重金属铅对家蚕的抗氧化和生殖发育相关基因表达以及酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅是一种对人类和小鼠等哺乳类动物以及水生动物存在显著不良影响的重金属,但铅对无脊椎动物、特别是对昆虫的影响鲜有研究报道。zonghe特异蛋白基因只在家蚕是鳞翅目模式昆虫,也是一种应用广泛的实验动物。本实验以幼虫期全龄添食Pb(NO3)2对家蚕进行铅暴露,调查了Pb~(2+)在家蚕体内组织的蓄积及其对家蚕生长和生殖发育的影响,重点调查了Pb~(2+)暴露后家蚕组织的抗氧化相关基因和生殖发育相关基因的表达和酶活性的变化。主要获得了以下结果:
     1.铅胁迫家蚕的Pb~(2+)蓄积有明显组织和性别差异
     原子吸收光谱法(GFAAS)测定结果显示,铅暴露后家蚕5龄幼虫的消化吸收组织中肠和马氏管,以及性腺组织中,Pb~(2+)含量随着添食Pb(NO3)2浓度的提高而增加,有明显的蓄积效应;蚕粪中Pb~(2+)含量也随着添食Pb(NO3)2浓度的提高显著增加,且具有浓度梯度效应。说明铅胁迫家蚕幼虫具有较强的排泄解毒能力,同时铅离子能够在幼虫生殖腺蓄积。
     在相同暴露浓度时,家蚕5龄雌性幼虫的中肠内Pb~(2+)含量高于雄性,但两性中肠内Pb~(2+)含量都随着暴露浓度的提高而显著增加。两性5龄幼虫马氏管中的Pb~(2+)含量与消化管中接近,但随暴露浓度的提高呈现先升高后降低的趋势,40mg/kg暴露浓度下,雄性幼虫马氏管中Pb~(2+)的含量显著高于雌性,提示雄性通过马氏管排泄血液中Pb~(2+)能力比雌雄幼虫高。5龄幼虫生殖腺中的Pb~(2+)的蓄积量显著低于消化管和马氏管,饲料中Pb~(2+)浓度为40-160mg/kg时,雌性生殖腺中Pb~(2+)含量均高于雄性,暗示雌性生殖腺可能受到Pb~(2+)的影响更大。
     2.家蚕脂肪体、中肠和生殖腺中抗氧化解毒酶活性及相关基因表达对铅胁迫敏感
     昆虫受重金属胁迫后,抗氧化解毒酶系成员有通过联合作用来清除铅离子胁迫产生的自由基危害的作用。本实验在10-160mg/kg铅暴露后,家蚕5龄6 d幼虫体内的SOD活性,在脂肪体和中肠组织中上升,而在生殖腺中下降;CAT活性在脂肪体中上升,在中肠和生殖腺中下降。在实验浓度范围内,Sod基因的表达水平在脂肪体、中肠和生殖腺内均出现下降趋势,而Cat基因在3个调查组织中都有不同程度的上调表达,但这2个基因表达水平的变化与各自蛋白酶活性的变化不同步,显示体内SOD和CAT酶活性的升高,不完全依赖基因转录与蛋白质合成。推测铅离子胁迫后,家蚕幼虫脂肪体具有上升抗氧化酶活性解毒;而生殖腺的抗氧化酶活性下降,有氧化受损的可能。
     谷胱甘肽S-转移酶(GST)和谷胱甘肽过氧化物酶(GSH-Px)是生物体内重要的解毒酶。正常家蚕5龄6 d幼虫生殖腺中的GST酶活性分别是脂肪体和中肠中的20.0倍、34.6倍,GSH-Px酶活性分别是脂肪体和中肠中的46.6倍和57.5倍。幼虫食下含Pb~(2+) 10 mg/kg以上的人工饲料时,生殖腺中2种解毒酶的活性成倍下降;饲料含Pb~(2+) 20-80 mg/kg时,生殖腺中的Gstd1和Gsh-Px基因mRNA转录水平也显著下调,且雄性比雌性更加显著。幼虫食下含Pb~(2+) 10-160 mg/kg的人工饲料时,脂肪体中2种解毒酶活性显著升高,Pb~(2+)对2种酶的影响浓度分别为10-160 mg/kg和20-80 mg/kg,但在20-80 mg/kg Pb~(2+)范围内,Gsh-Px和Gstd1基因mRNA的转录却受到抑制,并且雌性幼虫脂肪体中的GSH-Px酶活性及基因mRNA转录水平、雄性幼虫脂肪体中的GST酶活性及其基因mRNA转录水平对Pb~(2+)暴露更加敏感。幼虫食下含Pb~(2+) 20 mg/kg以上的人工饲料时,中肠GST酶活性显著上升,而GSH-Px酶活性变化较小,性别间差异不明显;Gstd1基因mRNA转录水平有上调趋势,Gsh-Px基因mRNA转录水平则受到显著抑制。结果显示,家蚕幼虫生殖腺虽然有比脂肪体和中肠更强的GST酶和GSH-Px活性,但对Pb~(2+)的毒害敏感,雄性比雌性受影响更大,生殖腺通过抗氧化防御系统抵御Pb~(2+)毒害的作用很弱。
     3.铅胁迫对家蚕卵黄蛋白原基因和卵特异蛋白基因表达有显著影响
     家蚕卵黄蛋白原基因Vg与卵特异蛋白基因Esp是家蚕的2个生殖发育相关的重要基因。EST电子表达谱结果显示,家蚕Vg只在吐丝期和蛹期脂肪体与卵巢组织中表达,家蚕Esp只在蛹期卵巢中表达。
     为了解重金属铅是否存在环境雌激素效应,本文实验调查了铅暴露后,Vg和Esp基因在其特异时空的表达谱。结果表明,在20-160 mg/kg Pb~(2+)暴露浓度范围内,家蚕5龄雌性幼虫脂肪体Vg基因的表达量较未接触铅离子的对照蚕呈下降趋势;20 mg/kg Pb~(2+)低暴露浓度下,家蚕雄性5龄幼虫脂肪体中Vg基因的表达量为对照的1.15倍,出现了Vg基因的微弱诱导表达,但Pb~(2+)暴露浓度提高到40-160 mg/kg时,雄蚕脂肪体中Vg基因的表达量比对照显著降低。幼虫期正常两性家蚕生殖腺中都有Vg基因的微弱表达,其中雌性的表达水平显著高于对照。在20 mg/kg组雄性生殖腺中Vg基因的表达水平较对照显著升高,和幼虫脂肪体中的结果一致,暗示该铅暴露浓度有诱导雄性Vg基因表达的环境雌激素效应可能。
     家蚕蛹期脂肪体中Vg基因的转录活性显著高于幼虫期,而且蛹期有显著的性别差异,雄蛹脂肪体中Vg基因的表达量仅为雌性的3.59%。20-160 mg/kg Pb~(2+)暴露后,家蚕雄蛹脂肪体中Vg基因转录水平显著下调(P<0.01),而雌蛹脂肪体中Vg基因的表达量显著上调(P<0.01),但其中20 mg/kg组显著下降(P<0.01)。蛹期生殖腺中Vg基因的表达量性别差异小于幼虫期;铅离子暴露后,3d龄蚕蛹卵巢中Vg表达水平显著下降,而睾丸中Vg表达水平在低水平波动,但160 mg/kg浓度组出现显著下调。家蚕幼虫期与蛹期Vg基因的转录受铅离子暴露影响方式可能不同。
     家蚕蛹期生殖腺中Esp基因mRNA水平调查结果显示,实验浓度范围内铅离子胁迫,造成了雌性生殖腺中Esp基因表达的显著下调,但没有诱导雄性家蚕生殖腺中Esp基因表达。
Bombyx mori is the model insect of lepioloptera and it is a widely used experimental animals. Research on heavy metals like lead on mamals (such as human and mouse )and aquatic organisms is common, but relatively little in invertebrates. Research on the insect was less. In our experiment, we used Pb(NO3)2 as the resource of Pb~(2+) to treat Bombyx mori during the whole laval stage. We investgested the accumulation of Pb~(2+) in tissues of silkworm, the basic physical and reproductive development-related indicators and the effects of lead exposure on the expression level of antioxidant genes and the reproductive development related genes and activity of antioxidant enzymes in tissues of Bombyx mori. The major results are as follows:
     1.When forced by lead(Pb), a heavy metal, the accumulations of Pb~(2+) differs apparently in different tissues of silkworms. A different rule appeared between males and females.
     In the midgut, gonad and malpighian tube of Bombyx mori, the content of Pb~(2+) increased with improved concentration of Pb(NO3)2 in food which was measured by GFAAS, showing an obvious Pb~(2+) accumulation effect. The content of Pb~(2+) in excrements of silkworms also increased apparently with an effect of concentration gradient. This showed that,the larva of Bombyx mori had a strong excreting ability to detoxification and there were accumulations of Pb~(2+) in gonads.
