after injecting hCG Expression of ovary ADAMTS-1 at these four timings was gradually increased, and was the highest at 12h. Expression of ADAMTS-1 in each group ovary was low at 0h. At 4h, expression of ADAMTS-1 in Bushen group and Shugan group was significantly increased(P<0.05 or P<0.01)when compared with control group. Expression of ADAMTS-1 in Bushen group was decreased, but had no significant difference(P>0.05)when compared with Shugan group. At 8h, compared with control group, expression of ADAMTS-1 in Shugan group was significantly increased(P<0.01), and in Bushen group had no significant difference ( P > 0.05 ) . Compared with Shugan group, expression of ADAMTS-1 in Bushen group was significantly decreased(P<0.01). At 12h, compared with control group, expression of ADAMTS-1 in Shugan group had no significant difference(P>0.05), and in Bushen group was significantly increased(P<0.01). Expression of ADAMTS-1 in Bushen group was significantly increased(P<0.01)when compared with Shugan group. 3 Expression of Cat L mRNA and protein in each group ovary a at 0h, 4h, 8h, 12h after injecting hCG Expression of Cat L in each group ovary at these four timings was gradually increased, and was the highest at 12h. Expression of Cat L in each group ovary was low. At 4h, expression of Cat L in Bushen group and Shugan group was significantly increased(P<0.01)when compared with control group. Expression of Cat L in Bushen group was decreased, had no significant difference(P>0.05)when compared with Shugan group,. At 8h, expression of Cat L in Shugan group was significantly increased(P<0.01)when compared with control group, and in Bushen group had no significant difference(P>0.05). Compared with Shugan group, expression of Cat L in Bushen group was significantly decreased(P<0.01). At 12h, compared with control group, expression of Cat L in Shugan group was no significant difference(P>0.05), and in Bushen group was significantly increased(P<0.01). Expression of Cat L in Bushen group was significantly increased(P<0.01) when compared with Shugan group.
     Conclusions: Ovary PR protein expression at preovulation of Gonadotropin pretreatment mice was increased with Bushen Treatment and Shugan Treatment. But expression of PR protein at 12h was higher in Bushen group than in Shugan group. Expression of ADAMTS-1 and Cat L of Gonadotropin pretreatment mice ovary was increased with Bushen Treatment and Shugan Treatment. Expression of ovary ADAMTS-1、Cat L was highest at ovulation (hCG injecting 12h )with Bushen Treatment, while expression was quickly increased at preovulation (hCG injecting 8h) then slow-moving to the highest at ovulation with Shugan Treatment. Peak of ADAMTS-1、Cat L expression in Bushen group was higher than in Shugan group.
引文
1金玲丽,冯利平,黄荷凤.中药在IUI技术中的协同作用的临床观察.上海中医药杂志. 2005,39(3):35-36
    2张嘉男,王秀宝.补肾活血方配合克罗米芬治疗排卵障碍性不孕症30例.中医杂志. 2004,45(4):280-281
    3邵瑞云,郎丰君,蔡金凤,等.补肾活血中药加克罗米芬治疗多囊卵巢综合征所致不孕的临床观察.中国中西医结合杂志. 2004,24(1):41-43
    4李云,王蔼明,张志文.环加氧酶和前列腺素E受体亚型基因在人卵巢的表达.北京医科大学学报. 1998,30(3):207-20 9
    5付灵梅,尤昭玲,陈海涛.补肾活血方对PCO大鼠卵巢COX-1mRNA表达的影响.湖南中医药大学学报. 2009,29(4):18-20
    6付灵梅,尤昭玲,罗岚.补肾活血方对多囊卵巢大鼠卵巢MMP-2、9的表达干预研究.湖南中医药大学学报. 2008,28(6):29-31
    7伍娟娟,付灵梅,尤昭玲.补肾活血方对PCOS大鼠模型卵巢中PAI-1mRNA表达的影响.湖南中医药大学学报. 2009,29(2):20-22
    8王玲,李瑞环,孙艳明,等.功血宁Ⅱ号冲剂对诱发排卵大鼠卵巢白细胞介素-8表达的影响.天津中医药. 2008,25(5):395-398
    9 Wisniewski HG, Vilcek J. Cytokine-induced gene expression at the crossroads of innate immunity,inflammation and fertility: TSG-6 and PTX3/TSG-14. Cytokine Growth Factor Rev. 2004, 15(2-3): 129-146
    10 Robker R L, Russell D L, Espey L L, et al. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A. 2000, 97(9): 4689-4694
    11杜惠兰,闫华,白凤楼,等.补肾调经系列方周期给药治疗功能失调性子宫出血的临床研究.中国中西医结合杂志. 2003,23(3):178-181
    12杜惠兰,闫华,白凤楼,等.补肾调经系列方周期给药治疗功能失调性子宫出血174例临床研究.中医杂志. 2004,45(7):517-519
    13杜惠兰,闫华,白凤楼,等.补肾调经系列方对功能失调性子宫出血患者生殖激素及子宫内膜激素受体的影响.中医杂志. 2007,48(11):986-988
    14杜惠兰,宋翠淼,马惠荣,等.补肾固冲系列方诱发小鼠排卵的实验研究.河北中医药学报. 2001,16(3):8-9
    15杜惠兰,段彦苍,宋翠淼.补肾调经方对雄激素诱导无排卵大鼠血清生殖激素及子宫、卵巢性激素受体水平的影响.北京中医药大学学报. 2004,27(4):24-26
