加装扣环机车轮对的力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路运输在我国的交通运输业中举足轻重,对整个国民经济影响巨大。针对我国机车广泛采用的组装式机车轮对,可能因轮箍弛缓造成的机车脱轨事故、颠覆,影响铁路运输安全的问题,本文提出给组装式机车轮对轮箍加装安全扣环。该措施可有效地防止因轮箍弛缓而造成的列车脱轨乃至颠覆等重大事故。
     加装扣环后的机车轮对在运用过程中的应力及其分布状态、轮对的动力学特性、轮箍的踏面和轮缘使用安全边界、运用过程中轮对的温度场及应力等方面将产生相应的影响。因此,必须对加装扣环后机车轮对的力学行为进行研究,为保证铁路机车运行安全提供理论依据。本文在分析轮轨系统相互作用关系的基础上,对加装扣环车轮的力学行为进行了研究,主要研究内容包括:
     (1)针对组装式机车轮对可能因轮箍迟缓造成机车脱轨与颠覆问题,提出在轮箍内侧加装扣环的解决方案,可有效地防止因此造成的列车脱轨与颠覆。
     (2)对加装扣环的机车轮对的静、动力学行为进行了研究。研究结果表明扣环槽的存在对轮对静、动力学行为产生了一定影响,但这些影响是局部的,并没有引起质的变化。从理论上证明机车轮对加装扣环后能够保证运行安全。
     (3)分析了轮对踏面线形的演变及磨耗型踏面的特点,提出了轮箍踏面均匀磨损假说。由此假说建立优化模型,寻求到加装扣环轮对的理论极限边界。研究表明铁道部轮对技术规范规定的禁用限度对于加装扣环的机车轮对仍然是安全和适用的。
     (4)对加装扣环的机车轮对在紧急制动工况下的力学行为进行了研究。模拟分析了垫片间间隙对轮对的应力分布的影响,指出轮箍加装垫片时,其片间间隙的控制范围。
     上述研究是以与武汉铁路局科委及武昌机务段的合作研究项目《轮对加装扣环的性能分析及模拟仿真》为背景的,研究结果表明机车轮对加装扣环方案是安全可靠与可行的,可有效的防止因轮箍弛缓造成列车脱轨与颠覆,对于保证铁路机车的运行安全有着重大的意义。该方案已在武汉、郑州、北京等铁路局部分机车上采用,运行情况良好。
The railage plays very important role in the traffic transport of our country, and has great effect on our country economy. Because the assembly locomotive wheel which is widely used in our country may cause the digression and subversion accident because of the rim relaxation, which badly affects the safety of the railage, this article brings forward the method that adds a safety retaining ring to the rim of the assembly locomotive wheel, which can effectively prevent the serious accident such as locomotive digression, subversion caused by the rim relaxation.
    The change that adds retaining ring to the locomotive wheel will influence the moving wheel on the stress and its distribution of the assembling wheel, the dynamics characteristics of the wheel, the safety border of the rim tread and flange of the wheel, the temperature and stress field, etc. So it is necessary to analyze the mechanics behaviour of the locomotive wheel added the retaining ring, so that we can supply the theory proof to the safety usage of the locomotive. At the basis of the analysis to the relationship of the reciprocity of the wheel and rail system, it studies the mechanics behaviour of the locomotive wheel added the retaining ring. The research includes:
    (1) For the locomotive digression and subversion problem caused by the rim relaxation of the assembly locomotive wheel, bringing forward the method that adds the retaining ring to the inside of the rim, which can effectively prevent the locomotive digression and subversion.
    (2) Researching the statics and dynamics of the locomotive wheel added retaining ring. The research result shows that the presence of the retaining ring trough has some effect to the statics and dynamics, but the effect is local and does not cause the change of the quality. It proves, from theory, that the locomotive wheel can run safely after adding the retaining ring.