     The content of Pb~(2+) in midgut of both sexes obviously increased with the improved exposion concentration of Pb~(2+) , presenting an accordance trend. However, when in the same exposion concentration of Pb~(2+) , the content of Pb~(2+) in midgut of females was higher than males.The content of Pb~(2+) in malpighian tube was close to that in alimentary canal. Meanwhile, with the improved exposion concentration of Pb~(2+), the content of Pb~(2+) in both sexes showed a thend of rising at first and then decreasing. Under the condition of 40 mg/kg exposion concentration, the malpighian of male larvas had a higher excretion ability of Pb~(2+) than that of females.The accumulated amount of Pb~(2+) in gonad was obviously lower than that in alimentary canal and malpighian tube. When the concentration of Pb~(2+) in forage was 40-160 mg/kg, the content of Pb~(2+) in female gonad was higher than males, suggesting that female gonads were influenced greater by Pb~(2+) probably.
     2.The antioxidant detoxifying enzymes activity in fat body, midgut and gonad of Bombyx mori and expressions of relative genes were sensitivity to Pb~(2+) forcing.
     After forced by Pb~(2+) ,a heavy metal , silkworms would clear the radical created by Pb~(2+) by koinonia of antioxidant detoxifying enzymes like SOD、CAT、GST and GSH-Px in order to reduce the harm to organism, which was also a flexible response to overcoming harmful environment and preventing toxicosis.
     When dealed with heavy metals, SOD and CAT in Bombyx mori’s fat body and midgut have poison excited and poison inhibit effect, but the ranges were different. When exposed in 10-160 mg/kg of lead, the activity of SOD in both fat body and midgut of Bombyx mori’s 5 instar larvaes would significantly rise, however, they were inhibited in gonades. Moreover, the active of CAT in fat body would significantly rise in fatbody under 10-160 mg/kg lead exposure,while the active was inhibited in midgut and gonades.
     Detected the mRNA expression level of Sod and Cat, we found that the Sod expression levels in fatbody、midgut and gonads of Bombyx mori’s 5 instar larvaes were all decreasing. Differently, the expression of Cat were up-regulated in the three tissues showing that rised of enzyme active were not completely rely on the gene transcription and the synthesis of proteins. There were asynchronism between the changes of enzyme activities of CAT and SOD and mRNA expression level changes of relative genes. It suggested that after lead stress the fatbody of silkworm could rise the enzyme active to antidote the stress; But the enzyme active was depressed in gonads suggesting that it was easier to be harmed.
     Glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) are important detoxifying enzymes in vivo. In order to study the influencing mechanism of heavy metal lead on lepidopterous insect, we fed the Bombyx mori with artificial diet added with Pb(NO3)2 for Pb~(2+) exposure. Enzyme activity assay and real-time PCR were employed to investigate the activity of enzymes and the mRNA transcription level of related genes in tissues of day 6 larvae of the 5th instar. In normal day 6 larvae of the 5th instar, GST enzyme activity in gonad was 20.0 and 34.6 times of that in fat body and midgut respectively, and GSH-Px enzyme activity was 46.6 and 57.5 times of that in fat body and midgut respectively. After the larvae fed on artificial diet containing 10 mg/kg or higher Pb~(2+), activity of the two enzymes in gonad decreased by many times. When the artificial diet contained 20-80 mg/kg Pb~(2+), mRNA transcriptional levels of Gstd1 gene and Gsh-Px gene were also significantly down-regulated, with more significant down-regulation in males over females. After the larvae fed on artificial diet containing 10-160 mg/kg Pb~(2+), the activity of GST and GSH-Px in fat body increased significantly. Effective Pb~(2+) concentrations to these two enzymes could be divided into two ranges: 10-160 mg/kg and 20-80 mg/kg, respectively. However, within the range of 20-80 mg/kg Pb~(2+), mRNA transcriptions of Gsh-Px and Gstd1 were inhibited. Moreover, GSH-Px activity and mRNA level of Gsh-Px in fat body of female larvae, and GST activity and mRNA level of Gstd1 in fat body of male larvae were more sensitive to Pb~(2+) exposure. After 20 mg/kg or more Pb~(2+) exposure, GST activity in the midgut increased dramatically, but GSH-Px activity only changed slightly and there was no significant difference between male and female larvae. mRNA transcriptional level of Gstd1 gene had a trend of up-regulation, while that of Gsh-Px was significantly down-regulated. The results suggested that, although silkworm larvae have higher enzyme activity of GST and GSH-Px in gonads than in midgut and fat body, they are sensitive to toxicity of Pb~(2+). Nevertheless, male larvae are more sensitive than female ones, and the antioxidant defense system in gonads is quite weak in resisting toxicity from Pb~(2+).