    16中药药理研究方法学.陈奇主编.北京:人民卫生出版社,1993:34-35
    17中药临床药理学.翁维良主编.北京:人民卫生出版社,2002:103
    18戴丽军、黄月玲、叶炳飞. C57BL/6J小鼠超数排卵的研究.中国实验动物学报. 2003,11(1):51-53
    19徐平.不同日龄和品系小鼠超排卵、体外受精及受孕率的比较研究.中国实验动物学杂志. 2001,11(2):78-81
    20崔瑞琴,丁樱.菟丝子黄酮对雷公藤多苷所致生殖损伤雌鼠卵巢损伤表达的影响.辽宁中医药大学学报. 2009,11(8):246-247
    21南京中医药大学.中药大辞典.上海:上海科学技术出版社,第二版,2006:323
    22沈映君.中药药理学.北京:人民卫生出版社, 2000:927
    23孔增科,周海平,付正良.常用中药药理与临床应用.呼和浩特:内蒙古科学技术出版社,2005:429
    24李玮,周楚华,路千里,等.活血通经中药对卵巢和子宫功能的影响及其作用机理.中西医结合杂志. 1992;12(3):165-168
    25中医临床家丛书·夏桂成.夏桂成.北京:中国中医药出版社,2001
    26罗亚萍,马惠荣,杜惠兰,等.逍遥丸对雄激素致无排卵大鼠卵巢功能的影响. 2009,24(3):33-34
    27李飞.方剂学.北京:人民卫生出版社, 2002:453
    28吕志平,刘承才.“肝郁”大鼠血浆水平与肝微循环变化及逍遥散作用.中国微循环. 2000,(4)3:160-161
    1 Scarchilli L, Camaioni A, Bottazzi B, et al. PTX3 Interacts with Inter--trypsin Inhibitor. J Biol Chem. 2007, 282(41): 30161-30170
    2 Ochsner SA, Day AJ, Rugg MS, et al. Disrupted function of tumor necrosis factor-alpha-stimulated gene 6 blocks cumulus cell-oocyte complex expansion. Endocrinology. 2003, 144(10): 4376-84
    3 Wisniewski HG, Vilcek J Cytokine-induced gene expression at the crossroads of innate immunity, inflammation and fertility: TSG-6 and PTX3/TSG-14. Cytokine Growth Factor Rev. 2004, 15(2-3): 129-146
    4林守青.生殖内分泌学.北京:人民卫生出版,2006:223
    5 Tsafriri A , Cao X, Ashkenazi H , et al. Resumption of oocyte meiosis in mammals: on models, meiosis activating sterols and EGF factors. Mol Cell Endocrinol. 2005, 234(1-2): 37-45
    6李炳如,佘运初.补肾药对下丘脑-垂体-性腺轴功能影响.中医杂志. 1984,25(7):63
    7梅全喜,毕焕新.现代中药药理手册.北京:中国中医药出版社,1998: 557
    8陈可冀.新编抗衰老中药学.北京:人民卫生出版社,1998:520-522
    9秦达念,佘运初.菟丝子黄酮类化学成分及其对下丘脑-垂体-性腺轴功能的影响.汕头大学医学院学报. 1998,11(3):84-85
    10王建红,王敏璋,欧阳栋,等.菟丝子黄酮对心理应激雌性大鼠下丘脑β-EP与腺垂体FSH、LH的影响.中药材. 2002,25(12):886-888
    11 Ochsner SA,Russell DL,Day AJ, et al. Decreased expression of tumor necrosis factor-alpha-stimulated gene 6 in cumulus cells of the cyclooxygenase-2 and EP2 null mice. Endocrinology. 2003,144(3): 1008-1019
    12 Takahashi T, Morrow JD, Wang H,et al. Cyclooxygenase-2-derived Prostaglandin E2 Directs Oocyte Maturation by Differentially Influencing Multiple Signaling Pathways. Journal of Biological Chemistry. 2006, 281: 37117-37129
    13 Duffy DM, Stouffer RL. The ovulatory gonadotrophin surge stimulates cyclooxygenase expression and prostaglandin production by the monkey follicle. Mol Hum Reprod. 2001, 7(8):731-739
    14范衡宇,杨增明.前列腺素及其受体与哺乳动物的生殖.生理科学进展. 2000,31(1):75-78
    15吴吉文,郑蔚颖,王玮.透明质酸对小鼠卵丘细胞外基质的影响.福建医科大学学报. 2005,39(1):33-34
    16 Salustri A, Camaioni A, Di Giacomo M, et al. Hyaluronan and proteoglycans in ovarian follicles. Hum Reprod Update. 1999, 5(4): 293-301
    17 Milner CM, Day AJ. TSG-6: a multifunctional protein associated with inflammation. J Cell Sci. 2003, 116(10): 1863-73
    18 Colón E, Shytuhina A, Cowman MK, et al. Transfer of inter-alpha-inhibitor heavy chains to hyaluronan by surface-linked hyaluronan-TSG-6 complexes. J Biol Chem. 2009, 284(4): 2320-2331
    19 Fül?p C, SzántóS, Mukhopadhyay D, et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development. 2003, 130(10): 2253-2261
    20 Richards JS. Ovulation: new factors that prepare the oocyte for fertilization. Mol Cell Endocrinol. 2005,234(1-2): 75-9
    21 Wisniewski HG, Vilcek J. TSG-6: an IL-1/TNF-inducible protein with anti-inflammatory activity. Cytokine Growth Factor Rev. 1997, 8(2): 143-156
    22 Assidi M, Dufort I, Ali A, et al. Identification of Potential Markers of Oocyte Competence Expressed in Bovine Cumulus Cells Matured with Follicle-Stimulating Hormone and/or Phorbol Myristate Acetate In Vitro. Biology of reproduction. 2008, 79(2): 209–222
    23 Yoshioka S, Ochsner S, Darryl L, et al. Expression of Tumor Necrosis Factor-Stimulated Gene-6 in the Rat Ovary in Response to an Ovulatory Dose of Gonadotropin. Endocrinology. 2000, 141(11): 4114-4119
    24 Mantovani A, Garlanda C, Bottazzi B. Pentraxin 3, a non-redundantsoluble pattern recognition receptor involved in innate immunity. Vaccine. 2003, 21(2): S2/43–S2/47