    (3) Analysing the alignment evolvement of the locomotive wheel tread and the character of wearing tread, giving the uniformity wear suppose of the wheel tyre tread. Building the optimization model by the suppose to quest the theory high-point borderline of the adding retaining ring wheel. The research shows that the forbidden limit which is prescribed in the technology criterion by the Railway Department is until safe and applicable to the locomotive wheel added the retaining ring.
    (4) Researching the mechanics behaviour of the locomotive wheel added the
引文
[1] Ryo Takagi.回眸高速铁路10年的发展.西铁科技,2005,04
    [2] 金履忠.轮轨技术是京沪高速铁路的必然选择——兼论日、德磁浮系统的现状[J].中国工程科学,2000,(7).
    [3] 肖新立.高速铁路轮轨与磁悬浮方案对比分析.交通科技,2004,
    [4] C.Esveld.高速铁路车辆轨道相互作用研究.铁道勘测与设计,2004,02
    [5] D. Rahlbeck. "Effects of Track dynamic Impedance on Vehicle-Track Interactions", Supp. To V. S. D. vol. 24
    [6] S. L. Grassie. "Track Deflections and Macroscopic Movement of Railway Embankment", Supp. to V. S. D. vol. 24
    [7] A. Jaschinkski, "Multibosdy Simulation of flexible Vehicles in Interaction with Flexible Guideways", Supp. to V. S. D. vol. 24
    [8] J. Turek, "Non-linear Response of the Track", Supp. to V. S. D. vol.24
    [9] Winkler, "Die Lhre von der Elasticitat und Festigkeit", Prague, 1867
    [10] 唐士伯.DFH及GK系列机车轮箍弛缓的分析及处理.铁道机车车辆工人.2004,7
    [11] 雷德金,王海锋.内燃机车轮箍加装扣环方案改进.铁道机车车辆.2004,12
    [12] 萨殊利编著.机车总体与走行部.北方交通大学出版社.2004
    [13] 佐藤裕著.卢肇英译.轨道力学,北京:中国铁道出版社,1981
    [14] Y. Sato. Abnormal Wheel Load of Test. Train, Permanent Way(Tokyo), Vol. 14, 1973
    [15] Diana G, Cheli F, Bruni S, Collina A. Interaction between Railroad Superstructure and Railway Vehicles [J]. Vehicle System Dynamics, 1994, 23(Suppl.):75-86.
    [16] Oscarsson J, Dahlberg T. Dynamic Train/Track/Ballast Interaction-computer Models and Full-scale Experiments [J]. Vehicle System Dynamics, 1998, 28(Suppl.):73-84
    [17] Popp K, Kruse H, Kaiser I. Vehicle-track Dynamics in the Mid-frequency Range[J]. Vehicle System Dynamics, 1999, 31(5-6):423-464.
    [18] Oscarsson J. Dynamic Train-track-ballast Interaction with Unevenly Distributed Track Properties[C]. 17 th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks, Lyngby, Denmark, 2001.
    [19] 翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10-21
    [20] 陈果,翟婉明,左洪福.车辆-轨道耦合系统随机振动响应特性分析[J].交通运输工程学报,2001,1(1):13-116.
    [21] 翟婉明著.车辆-轨道耦合动力学[M].第二版,北京:中国铁道出版社,2002.
    [22] Kalker J J. On the Rolling Contact of Two Elastic Bodies in the Presence of Dryfriction[D]. ph. D. Dissertation, Delft University of Technology, Delft, Netherlands, 1967.
    [23] Shen Z Y(沈志云), Hedriek J K, Elkins J A. A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis[C]. proc. 8th IA VSD Symposium, MIT, Cambridge, 1983, 591-605
    [24] Shen Z Y(沈志云), Hedrick J K, Elkins J A. A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis[C]. proc. 8th IA VSD Symposium, MIT, Cambridge, 1983, 591-605.