     3.Lead stress had a significant impact on the expression of Bombyx mori vitellogenin gene and egg specific protein gene.
     Vitellogenin gene and egg specific protein gene were two key genes of Bombyx mori’s reproductive development. EST electric expression profiles showed that Vg gene only expressed in fat body and ovary on both spinning stage and pupa stage of silkworm, and specific protein gene Esp only expressed in testis on pupa stage.
     In order to investgate if lead have the enviromental estrogen effect, the paper study the specific expression profiles of Vg and Esp. The results indicated that expression of Vg gene trended to decrease than normal with disposals of Pb~(2+) concentrations within 20-160 mg/kg in the fat body of 5L female silkworm. Meanwhile, the expression of all disposed groups dropped dramatically except that of 20 mg/kg concentration group in male silkworm which turned out to be up significantly and it was as 1.15 times as that of control group in male. It can be driven that faint induction of Vg gene expression took place in male fat body in the concentration of 20 mg/kg, though it was still in a relatively low level compared with that of female fat body. When the lead exposure concentration rised to 40-160 mg/kg, expression of Vg gene in fatbody of males trended to decrease remarkably than normal. In gonads of female and male Bombyx mori there were little expression of Vg, but higer in females than males. In testis of silkworms under 20 mg/kg lead exposure, the Vg expression level was rised absolutely, which was coincident with the result of fatbody of male larves suggesting that the concentration of lead had the enviromental estrogen effect of induction expression of Vg in males.
     The expression of Vg gene in fat body on pupa stage of normal silkworm was tremendously higher than that of larva fat body and had a sex difference. The expression of Vg gene in all disposed groups rose drastic (P<0.01) in comparison to the control except the group exposed to the concentration of 20 mg/kg which decreased drastic (P<0.01). The expression of Vg gene in male fat body on pupa stage of normal silkworm was also lower than that of female fat body, which was tantamount to 3.59% of the female control. The mRNA expression level of Vg gene in all disposed male fat body on larva stage dropped dramatically within the Pb~(2+) concentration of 20 mg/kg-160 mg/kg compared with that of the control. Therefore, a disparity existed in mRNA expression of Vg gene in fat body between pupal and larva stages. The difference between sexes of pupa stage was less than the stage of larva; After lead exposure, Vg expression in ovary of 3d pupa depressed significantly while fluctuation at low levels intesis. Therefore, a disparity existed in influence pattern of Vg gene between pupal and larva stages.
     Investigation on the mRNA expression level of Esp gene in genital gland on pupal stage showed that Pb~(2+) concentrations used in this study made expression of Esp gene down in females, while Esp gene expression wasn’t induced in males. Therefore, Esp gene is different to Vg gene, thus Esp gene can not be used as the indicators of environmentally endocrine disruptors.
引文
1. Acharya UR, Acharya S, Mishra M. Lead acetate induced cytotoxicity in male germinal cells of Swiss mice[J]. Ind Health, 2003, 41(3): 291-294()
    2. Afanase’ev I B, Dorozhko A l, Brodskii AV, et a1. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation[J]. Biochem Pharmacol, 1989, 38(11): 1763-1769
    3. Ahmad I, Pacheco M, Santos M A, Anguilla anguilla L. Oxidative stress biomarkers: an in situ study of freshwater wetland ecosystem(Pateira de Fermentelos,Portugal)[J].Chemosphere, 2006,65(6): 952-962
    4. Bebianno M J, Lopes B, Guerra L, et a1. Glutathione S-tranferases and cytochrome P450 activities in My tilus galloprovincialis from the south coast of Portugal: Effect of abiotic factors[J]. Environment International, 2007, 33(4): 550-558
    5. Belles X. Vitellogenesis directed by juvenile hormone[J]. Reproductive Biology of Invertebrates, 2005, 157-197
    6. Blazso G, Gabor M, Rohdewald P. Antiinflammatory activities of procyanidin-containing extract from Pinus pinaster Ait. after oral and cutaneous application[J]. Pharmazie, 1997, 52(5): 380-382
    7. Bondy S C, Guo S X. Lead potentiates iron-induced formation of reactive oxygen species[J]. Toxicol Lett, 1996, 87(23): 109-112
    8. Brewster UC, Perazella M A. A review of Chronic lead intoxication: an u-nrecogniged cause of chronic kidney disease[J]. Am J Med Sci, 2004,327:341-347
    9. Campana O, Sarasquete C, Blasco J. Effect of lead on ALA-D activity, metallothionein levels, and lipid peroxidation in blood, kidney, and liver of the toadfish Halobatrachus didactylus[J]. Ecotoxicology and Environmental Safety, 2003, 55 (1): 116-125
    10. Chen J S, Cho W L, Raikhel A S. Analysis of mosquito vitellogenin cDNA similarity with vertebrate phosvitins and arthropod serum porteins[J]. J Mol Biol, 1 994, 237(5): 641-647
    11. Chen L, Yang X, Jiao H, et al.Tea catechins protect against lead-induced ROSformation, mitoehondrial dysfunction, and calcium dysregulation in PC12 cells[J]. Chem Res Toxicol, 2003, 16(9): 1155-1161
    12. Chen Y S, Stash A I, Pinkerton A A. Chemical bonding and intermolecular interactions in energetic materials: 1,3,4-trinitro-7,8-diazapentalene[J]. Acta Crystallographica Section B , 2007, 63(Part 2): 309-318
    13. Corpas I, Castillo M, Marquina D, et a1. Lead in gestational and lactation periodsalters the development of male reproductive organs[J]. Ecotoxicol Environ Saf, 2002, 53 (2): 259-266
    14. DeRosa C, Richter P, Pohl H, et a1. Environmental exposures that affect the endocrine system: public health implications[J]. Journal of Toxicology and Environmental Health, 1 998, l: 3-26
    15. DeSilva P E. Determination of lead in plasma and studies on its relationship to lead in erythrocytes[J]. Br J Ind Med,1981, 38(3):209-217