    25 Salustri A, Garlanda C, Hirsch E, et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development, 2004, 131(7): 1577-1586
    26 Inforzato A, Rivieccio V, Antonio P. Morreale, et al. Structural Characterization of PTX3 Disulfide Bond Network and Its Multimeric Status in Cumulus Matrix Organization. J Biol Chem. 2008, 283(15): 10147-10161
    27 Francisco J D, Wigglesworth K, Eppig JJ. Oocytes determine cumulus cell lineage in mouse ovarian follicles. Francisco J. Journal of Cell Science. 2007, 120(8): 1330-1340
    28 Zhang X, Jafari N, Barnes RB, et al. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril. 2005,83(1): 1169-1179
    29 Cillo F, Brevini TA, Antonini S, et al. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007, 134(5): 645-650
    30 McKenzie L J, Pangas S A, Carson1 S A, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Human Reproduction. 2004, 19(12): 2869-2874
    31 Scarchilli L, Camaioni A, Bottazzi B, t al. Implications for hyaluonan organization and cumulus oophorus expansion. J Biol Chem. 2007, 282(41): 30161-30170
    1蔡倩方,艾继辉,章汉旺. ADAMTS-1在排卵过程中的作用与调控.中国优生与遗传杂志. 2008,(16)3:17-19
    2林守清.生殖内分泌学.北京:人民卫生出版社,2006:224
    3 Robker RL, Russell DL, Yoshioka S, et al. Ovulation: a multi-gene, multi-step process. Steroids, 2000, 65(10-11): 559-70
    4 Robker RL, Russell DL, Espey LL, et al. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A. 2000, 97(9): 4689-4694
    5 Snyder B W, Beecham G D, Schane H P. Inhibition of ovulation in rats with epostane, an inhibitor of 3-beta-hydroxysteroid dehydrogenase. Exp. Biol.Med. 1984, 176(3): 238-242
    6 Van der Schoot P, Bakker GH, Klijn JG. Effects of the progesterone antagonist RU486 on ovarian activity in the rat. Endocrinology. 1987, 121(14): 1375-1382
    7 Loutradis D, Bletsa R, Aravantinos L, et al. Preovulatory effects of the progesterone antagonist mifepristone (RU486) in mice. Human Reproduction. 1991, 6(9): 1238-1240
    8 Rose UM, Hanssen RG, Kloosterboer HJ. Development and characterization of an in vitro ovulation model using mouse ovarian follicles. Biol. Reprod. 1999, 61(2): 503-511
    9 Natraj V, Richards JS. Hormonal regulation, localization, and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology. 1993, 134(2): 761-769
    10 Park-Sarge OK. Mayo KE. Regulation of the progesterone receptor gene by gonadotropins and cyclic adenosine 3', 5'-monophosphate in rat granulosacells. Endocrinology. 1994, 134(2): 709-718
    11 Lydon JP, DeMayo FJ, Conneely OM, et al. Reproductive Phenotypes of the Progesterone Receptor Null Mutant Mouse. J. Steroid Biochem. Molec. Biol. 1996, 56(1-6): 67-77
    12杜惠兰,段彦苍,宋翠淼.补肾调经方对雄激素诱导无排卵大鼠血清生殖激素及子宫、卵巢性激素受体水平的影响.北京中医药大学学报. 2004,27(4):24-26
    13 Sriraman V, Richards JS. Cathepsin L gene expression and promoter activation in rodent granulosa cells. Endocrinology. 2004, 145(2): 582-591
    14 Itoh T, Ikeda T, Gomi H, et al. Unaltered secretion of beta–amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem. 1997, 272(36): 22389-22392
    15 Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998, 93(3): 411-422
    16 Alexander CM, Selvarajan S, Mudgett J, et al. Stromelysin-1 Regulates Adipogenesis during Mammary Gland Involution. J Cell Biol. 2001, 152(4): 693-703
    17 Wilson CL, Heppner KJ, Labosky PA, et al. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci. 1997, 94(4): 1402-1407
    18 Stickens D, Behonick DJ, Ortega N, et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development. 2004, 131(23): 5883-5895
    19 Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999, 99(1): 81-92
    20 Curry TE, Jr , Osteen KG. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev. 2003, 24(4): 428-465
    21 Ohnishi J,Ohnishi E,Shibuya H,et al. Functions for proteinases in theovulatory process. Biochim Biophys Acta. 2005, 1751(1): 95-109
    22 Mittaz L, Russell DL, TWilson. Adamts-1 is Essential for the Development and Function of the Urogenital System. Biol Reprod. 2004, 70(4): 1096-1105