    16. Dhadialla T S, Carlson G R, Le D P. New insecticides with ecdysteroidal and juvenile hormone activity[J]. Annu. Rev. Entomol., 1998, 43:545-569
    17. Dietert R R, Piepenbrink M S. Lead and immune function[J]. Crit Rev Toxicol,2 006, 32(36): 359-385
    18. Engelmann F. Insect vitellogenin: identification, biosynthesis, and the role in vitellogenesis[J]. Advances in Insect Physiology, 1979, 14: 49-108
    19. Engelmann F. Vitellogenesis controlled by juvenile hormone[J]. Endocrinology of Insects, 1983, 259-270
    20. Facino R M, Carini M, Aldini G, et a1. Procyanidines from Vitis vinifera seeds protect rabbit heart from ischemia/repeffusion injury:antioxidant intervention and/or iron and copper sequestering ability[J]. Planta Medica, 1996, 62(6) :495-502
    21. Ferenz H J. Yolk protein accumulation in Locusta migratoria(R.and F.)(Orthoptera:Acrididae) oocytes[J]. International Journal of Insect Morphology and Embryology, 1993, 22: 295-314
    22. Frank V B, Eva V, James F D, et al. The role of active oxygen species in plant signal transduction[J]. Plant Science, 2001, 161: 405-414
    23. Gadagbui B, James M. Activities of affinity-isolated glutathione S-transferas-e(GST) from channel catfish whole intestine[J]. Aquat Toxicol ,?2000(49): 27-37
    24. Gillespie D K, De Peyster Ann. Plasma calcium as asurrogate measure for vitellogenin in fathead minnows(Pimephales promelas)[J]. Ecological Environ Safety, 2004, 58:90-95
    25. Giorgi F, Snigirevskaya E S, Raikhel A S. The cell biology of yolk protein precursor synthesis and secretion[J]. Reproductive Biology of Invertebrates, 2005, 33-68
    26. Grosell M, Brix K V. High net calcium uptake explains the hypersensitivity of the freshwater pulmonate snail, Lymnaea stagnalis, to chronic lead exposure[J]. Aquatic Toxicology, 2009, 9l(4):302-311
    27. Grosell M, Gerdes R, Brix K V. Influence of Ca, humic acid and pH on lead accumulation and toxicity in the fathead minnow during prolonged water-borne lead exposure [J]. Comparative Biochemistry and Physiology: Part C, 2006, 143(4): 473-483
    28. Guiduglia K R, Nascimento A M, Amdam G V. Vitellogenin regulates hormonal dynamics in the worker caste of a eusocial insect [J]. FEBS Letters, 2005, (579): 4961-4965
    29. Gurer H, Ercal N. Can antioxidants be beneficial in the treatment of lead poisoning?[J].Free Radical and Medicine, 2000, 29(10): 927-945
    30. Hagedorn H H, Connor J D, Fuchs M S, et a1. The ovary as a source of ecdysone in an adult mosquito[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72: 3255-3259
    31. Hagedorn H. The role of ecdysteroids in reproduction[J]. Comprehensive Insect Physiology Biochemistry and Pharmacology, 1985, 8:205-261
    32. Hahn T, Schenk K, Schulz R. Environmental chemicals with known endocrine potential affect yolk protein content in the aquatic insect Chironomus ri-parius[J]. Environmental Pollution, 2002, 120: 525-528
    33. Hai D Q, Varga S I,Matkovics B. Organophosphate effects on antioxidant system of carp(Cyprinus carpio)and catfish(Ictalurus nebulosus)[J]. Comparative Biochemistry and Physiology, 1997(117): P83-88
    34. Hayes J D, Pulford D J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drugresistance [J]. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30(6): 445-520
    35. Hemich VC, Sliter TJ, Lubahn DB, et a1. A Steroid/thyroid horm one receptor superfamily member in Drosophila melanogaster that shares extensive sequence similarity with a mammalian homologue[J]. Molecular Biology, 1990, 18(14): 4143-4148
    36. Hernández-Ochoa I, García-Vargas G, López-Carrillo L, et al. Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico[J]. Reprod Toxicol, 2005, 20 (2): 221-228
    37. Hirai M, Watanabe D, KiyotaA, et a1. Nucleotide sequence of vitellogenin mRNA in the bean bug, Riptortus clavatus: analysis of processing in the fat body and ovary[J]. Insect Biochemistry and Molecular Biology, 1998, 28: 537-547
    38. Hirsch H V, Mercer J, Sambaziotis H, et al. Behavioral effects of chronic exposure to low levels of lead in Drosophila melanogaster[J]. 2003, 24(3): 435-442
    39. Hirsch H V, Possidente D, Possidente B. Pb2+: an endocrine disruptor in Drosophila?[J]. Physiol Behav 2010, 99(2): 254-259
    40. Hitoshi M, Naoki F, Toshihiro F, et a1.Characterization of sources of lead in the of Asia Using rations of stable lead osotopes[J]. Environmental science Technology, 1993, 27: 1347-1356
    41. Jia X Y, Dong A H, Ma X M. Affection of lead stress on antioxidant enzyme activities and malonyldialdehyde contents of Bufo bufo gargarizans [J]. China Environmental Science, 2004, 24(2): 56-59
    42. Jiang C A, Lamblin A F J, Steller H, et a1. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophilla metamorphosis[J]. Molecular Cell, 2000, 5: 445-455
    43. Jurczuk M, Moniuszko-Jakoniuk J, Brzóska M M. Hepatic and renal concentrations of vitamins E and C in lead- and ethanol-exposed rats, an assessment of their involvement in the mechanisms of peroxidative damage[J]. Food and Chemical Toxicology, 2007, 45, 1478–1486
    44. Ken I, Okitsugu Y. Egg-specific protein in the silkworm, Bombyx mori: Pu-rification, properties,localization and titre changes during oogenesis and embryogenesis[J]. Insect Biochemistry, 1983, 13(1) :71-80
    45. Kiran K B, Prabhakara R Y, Noble T, et al. Lead-induced alteration of apoptotic proteins in different regions of adult rat brain[J]. Toxicol, 2009, Lett. 184, 56-60
    46. Koeppe J, Ofengand J. Juvenile hormone-induced biosynthesis of vitellogenin in Leucophaea maderae[J]. Arch Biochem Biophys, 1976, Mar, 173(1): 100-113
    47. Landrigan, P J, Sonawane B, Butler R N, et a1.Early environment origins of neurode-generative disease in later life[J]. Environ Health Perpect, 2005, 113(9): 1230-1233
    48. Larbey R J. Issues surroundring the use of lead in gasoline-energy economic and environment[J]. The science of the total environment, 1994, 146/147: 19-26
    49. Lavicoli I, Carelli G, Stanek E J, et a1. Effect of low does of dietary lead on red blood cell production in male and famale mice[J]. Toxicol Lett, 2003, 137: 1 93-199.
    50. Lee J M, Hatakeyama M, Oishi K. A simple and rapid method for cloning insect vitellogenin cDNAs[J]. Insect Biochemistry and Molecular Biology , 2000a , 30: 189-194
    51. Locke J, White B N, Wyaa G R. Cloning and 5’end nucleotide sequences of two juvenile hormone-inducible vitellogenin genes of the African migratory locust[J]. DNA , 1987, 6: 331-342
    52. Lopes P A, Pinheiro T, Santos M C, et a1. Response of antioxidant enzymes in freshwater fish populations to inorginanic pollutants exposure[J]. Science of the total Environment, 2001, 280(1-3): 153-163
    53. Macnair M. Tansley review No.49: The genetics of metal tolerance in vascular plants[J]. New Phytophysiology, 1993, 124: 541-559
    54. Mahaffey K R. Introduction:advances in lead research:implications for environment health [J]. Environmental Health Perspectives, 1990, 89(1): 3
    55. Maimoni G V , Cezar C L L, Raw I, et al . Purification of catalase from human placenta [J]. Biotechnology and Applied Biochemistry, 1999, 29 (1): 73-77
    56. Marchlewicz M, Michalska T, Wiszniewska B. Detection of lead-induced oxidative stress in the rat epididymis by chemiluminescence[J]. Chemosphere, 2004, 57(10): 1553-1562
    57. Matozzo V, GagnéF, Marin M G, et a1. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review[J]. Environment?International , 2008, 34: 531-545
    58. Mishra KP, Singh V K, Rani R , et a1. Effect of lead exposure on the immune response of some in occupationally exposed individuals[J]. Toxicology, 2003, 188: 251-259
    59. Mishra S, Srivastava S, Tripathi R D, et al. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and a-ntioxidant system in response to its accumulation[J]. Chemosphere, 2006, 65: 1027-1039
    60. Monna F, Lancelot J, Croudace I W, et a1.Pb isotopic composition of airborne particulate material from France and the southern United KingdomImplications for Pb pollution sources in urban areas.Environ. Sci. Technol., l 997,31(8):2277-2286
    61. Monteiro H P, Bechara E J, Abdalla D S. Free radicals involvement in neurological porphyries and lead poisoning[J]. Molecular and Cellular Biochemistry, 1991, 103(1): 73-83
    62. Nelson C M , Ihle K E, FondrL M K, et a1 . The vitellogenin gene has multiple coordinating effects on social organization[J]. Plos Biology , 2007, 5: 673-677
    63. Ortelli F, Rossiter L C, Vontas J, et al. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae [J]. Biochem Journal, 2003, 373(3): 957-963.
    64. Pace B M, Lawrence D A, Behr M J, et al. Neonatal lead exposure changes quality of sperm and number of macrophages in testes of BALB/c mice [J]. Toxicology, 2005, 210(2/3): 247-256
    65. Palmer B D, Palmer S K. Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and African clawed frog[J]. Environmental Health Perspectives, 1995, 103: 19-25
    66. Piulachs M D, Guidugli K R, Barchuk A R, et a1. The vitellogenin of the honey bee, Apis mellifera: structural analysis of the cDNA and expression studies[J]. Insect Biochemistry and Molecular Biology, 2003, 33: 49-465
    67. Porte C, Janer G, Lorusso L C, et a1. Endocrine disruptors in marine organisms:approaches and perspectives[J]. Comparative Biochemistry and Physiology, 2006, 143(3): 303-315
    68. Qujeqa D, Aliakbarpourb H R, Kalavi K. Relationship between malondialdehyde?level and glutathione peroxidase activity in diabetic rats[J]. Clinica Chimica Acta, 2004, 340: 79-83
    69. Rademacher D J, Steinpreis R E, Weber D N. Effects of dietary lead and/or dimercaptosuccinic acid exposure on regional serotonin and serotonin metabolite content in rainbow trout (Oncorhynchus mykiss)[J]. Neuroscience Letters, 2003, 339(2):156-160
    70. Raikhel A S, Dhadialla T S. Accumulation of yolk proteins in insect oocy-tes[J] . Annual Review of Entomology, 1992, 37, 217-251
    71. Rhaikel A S, Brown M R, Bellés X. Hormonal control of reproductive processes[J]. Comprehensive Molecular Insect Science, 2004, 3: 433-491
    72. Romans P, Tu Z J, Ke Z X, et a1. Analysis of a vitellogenin gene of the mosquito, Aedes aegypti and comparisons to vitellogenins from other organi-sms[J]. Insect Biochemistry and Molecular Biology , 1995, 25: 939-958
    73. Ruas C B G, Carvalho C D S, de Araújo H S S, et a1. Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river[J]. Ecotoxiocology and Environmental Safety, 2008, 71(1): 86-93
    74. Saint denis M, Labrot F, Narbonne J F, et a1. Glutathione,glutathione-related enzymes, and catalase activities in the earthworm eisenia fetida andrei[J]. Arch. Environ. Contam. Toxicol, 1998, 35: 602-614
    75. Sappington T W, Raikhel A S. Molecular characteristics of insect vitellogenins and vitellogenin receptors[J]. Insect Biochemistry and Molecular Biology, 1998, 28: 277-300