    23 Shozu M, Minami N, Yokoyama H, et al. ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary. J Mol Endocrinol. 2005, 35(2): 343-355
    24 Russell DL, Doyle KH, Ochsner SA, et al. Processing and Local ization of ADAMTS-1 and Proteolytic Cleavage of Versican during Cumulus Matrix Expansion and Ovulation. J Biol Chem. 2003, 278(43): 42330-42339
    25 Espey LL, Yoshioka S, Russell DL et al. Ovarian expression of a disintegrin and metallop roteinase with thrombos pondin motifs during ovulation in the gonadotr opin-primed immature rat. Biol Reprod. 2000, 62(4): 1090-1095
    26 Kouno K, Okada Y, Kawashima H, et al . ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS Lett. 2000, 478(3): 241-245
    27 Tortorella M, Pratta M, Liu RQ, et al. The thrombospondin motif of aggrecanase-1 (ADAMTS-4) is critical for aggrecan substrate recognition and cleavage. J Biol Chem. 2000, 275(33): 25791-25797
    28 Tortorella MD, Malfait AM, Decicco CP, et al . The role of ADAM-TS4 (aggrecanase-1) and ADAM-TS5(aggrecanase-2) in a model of cartilage degradation. Osteoarthritis Cartilage. 2001, 9(6): 539-552
    29 Sandy JD, Westling J, Kenagy RD, et al. Versican Vl proteolysis in human aorta in vivo occurs at the Glu441-Ala442 bond . a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem. 2001, 276(16): 13372-13378
    30艾继辉,蔡倩方,孟婕,等.促性腺激素预处理的小鼠排卵过程中ADAMTS-1在卵巢中的表达.中国妇幼保健. 2008, 23(16):2270-2273
    1 Darryl L.Russell, Rebecca L.Robker. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Human Reproduction Update, 2007, 13(3):289-312
    2 Lawrence TS, Dekel N, Beers WH. Binding of human chorionic gonadotropin by rat cumuli oophori and granulosa cells: a comparative study. Endocrinology. 1980, 106(4):1114-1118
    3 Channing CP, Bae IH, Stone SL et al. Porcine granulosa and cumulus cell properties. LH/hCG receptors, ability to secrete progesterone and ability to respond to LH. Mol Cell Endocrino. 1981, 22(3):359-370
    4 Oxberry BA , Greenwald GS An autoradiographic study of the binding of 125 I-labeled follicle-stimulating hormone, human chorionic gonadotropin and prolactin to the hamster ovary throughout the estrous cycle. Biol Reprod, 1982, 27(2):505-516
    5 Wang X, Greenwald G. Hypophysectomy of the cyclic mouse. I. Effects on folliculogenesis, oocyte growth, and follicle-stimulating hormone and human chorionic gonadotropin receptors. Biol Reprod. 1993, 48(3):585-594
    6 Wang XN and Greenwald GS. Human chorionic gonadotropin or human recombinant follicle-stimulating hormone (FSH)-induced ovulation and subsequent fertilization and early embryo development in hypophysectomized FSH-primed mice. Endocrinology. 132(5):2009-2016
    7 Peng XR, Hsueh AJ, LaPolt PS et al. Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology. 1991, 129(6):3200-3207
    8 Bukovsky A, Chen T, Wimalasena J, et al. Cellular localization of luteinizing hormone receptor immunoreactivity in the ovaries of immature, gonadotropin-primed and normal cycling rats. Biol Reprod.1993, 48(6):1367-1382
    9 Eppig J, Wigglesworth K, Pendola F, et al. Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol Reprod.1997, 56(4):976-984
    10 Goudet G, Belin F, Bezard J, et al. Intrafollicular content of luteinizing hormone receptor, falphag-inhibin, and aromatase in relation to follicular growth, estrous cycle stage, and oocyte competence for in vitro maturation in the mare. Biol Reprod. 1999, 60(5): 1120-1127
    11 Robert C, Gagne D, Lussier J, et al. Presence of LH receptor mRNA in granulosa cells as a potential marker of oocyte developmenta competence and characterization of the bovine splicing isoforms Reproduction. 2003,125(3): 437-446
    12 Familiari G, Heyn R, Relucenti M, et al. Ultrastructural dynamics of human reproduction, from ovulation to fertilization and early embryo development. Int Rev Cytol. 2006,249,53-141
    13 Eppig JJ. Regulation of cumulus oophorus expansion by gonadotropins in vivo and in vitro. Biol Reprod. 1980,23(3):545-552