    76. Sato Y, Yamashita O. Structure and expression of a gene coding for egg specific protein in the silkworm , Bombyx mori [J]. Insect Biochemistry, 1991, 21(5) :495-505
    77. Schefe J H, Lehmann K E, Buschmann I R, et al. Quantative realtime RT-PCR data analysis: current concepts and the novel“gene expression’s CT diference”formula [J]. J Mol Med, 2008, 84(11): 901-910
    78. Segner H, Caroll K, Fenske M, et a1. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project[J]. Ecotoxicology and Environmental Safety, 2003, 54: 302-314
    79. Shu Y H, Zhou J L, Tang W C, et al. Molecular characterization and expressionpattern of Spodoptera litura (Lepidoptera: Noctuidae) vitellogenin, and its response to lead stress[J]. J Insect Physiol, 2009, 55(7): 608-616
    80. Singh R P, Tripathi R D, Dabas S , et al. Effect of lead on growth and nitrate assirnilation of Viga radiata (L.)Wilezek seedlings in a salt affected environment[J]. Chemosphere, 2003, 52(5): 1245-1250
    81. Sivaprasad R, Nagaraj M, Varalakshmi P. Combined efficacies of lipoic acid and 2,3-dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver[J]. The Journal of Nutritional Biochemistry, 2004, 15(1):18-23
    82. Snigirevskaya E S, Raikhel A S. Receptor-mediated endocytosis of yolk proteins in insect oocytes[J].Reproductive Biology of Invertebrates, 2004, 199-228
    83. Stebbing A R D. Hormesis the stitulation of growth by low levels of inhibitions [J]. Science of Total Environment, l 982, 22(1): 2l3-234
    84. Stephensen E, Svavarsson J, Sturve J, et a1. Biochemical indicators of pollution exposure in shorthorn sculpin(Myoxocephalus scorpius), caught in four harbours on the southwest coast of Iceland[J]. Aquat Toxicol, 2000, 48: 431-442
    85. Stifani S, George R, Schneider W J. Solubilization and characterization of the chicken oocyte vitellogenin receptor[J]. Biochem J, 1988, 250: 467-475
    86. Taupeau C, Poupon J, Treton D, et a1. Lead reduces messenger RNA and protein levels of cytochrome P450 aromatase and estrogen receptor p in human varian granulosa cells[J]. Biol Reprod, 2003, 68: 1980-1988
    87. Tokar E J, Bhalchandra A Diwan B A, Waalkes M P. Early life inorganic lead exposure induces testicular teratoma and renal and urinary bladder preneoplasia in adult metallothionein-knockout mice but not in wild type mice [J]. Toxicology, 2010, 276(1): 5-10
    88. Tomás-Zapico C, Coto-Montes A, Martínez-Fraga J, et al. Effects of continuous light exposure on antioxidant enzymes, porphyric enzymes and cellular damage in the Harderian gland of the Syrian hamster. J Pineal Res, 2003, 34(1): 60-68
    89. Trewitt P M, Heilmann L J, Degrugillier S S, et a1. The boll weevil vitellogenin gene: nucleotide sequence, structure, and evolutionary relationship to nematode and vertebrate vitelogenin genes[J]. J Mol Evol, 1992, 34(6): 478-492
    90. Tufail M, Bembenek J, Elgendy A M, et a1. Evidence for two vitellogeni-n-related genes in Leucophaea maderae: the protein primary structure and its processing[J].Archives of Insect Biochemistry and Physiology, 2007, (66): 190-203
    91. Tufail M, Raikhel A S, Takeda M. Biosynthesis and processing of insect vitellogenins[J]. Reproductive Biology of Invertebrates, 2005, 7(Part B): 1-32
    92. Undeger U, Basaran N, Canpinar H, et a1. Immune alterations in lead-exposed workers[J]. Toxicology, 1996, 109: 167-172
    93. Vaglio A, Landriscina C. Changes in liver enzyme activity in the teleost s-parus aurata in response to cadmium intoxication[J]. Ecotoxicol. Environ. Saf, 1999, 43: 111-116
    94. Valle D. Vitellogenesis in insects and other groups a review[J]. Memorias Do Instituto Oswaldo Cruz , 1993, 88: l-26
    95. Vermeulen A C, Liberloo G, Dumont P, et a1. Exposure of Chironomus riparius larvae (dipteral) to lead, mercury and b-sitosterol: effects on mouthpart deformation and moulting[J]. Chemosphere , 2000 , 41(10): 1581-1591
    96. Vinceti M, Rovesti S, Bergomi M, et al. Risk of birth defects in a population exposed to environmental 1ead pollution[J]. The Science of Total Environment, 2001, 278: 23-30
    97. Weber D N. Exposure to sublethal levels of waterbome lead alters reproductive behavior patterns in fathead minnows(Pimephales promelas) [J].Neurotoxicology, 1993, 14(2-3): 347-358
    98. Wierzbieka M. Comparison of lead tolerance in Allium cepa with other plant species[J]. Environmental Pollution, 1999, l04: 41-52
    99. Wyatt G R, Davey K G. Cellular and molecular actions of juvenile hormone.II.Roles of juvenile hormones in adult insects[J]. Advances in Insect Physiology,1996, 26: 1-155.