    14 Hillensjo T, Magnusson C, Svensson U, et al. Effect of luteinizin hormone and follicle-stimulating hormone on progesterone synthesis by cultured rat cumulus cells. Endocrinology. 1981,108(5):1920-1924
    15 Chen L, Russell P, Larsen W. Sequential effects of follicle-stimulating hormone and luteinizing hormone on mouse cumulus expansion in vitro. Biol Reprod. 1994, 51(2):290-295
    16 Shimada M, NishiboriM, Isobe N, et al. Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol Reprod. 2003, 68(4): 1142-1149
    17 Foong SC, Abbott DH, Zschunke MA, et al. Follicle Luteinization in Hyperandrogenic Follicles of Polycystic Ovary Syndrome Patients Undergoing Gonadotropin Therapy For In Vitro Fertilization. J Clin Endocrinol Metab. 2006,91(6):2005-2142
    18 Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev. 1994,15(6):725-751
    19 Maizels ET, Mukherjee A, Sithanandam G, et al. Developmental regulation of mitogen-activated protein kinase-activated kinases-2 and -3 (MAPKAPK-2/-3) in vivo during corpus luteum formation in the rat. Mol Endocrinol. 2001, 15(5): 716-733
    20 Seger R, Hanoch T, Rosenberg R, et al. The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J Biol Chem. 2001, 276(17): 13957-13964
    21 Salvador LM, Maizels E, Hales DB, et al. Acute signaling by the LH receptor is independent of protein kinase C activation. Endocrinology. 2002, 143(8): 2986-2994
    22 Choi J-H, Choi K-C, Auersperg N, et al. Gonadotropins upregulate the epidermal growth factor receptor through activation of mitogen-activated protein kinases and phosphatidyl-inositol-3-kinase in human ovarian surface epithelial cells. Endocr Relat Cancer. 2005, 12(2):407-421
    23 Sriraman V, Rudd MD, Lohmann, SM et al. Cyclic GMP dependent protein kinase II is induced by LH and PR dependent mechanisms in granulosa cells and cumulus oocyte complexes of ovulating follicles. Mol Endocrinol. 2005, 2005-0317
    24 Freimann S, Ben-Ami I, Dantes A, et al. EGF-likefactorepiregulinand amphiregulin expression is regulated by gonadotropins/cAMP in human ovarian follicular cells. Biochem Biophys Res Commun. 2004, 324(12):829-834
    25 Freimann S, Ben-Ami I, Dantes A, et al. Differential expression of genes coding for EGF-like factors and ADAMTS1 following gonadotropin stimulation in normal and transformed human granulosa cells. Biochem Biophys Res Commun. 2005, 333(3): 935-943
    26 Sriraman V, Richards JS. Cathepsin L gene expression and promoter activation in rodent granulosa cells. Endocrinology. 2004, 145(2): 582-591
    27 Sriraman V, Sharma SC, Richards JS. Transactivation of the progesterone receptor gene in granulosa cells: evidence that Sp1/Sp3 binding sites in the proximal promoter play a key role in luteinizing hormone inducibility. Mol Endocrinol. 2003, 17(3): 436-449
    28 Chang SY, Kang HY, Lan KC, et al. Expression of steroid receptors, their cofactors, and aromatase in human luteinized granulosa cells after controlled ovarian hyperstimulation. Fertil Steril. 2005, 83(1):1241-1247
    29 Natraj U, Richards JS. Hormonal regulation, localization, and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology.1993, 133(2):761-769
    30 Mulac-Jericevic B, Mullinax RA, DeMayo FJ, et al. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 2000, 289(5485): 1751-1754
    31 Stouffer RL. Progesterone as a mediator of gonadotrophin action in the corpus luteum: beyond steroidogenesis. Hum Reprod Update. 2003, 9(2): 99-117
    32 Loutradis D, Bletsa R, Aravantinos L, et al. Preovulatory effects of the progesterone antagonist mifepristone (RU486) in mice. Hum Reprod. 1991, 6(9): 1238-1240
    33 Murdoch WJ, Peterson TA, Van Kirk EA, et al. Interactive roles of progesterone, prostaglandins, and collagenase in the ovulatory mechanismof the ewe. Biol Reprod. 1986, 35(5): 1187-1194
    34 Baird DT, Brown A, Cheng L, et al. Mifepristone: a novel estrogen-free daily contraceptive pill. Steroids. 2003, 68(10-13): 1099-1105
    35 Lydon JP, DeMayo FJ, Conneely OM, et al. Reproductive phenotpes of the progesterone receptor null mutant mouse. J Steroid Biochem Mol Biol. 1996, 56(1-6): 67-77
    36 Robker RL, Russell DL, Espey LL, et al. Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci U S A. 2000, 97(9): 4689-4694
    37 Doyle KMH, Russell DL, Sriraman V. et al. Coordinate transcription of the adamts-1 gene by luteinizing hormone and progesterone receptor. Mol Endocrinol. 2004, 18(10):2463-2478
    38 Sekiguchi T, Mizutani T, Yamada K. et al. Transcriptional regulation of the epiregulin gene in the rat ovary. Endocrinology. 2002, 143(12): 4718-4729
    39 Tullet JMA, Pocock V, Steel JH, et al. Multiple signaling defects in the absence of RIP140 impair both cumulus expansion and follicle rupture. Endocrinology. 2005, 146(9): 4127-4137
    40 Gardner DK, Pawelczynski M, Trounson AO. Nutrient uptake and utilization can be used to select viable day 7 bovine blastocysts after cryopreservation. Mol Reprod Dev. 1996, 44(44): 472-475
    41 Preis KA, Seidel G, Gardner DK. Metabolic markers of developmental competence for in vitro-matured mouse oocytes. Reproduction. 2005, 130(4): 475-483
    42 Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends Endocrinol Metab. 2000, 11(5): 193-198
    43 Eppig J, Pendola F, Wigglesworth K. Mouse oocytes suppress cAMP-induced expression of LH receptor mRNA by granulosa cells in vitro. Mol Reprod Dev. 1998, 49(3): 327-332
    44 Elvin JA, Clark AT, Wang P, et al. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999, 13(6): 1035-1048
    45 Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte-somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004, 82–83: 431-446
    46 Salustri A, Garlanda C, Hirsch E, et al. PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development. 2004, 131(7): 1577-1586
    47 Somfai T, Kikuchi K, Onishi A, et al. Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes. Mol Reprod Dev. 2004, 68(4): 484-491
    48 Yang S-H, Son W-Y, Yoon S-H. et al. Correlation between in vitro maturation and expression of LH receptor in cumulus cells of the oocytes collected from PCOS patients in HCG-primed IVM cycles. Hum Reprod. 2005, 20(8): 2097-2103
    49 Sirois J, Richards JS. Purification and characterization of a novel, distinct isoform of prostaglandin endoperoxide synthase induced by human chorionic gonadotropin in granulosa cells of rat preovulatory follicles. J Biol Chem. 1992, 267(9): 6382-6388
    50 Sirois J, Sayasith K, Brown KA, et al. Cyclooxygenase-2 and its role in ovulation: a 2004 account. Hum Reprod Update. 2004, 10(5): 373-385
    51 Ochsner SA, Russell DL, Day AJ, et al. Decreased expression of tumor necrosis factor-alpha-stimulated gene 6 in cumulus cells of the cyclooxygenase-2 and EP2 null mice. Endocrinology. 2003, 144(3): 1008-1019
    52 Ochsner SA, Day AJ, Rugg MS, et al. Disrupted function of tumor necrosis factor-falphag-stimulated gene 6 blocks cumulus cell-oocyte complex expansion. Endocrinology. 2003, 144(10): 4376-4384
    53 Yoshioka S, Ochsner S, Russell DL, et al. Expression of tumor necrosis factor-stimulated gene-6 in the rat ovary in response to an ovulatory dose of gonadotropin. Endocrinology. 2000. 141(11): 4114-4119
    54 Espey LL, Richards JS. Temporal and spatial patterns of ovarian genetranscription following an ovulatory dose of gonadotropin in the rat. Biol Reprod. 2002, 67(6): 1662-1670
    55 Mori D, Ogino N, Yonezawa T, Kawaminami M, et al. Anti-ovulatory effects of RU486 and trilostane involve impaired cyclooxygenase-2 expression and mitotic activity of follicular granulosa cells in rats. Prostaglandins Other Lipid Mediat. 2011, 94(3-4):118-23
    56 Pall M, Friden BE, Brannstrom M. Induction of delayed follicular rupture in the human by the selective COX-2 inhibitor rofecoxib: a randomized double-blind study. Hum Reprod. 2001, 16(7): 1323-1328
    57 Rodgers RJ, Irving-Rodgers HF, Russell DL. Extracellular matrix of the developing ovarian follicle. Reproduction. 2003, 126(4): 415-424