    100. Wyatt G R, Locke J, Bradfield J Y. The vitellogenin genes for Locusta migratoria and other insects[J]. Advances in Invertebrate Reproduction, 1984, 3: 73-80
    101. Wyatt G R. Vitellogenin synthesis and the analysis of juvenile hormone action in locust fat body[J]. Canadian Journal of Zoology, 1988, 66: 2601-2610
    102. Yano K, Sakurai M T, Watabe S, et a1. Structure and expression of mRNA for vitellogenin in Bombyx mori[J]. Biochim Biophys Acta, 1994, 1218(1):1-10
    103. Yu Q, Lu C, Li B, et al. Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori[J]. InsectBiochemistry and Molecular Biology, 2008, 38 (12): 1158-1164
    104. Yumoto I, Ichihashi D, Iwata H, et al. Purification and characterization of a catalase from the facultatively psychrophilic bacterium Vibrio rumoiensi-s S-1T exhibiting high catalase activity[J] . J Bacteriol, 2000, 182 (7): 1903-1909
    105. Zhang Y M, Liu X Z, Lu H, et al. Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups[J]. Biomed Environ Sci, 2009, 22(5): 423-429
    106. Zhong Z M, Zhang C X, Rizak J D, et al. Chronic prenatal lead exposure impairs long-term memory in day old chicks [J]. Neurosci Lett, 2010, 476(1): 23-26
    107. Zhu J, Indrasith LS, Yamashita O. Characterication of vitellin,egg-specific protein and 30KD protein from Bombyx eggs, and their fates during oogenesis and embyogenesis[J]. Biochim. Biophys. Acta 1986, 882,427-436
    108.艾荣,云霞,苏雅拉,等.学龄儿童血铅水平及其对脑电生理的影响[J].中国妇幼保健, 2008, 23(18): 2522-2523
    109.邴欣,汝少国,盛连喜.分泌扰乱化学物质生物筛选技术研究进展[J].环境科学研究, 2002, 15(5): 38-40
    110.彩拉,陈必真,刘永华.冠心病病人血清过氧化氢酶及血脂观察[J].内蒙古医学院学报, 2003, 25(3): 164-165
    111.陈壁锋,黄俊明,杨杏芬,等.铅对果蝇性活力及寿命影响的实验研究[J].中国职业医学, 2004, 31(3): 15-17
    112.陈淮杨,刘望夷.从超氧化物歧化酶的分布和结构看其分子进化[J].生物化学与生物物理进展, 1996, 23(5): 408-413
    113.丛海峰,徐世清,司马杨虎,等.野桑蚕铜锌超氧化物歧化酶基因的克隆分析与原核表达[J].蚕业科学,2007, 33(1): 234-240
    114.戴伟,金成官,傅玲琳,等.饲料铅暴露对罗非鱼肝胰脏抗氧化防御系统及显微结构的影响[J].浙江大学学报,2009, 35(3): 350-354
    115.戴伟,杜华华,傅玲琳,等.不同水平饲料铅对罗非鱼生长性能及组织中铅残留的影响[J].浙江大学学报,2009,35(3): 345-349
    116.丁晨辉,黄爱梅,司马杨虎.家蚕性别调控研究进展[J].江苏蚕业, 2004, 2
    117.段家龙,陆翠珍.家蚕血淋巴超氧化物歧化酶的初步研究[J].蚕业科学,1995,2 (2): 102-105
    118.樊建康.恒河猴脱离铅接触后的毒性反应及生殖机能影响的远期观察[J].职业医学, 1992, 19(3): 133-135
    119.范作卿,郑淑湘,邹德庆,等.蚕蛾的研究与开发利用现状[J].北方蚕业,2005, 26(4): 6-8
    120.方允中,郑荣梁.自由基生物学的理论与应用[M].北京:科学出版社, 2002
    121.贡成良,吴卫东,徐承智,等.家蚕蛹虫草的化学成份分析[J].蚕业科学,2002, 28(2): 168-172
    122.何风生,黄金祥.职业病医师培训教材[M].北京:人民日报出版社,2004, 175-176
    123.胡家恕,张耀州.家蚕血液中超氧化物歧化酶(SOD)的研究[J].浙江大学学报,1996,22(4) :338-340
    124.黄瑞雪.铅性肾病动物模型的建立[J].动物医学进展,2004, 25(2): 88-90
    125.惠天朝,朱荫湄.镉对罗非鱼肝组织中GSH代谢的影响[J].浙江大学学报, 2001, 27(5): 575-578
    126.季学李.大气污染控制工程[M].上海:同济大学出版社,1992, 2
    127.贾秀英,施蔡雷.镉致黑斑蛙肝脏中ROS生成及其蛋白质氧化损伤作用[J].环境科学学报,2010, 30(1): 186-191
    128.贾秀英,董爱华.铅对蟾蜍肝、肾过氧化物酶和酯酶同工酶的影响[J].生态学杂志,2005, 24(2): 159-162
    129.江苏新医学院.中药大辞典[M].上海:上海科学技术出版社,1986: 1762
    130.金春峰,李春日,蔡玉文. 17β-雌二醇对鲫鱼肝细胞VTG诱导及血清Ca2+浓度变化的实验研究作用[J].环境科学与技术,2009, 32(12D): 147-150
    131.巨君芳,魏克明.蚕砂的古代应用与现代研究概况[J].浙江中医杂志,2006,41(11): 672-674
    132.匡少平,徐倩.铅对泥鳅的致毒效应[J].环境科学与技术,2003, 6: 11-12
    133.李华,孙虎山,王宜艳,等.铅对栉孔扇贝血淋巴中非特异性酯酶和髓过氧化物酶活性的影响[J].湖北农业科学,2007, 46(3): 439-441
    134.李敬玺,刘继兰,王选年,等.超氧化物歧化酶研究和应用进展[J].动物医学进展,2007, 28 (7) :70-75
    135.李茂进,刘衍忠,刘永霞,等.铅对造血干细胞和生殖细胞Hoxa9基因表达的影响[J].中国职业医学,2006, 33(5): 363-365
    136.李树合,章翔,费舟,等.弥漫性脑创伤并二次脑损伤后脑组织MDA和SOD变化[J].第四军医大学学报,2000, 21(10) :1295-1297
    137.梁勇,徐盈,杨方星,等.鲤和团头鲂幼鱼卵黄蛋白原的诱导、纯化及电泳比较[J].水生生物学报,2002, 26(4): 317-321
    138.梁华,闭中强,樊建康,等.醋酸铅对雄性恒河猴生殖功能的影响[J].中国药理学与毒理学杂志, 1992, 6(4): 285-288
    139.刘海芳,王凡.重金属对水产动物污染的生物标志物的研究进展[J].水产科学, 2009, 28(5): 299-302
    140.刘君澜.铅影响学习记忆的细胞机制[J].国外医学卫生学分册,1998, 25(2): 105-107
    141.刘亚华.铅对锌的影响及补锌对铅暴露的作用[J].国外医学:卫生学分册, 2003, 30(1): 40-44
    142.刘宗平.动物中毒病学[M].北京:中国农业出版社,2006: 394-398
    143.刘宗平.环境铅镉污染对动物健康影响的研究[J].中国农业科学,2005, 38(1): 185-190
    144.陆雷达,金叶飞,施维林,等. LAS与Cu2+单一及复合污染对泥鳅肝脏SOD、CAT活性的影响[J].水产科学,2007, 26(12): 648-651
    145.马保华,郝捷,王有柱,等.醋酸铅对妊娠小鼠雄性后代生殖毒性的研究[J].动物医学进展, 2004, 25(5): 116-119
    146.马龙江,张红,王萍,等.铅砷汞镉在鸭肉中的含量调查[J].中国兽医杂志, 1997, 23(8): 58
    147.孟顺龙,陈家长,胡庚东,瞿建宏,等.低浓度阿特拉津对鲫鱼超氧化物歧化酶(SOD)活性的影响[J].农业环境科学学报,2007, 26(1): 170-174
    148.苗江丽,张敬华,易建华,等.铅染毒对大鼠神经行为、神经电生理损害作用的测试[J].中国医学检验杂志,2002, 3(4): 258-260
    149.牛亚青,郑济芳,王晗莉.重金属铅对水生生物抗氧化损伤酶的影响研究进展[J].环境科技,2010, 23(2): 74-78
    150.彭珊茁,张春生,王朝和,等.职业接触铅工人血细胞参数变化的调查[J].中华劳动卫生职业病杂志,2002, 20(5): 334-335
    151.彭佑群,景周,王学峰.托吡酯对大鼠星形细胞内谷胱甘肽硫转移酶及多药耐受基因的影响[J].中国新药与临床杂志,2004, 23(5): 279-282
    152.任军慧,朱伟杰.铅离子对雄(男)性生殖系统的毒性影响[J].生殖与避孕, 2005, 25 (2): 107-110
    153.任丽丽,乔阳.反复呼吸道感染儿童免疫功能及微量元素的探讨[J].中国优生与遗传杂志,2006, 14(12): 109
    154.汪玉松,邹思湘.现代动物生物化学[M].北京:中国农业科技出版社,1999
    155.王莹,郝家胜,陈娜,等.铅、镉和锌3种重金属离子对水螅的联合毒性研究[J].生命科学研究,2006, 10(1): 91-94
    156.王凡,赵元凤,刘长发. Cu2+对牙鲆肌肉抗氧化防御系统的影响[J].淡水渔业,2007, 37(2): 27-29
    157.王静,刘英华,王晓军.铅对大鼠原代卵巢颗粒细胞分泌雌激素能力的影响[J].中国职业医学,2007, 34(4): 333-334
    158.王夔.生命科学中的微量元素(第2版)[M].北京:中国计量出版社,1996, 131-958
    159.王兰,雷雯雯,张晓博.铅对河南华溪蟹主要组织细胞线粒体标志酶活性的影响[J].山西大学学报,2007, 30(2): 279-284
    160.王兴强,阎斌伦,曹梅.氯化镉、硝酸铅和氯化高汞对缢蛏存活率的影响[J].水利渔业,2006, 6: 82-83
    161.王咏梅.自由基与谷胱甘肽过氧化物酶[J].解放军药学学报,2005, 21(5): 369-371
    162.王勇,徐镔蕊,李健,等.慢性铅中毒对鸡血液生化指标的影响[J].中国兽医杂志,2009, 45(10): 25-26
    163.王志华,沈良.锰过氧化氢酶及其模拟物的研究进展[J] .杭州师范学院学报(自然科学版),2006 , 5 (6) : 465-468
    164.吴小锋,徐俊良,崔为正.家蚕血液过氧化氢酶活力及其与蚕体抗逆性的关系[J].昆虫学报,1998, 41(2): 124-129
    165.夏世钧,吴中亮.分子毒理学基础[M].武汉:湖北科学技术出版社,2001, 87
    166.肖树和,付静.学龄前儿童血铅水平及相关因素影响[J].医学检验与临床,2008, 19(2): 40-41
    167.徐进,徐立红,郑一凡,等.铅暴露引起的小鼠肝脏抗氧化系统损伤[J].环境科学学报,2004, 24(6): 1142-1144
    168.徐进,徐立红.环境铅污染及其毒性的研究进展[J].环境与职业医学,2005, 22(3) : 271-274
    169.徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报,1995,19(2):171-184
    170.杨晓华,杨艳华,杨晓梅.铅镉金属对女性内分泌影响的调查分析[J].河北医学,2010, 16(2): 248-250
    171.杨颖.铅的神经发育毒性机制[J].国外医学卫生学分册,2000, 27(3): 144-147
    172.叶煦亭,沙继宏.镉离子诱发的氧自由基对肝细胞损伤及钙离子分布的影响[J].中华预防医学杂志,2000, 34(4): 256
    173.袁继丽,刘成海,张悦,等.氯化汞诱导大鼠间质纤维化的脂质过氧化损伤机制[J].中国中西医结合肾病杂志, 2008, 9(5): 403-407
    174.张秋玲,周桂侠.国内铅对雌性生殖毒性的研究进展[J].工业卫生与职业病,2008, 34 (2): 108-110
    175.张迎梅,王叶菁,虞润六,等.重金属胁迫对泥鳅肝胰脏ATPase和SOD活性的影响[J].甘肃科学学报,2008, 20(3): 55-59
    176.赵剑,童希琼,蔡亚非.铅对小鼠血液和肝肾影响的实验性初步观察[J].生物学杂志,2010, 2: 17-19
    177.赵林川,司马杨虎,李兵,等.即时浸酸对家蚕胚胎发育中H2O2代谢的影响[J].蚕业科学,2000, 26(4): 268-270
    178.赵林川,姚祥,李兵.家蚕变态过程中过氧化氢代谢特点及外源激素对其调节作用[J].蚕学通讯,1999, 19(3): 5-8
    179.郑荣梁.生命科学中自由基研究的鸟瞰[J].自由基生命科学进展,1993, 1: 5-13
    180.钟诚,王瑛,卢明,等.血红蛋白与铅作业工人尿铅水平关系的探讨[J].工业卫生与职业病,2005, 31(1): 47- 48
    181.周伟,尹文胜.汞、砷、铬、铅等无机环境污染物对家蚕的为害[J].蚕业科学, 1991, 10(2): 109-111
    182.朱江,戴玉锦.家蚕卵黄蛋白质分子生物学研究进展[J].中国蚕业,1989, 3: 4-11
    183.朱玉芳,吴康,崔勇华,等.镉铅对家蚕茧质及血细胞DNA损伤的影响[J].蚕业科学, 2002, 21(6): 502-504
    184.邹时朴,胡淑珍,李维君,等.血铅水平与儿童注意力及行为的相关研究[J].中国学校卫生, 2008, 29(11): 1004-1005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700