    58 Segi E, Haraguchi K, Sugimoto Y, et al. Expression of messenger RNA for prostaglandin E receptor subtypes EP4/EP2 and cyclooxygenase isozymes in mouse periovulatory follicles and oviducts during superovulation. Biol Reprod. 2003, 68(3): 804-811
    59 Elvin JA, Yan C, Matzuk MM. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway. Proc Natl Acad Sci U S A. 2000, 97(18): 10288-10293
    60 Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair.Annu Rev Cell Dev Biol. 2007, 23:435-461
    61 Fulop C, Szanto S, Mukhopadhyay, D et al. Impaired cumulus mucification and female sterility in tumor necrosis factor-induced protein-6 deficient mice. Development. 2003, 130(10): 2253-2261
    62 Chen L, Russell PT, Larsen WJ. Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass. Mol Reprod Dev. 1993, 34(1):87-93
    63 Colón E, Shytuhina A, Cowman MK, Transfer of inter-alpha-inhibitor heavy chains to hyaluronan by surface-linked hyaluronan-TSG-6 complexes. J Biol Chem. 2009, 284(4):2320-31
    64 Varani S, Elvin JA, Yan C, et al. Knockout of pentraxin 3, a downssream target of growth differentiation factor-9, causes female subfertility. MolEndocrinol. 2002, 16(6): 1154-1167
    65 Inforzato A, Rivieccio V, Morreale AP, et al. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization. J Biol Chem. 2008, 283(15):10147-61
    66 Russell DL, Doyle KH, Ochsner SA, et al. Processing and localization of ADAMTS-1 and proteolytic cleavage of versican during cumulus matrix expansion and ovulation. J Biol Chem. 2003, 278(43): 42330-42339
    67 Nakamura K, Fujiwara H, Higuchi T, et al. Integrin alpha6 is involved in follicular growth in mice. Biochem Biophys Res Commun. 1997, 235(3):524-528
    68 Smith MF, Gutierrez CG, Ricke WA, et al. Production of matrix metalloproteinases by cultured bovine theca and granulosa cells. Reproduction. 2005, 129(1): 75-87
    69 Jo M, Curry TE. Regulation of matrix metalloproteinase-19 messenger RNA expression in the rat ovary. Biol Reprod. 2004, 71(16):1796-1806
    70 Holland A, Findlay J, Clements J. Kallikrein gene expression in the gonadotrophin-stimulated rat ovary. J Endocrinol. 2001, 170(1): 243-250
    71 Itoh T, Ikeda T, Gomi H, et al. Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem. 1997, 272(36): 22389-22392
    72 Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998, 93(3): 411-422
    73 Wilson CL, Heppner KJ, Labosky PA, et al. Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc Natl Acad Sci U S A. 1997, 94(4): 1402-1407
    74 Stickens D, Behonick DJ, Ortega N, et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development. 2004, 131(23): 5883-5895
    75 Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease dueto inadequate collagen turnover. Cell. 1999, 99(1): 81-92
    76 Ohnishi J, Ohnishi E, Shibuya H, et al. Functions for proteinases in the ovulatory process. Biochim Biophys Acta, Proteins Proteomics. 2005, 1751(1): 95-109
    77 Espey LL, Yoshioka S, Russell DL, et al. Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropin-primed immature rat. Biol Reprod. 2000, 62(4): 1090-1095
    78 LongpréJM, Leduc R. Identification of prodomain determinants involved in ADAMTS-1 biosynthesis. J Biol Chem. 2004, 279(32):33237-33245
    79 Relucenti M, Heyn R, Correr S, et al. Cumulus oophorus extracellular matrix in the human oocyte: a role for adhesive proteins. Ital J Anat Embryol. 2005, 110 (2 Suppl 1): 219-224
    80 Jansen E, Laven JSE, Dommerholt HBR, et al. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol. 2004, 18(12): 3050-3063
    81 Mittaz L, Russell DL, Wilson T, et al. Adamts-1 is essential for the development and function of the urogenital system. Biol Reprod. 2004, 70(4): 1096-1105
    82 Yung Y, Maman E, Konopnicki S, et al. ADAMTS-1: a new human ovulatory gene and a cumulus marker for fertilization capacity. Mol Cell Endocrinol. 2010, 328(1-2):104-8
    83 Madan P, Bridges PJ, Komar CM, et al. Expression of messenger RNA for ADAMTS subtypes changes in the periovulatory follicle after the gonadotropin surge and during luteal development and regression in cattle. Biol Reprod. 2003, 69(5): 1506-1514
    84 Richards JS, Hernandez-Gonzalez I, Gonzalez-Robayna I, et al. Regulated expression of adamts family members in follicles and cumulus oocyte complexes: evidence for specific and redundant patterns during ovulation. Biol Reprod. 2005, 72(5): 1241-1255
    1詹亚茜. 640例不孕症病因分析.黑龙江医学. 2008,32(4):292-293
    2王群,张振宇. 116例女性不孕症病因分析.中国优生与遗传杂志. 2006,l4(11):111-112
    3蔡小荪,冯杜熊. 110例不孕症治验分析.上海中医杂志. 1985,(9):18-20
    4赵瑞华.许润三教授从肝肾论治不孕症之经验.中医函授通讯. 1994,(2):20-21
    5罗元恺.肾气、天癸、冲任的探讨及其与妇科的关系.上海中医药杂志. 1983,(1):11
    6夏桂成. 328例肾虚不孕症辨治分析.中国医药学报. 1989,(5):333
    7刘敏如,谭万信.中医妇产科学.北京:人民卫生出版社,2001:742-748.
    8俞瑾.无排卵性不孕症.中西医结合杂志. 1987,7(10):617
    9马堃,傅方珍.调经助卵冲剂治疗排卵障碍性不孕52例.中国中西医结合杂志. 1998,18(6):372
    10曹敬兰,刘涓.补肾助孕汤为主治疗排卵障碍性不孕.湖北中医杂志. 1998,20(6):37
    11许丽锦,罗颂平.排卵障碍的病机探讨.中国中医药信息杂志,2003,10(3):4-5
    12顾春晓,李丽芸.李丽芸教授补肾调周法治疗排卵障碍性不孕经验.河南中医. 2004,24(1):20-21
    13姜向坤,李云,张丽娟,等.排卵功能障碍性不孕的机制探讨.山东中医杂志. 2000,19(6):326
    14吴恩新.中西医结合治疗排卵障碍性不孕症32例.河北中医. 2001,23(8):25
    15刘美清.中西医结合治疗原发性不孕170例总结.湖南中医杂志. 2002,18(5):15
    16庞保珍,赵焕云.补肾疏肝与补肾治疗无排卵性不孕149例.浙江中医杂志. 1992,27(12):539
    17张晓春.归肾丸合四逆散治疗排卵障碍性不孕症59例.山东中医杂志. 2002,21(7):404
    18张晓春.疏肝活血法促排卵作用机制探讨.陕西中医. 2002,23(5):424
    19李玲,刘桂宇,谭玉华,等.促排卵汤治疗排卵障碍性不孕症152例.疑难病杂志. 2003,2(1):43
    20李灿东,林雪娟,兰启防,等.不孕症肝郁病理的生殖内分泌实质研究.河南中医学院学报. 2004,19(6):18-20
    21李灿东,高碧珍,黄熙理,等.不孕症肝郁病理与性腺轴功能变化的相关性研究.上海中医药大学学报. 2005,19(3):36-38
    22庞震苗,张玉珍.不孕症与肝郁关系的探讨.江苏中医药. 2002,23(11):18
    23徐德厚.徐祖辉治疗排卵障碍性不孕症经验.陕西中医. 1998,19(6):263
    24刘慧华.排卵汤治疗排卵障碍性不孕症36例.湖南中医杂志. 1999,15(1):34
    25侯丽辉,王晓冰,吴效科.从“痰壅胞宫”病机理论论多囊卵巢综合征排卵障碍.中国中医基础医学杂志. 2008,14(10):725-726
    26孙红,王祖龙.褚玉霞诊治排卵障碍的经验.光明中医. 2010,25(9):1571-1573
    27徐莲薇,沈明洁,桑珍.孙卓君治疗排卵障碍经验.中医杂志. 2008,49(l):23-24
    28彭少芳,杨志忠.固肾丸治疗卵功能障碍性不孕症.广东医学. 1999,20(11):901
    29关新梅.促排卵汤治疗排卵功能障碍性不孕症29例.中医研究. 1998,11(4):37
    30马堃.排卵障碍性不孕43种因素的Logistic回归和树型分析.中医杂志. 1998,39(12):735
    31毛凤仙.调理冲任促排卵体会.山东中医杂志. 2000,30(1):364
    32朱长玲,程泾,程蕾.未破裂卵泡黄素化综合征致不孕中西医结合治疗临床观察.浙江中医学院学报. 2000,24(6):23
    33韩延华,韩延博.百灵妇科传真.北京:中国中医药出版社,2007:159-162
    34庞保珍.不孕不育中医治疗学.北京:人民军医出版社,2008
    35李祥云工作室.李祥云治疗不孕不育经验集.上海:上海科学技术出版社,2007:33-38
    36徐福松,莫惠.不孕不育症诊治.上海:上海科学技术出版社,2006:38-47
    37王秀春.大补元煎治疗排卵障碍性不孕36例.国医论坛. 2002,17(4):24
    38李凤阳,安向荣,李孟.六二五合方治疗排卵障碍性不孕60例.陕西中医. 2009,30(11):1457
    39洪义德,樊恩党.毓麟珠治疗排卵障碍性不孕62例.陕西中医. 2005,26(10):1080
    40罗爱鄂,杨俊娥.刘老验方益五合方治疗无排卵性不孕症的临床观察.湖北中医杂志. 2009,31(9):13-14
    41李淑玲,王玖玲,李育竹.益肾活血汤治疗排卵障碍牲不孕症60例.上海中医药杂志. 2008,42(4):41-43
    42黄月玲.中药补肾化淤汤治疗排卵障碍性不孕32例.时珍国医国药. 2007,18(9):2237
    43段岫绮,蒋梦穗.双紫汤治疗无排卵性不孕症76例临床研究.上海中医药杂志. 2004,38(7):39-40
    44黄兆政.疏肝养血调经法治疗排卵功能障碍性不孕140例总结.湖南中医杂志. 1997,13(3):19
    45张晓金,袁爱英,赵敏,等.从肝肾论治无排卵性不孕症44例临床观察.中医杂志. 2008,49(8):704-706
    46朱敏华,李淑玲.促排卵汤治疗排卵障碍性不孕症30例.山东中医杂志. 2006,25(6):385-386
    47邵瑞云,郎丰君,蔡金凤,等.补肾活血中药加克罗米芬治疗多囊卵巢综合征所致不孕的临床观察.中国中西医结合杂志. 2004,24(l):41-43
    48刘淑珍,王秀珍,李春荣.中西医结合治疗排卵障碍型不育临床观察.生殖医学杂志. 2005,14(2):106-107
    49曾莉,包晓武,张桂花.排卵障碍型不孕症的中西治疗临床研究.中国妇幼保健. 2010,25(13):1814-1815
    50寿清和.运用补肾活血中药治疗排卵障碍性不孕症临床观察.浙江中医杂志. 2007,42(2):93-94
    51孙怀玲.调经颗粒联合尿促性腺素治疗排卵障碍性不孕临床研究.辽宁中医杂志. 2010,37(4):663-664
    52李录花.中西医结合治疗排卵障碍性不孕症30例疗效观察.中国中医基础医学杂志. 2010,16(8):732
    53盛爱华,许卫玉,黄爱武.中医周期疗法为主治疗排卵障碍性不孕65例.浙江中医杂志. 2010,45(8):581
    54应震红.中医分期辨治合克罗米芬治疗排卵障碍性不孕60例.浙江中医杂志. 2010,45(6):408-409
    55刘新军,张振卿,秦淼.中西医综合治疗排卵障碍性不孕症疗效观察.中国中医药信息杂志. 2008,15(4):79-80
    56李娜,田颖,杨鉴冰.中西医结合治疗无排卵性不孕36例.陕西中医学院学报2007,30(3):26-27
    57胡会兵.中西医结合治疗排卵障碍性不孕症的临床观察.湖北中医杂志. 2003,25(5):19-20
    58吴化平,范书萍,范天风.中西医结合治疗排卵障碍性不孕160例.中国中西医结合杂志. 2007,27(6):550-551
    59史玉梅,吴芹,夏桂成.夏桂成教授补肾调经治疗排卵障碍性不孕症经验撷要.山西中医. 2006,22(2):7-8
    60金季玲.补肾调周治疗排卵障碍不孕82例.辽宁中医杂志. 1996,23(11):505
    61连方,孙宁铨.中医药治疗黄体功能不全—附60例分析.中医杂志. 1989,(6):33-35
    62徐惠群,胡争艳.补肾助孕方治疗排卵障碍性不孕症疗效观察.上海中医药杂志. 2005,39(5):29-30
    63张丽萍,杨伍风.补肾法治疗排卵障碍性不孕症22例疗效观察.新中医. 2001,33(12):24-25
    64刘国平,陈鹏飞,贺玉珍.中医治疗排卵功能障碍性不孕68例临床观察.吉林医学. 2010,31(9):1225-1226
    65周军,李大剑.补肾活血法改善排卵障碍32例:B超评估.中国临床康复. 2006,10(31):114-116
    66陈伟仁.不孕症从肾论治概说.中药新药与临床药理. 2002,13(4):264-267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700