    [25] 李小村主编.内燃机车总体.中国铁道出版社,2002
    [26] 孙竹生,鲍维千.内燃机车总体及走行部.中国铁道出版社,1980,136
    [27] 张中央主编.列车牵引计算.中国铁道出版社.2002,36
    [28] 沙杜尔[苏]著.苏宝瑛等译.车辆构造理论与计算.中国铁道出版社.1980,74
    [29] 中华人民共和国铁道部.列车牵引计算规程.铁道部行业标准TB/T 1407—1998.中国铁道出版社.1998,8
    [30] 温泽峰,金学松,张卫华.钢轨轨缝接触—冲击的有限元分析.摩擦学学报.2003,23(3):240-244
    [30] 小松英雄著,曹志礼译.关于提高车轴配合部位疲劳极限的研究.中国铁道出版社,1990
    [32] 许小强 赵洪伦.过盈配合应力的接触非线性有限元分析.机械设计与研究.2000,01
    [33] MARC.接触分析,北京:1997
    [34] 刘涛,杨凤鹏主编.精通ANSYS.清华大学出版社.2002
    [35] 实威科技编著.Solid Works原厂教育训练手册.清华大学出版社,2002
    [36] 陈胜利.铁路轮轴配合有限元分析.铁道车辆.2003,41(5):16-18
    [37] 丁辉.铁道车辆车轮强度分析和评定方法.铁道机车车辆.2003,23(4):12-1
    [38] 缪炳荣,肖守纳.机车车体结构模态的有限元分析.机械与电子.2002(5):58-60
    [39] Thompson D J. Wheel-rail noise generation Part Ⅱ: Wheel vibration[J]. Journal of Sound and Vibration. 1998, 161(3).
    [40] Heiss P. Investigation in to the vibration and noise behavior of a passenger coach wheel [D]. Technical University of Berlin, Doctoral Thesis, 1986.
    [41] 严隽耄等著.重载列车系统动力学.中国铁道出版社.2003年01月第1版
    [42] 任辉启编著.ANSYS7.0工程分析实例详解.机械工业出版社.2003
    [43] D. Lyon. The Calculation of Track Forces due to Dipped Rail Joints, Wheel Flats and Rail Welds, 2nd ORE Colloquium on Technical Computer Programs, May 1972
    [44] H. H. Jenkins et al. The Effect of Track and Vehicle Parameters on Wheel/Rail Vertical Dynamic Forces, Railway Engineering Journal, 1974;3(1)
    [45] 胡用生,谭复兴,陆正刚.TBDS轮轨耦合模型的仿真验证及其应用.铁道学报.1996,18(3):29-36
    [46] 罗赞金.高速动力车轮轨几何参数设计.铁道学报.1994.16(6)24-28
    [47] 佐藤荣作[日].车轮踏面形状设计的科学化.车外内燃机车.2000
    [48] 王家玉,王顺福.机车磨耗型踏面与踏面剥离.铁路运营技术.2004,10(4):26-28
    [49] 龚积球.对机车车轮运用中几个问题的分析及对策.内燃机车,1996,6
    [50] O. O. Evtushenko, E. H. Ivanyk, N. V. Horbachova. Analytic methods for thermal calculation of brakes(review)[J]. Materials Science, 2000, 36(6):857-862.
    [51] F. Ling. On temperature transients at sliding interface[J]. ASME Journal of Lubrication Technology, 1969, 7: 397-405.
    [52] Wang S. A fraetal theory of the interfacial temperature distribution in the slow sliding Regime[J]. ASME J of Trio., 1994, 116:812.
    [53] Xuefeng Tian and Francis E Kennedy Jr. Contact surface temperature models for finite bodies in dry and boundary lubricated sliding[J]. ASME Journal of Tribology, 1993, 115:411-418.
    [54] Heinrich. J. C., Huyakorn. P. S, et al An Upwind Finite Element Scheme for Two-Dimensional Convective Transport Equation[J]. Int. J. Numer. Methods Eng. 1977, 11:131-143
    [55] 王瑁成,邵敏.有限单元法基本原理和数值方法.清华大学出版社,1997,3
    [56] 埃克特ERG,德克雷RM著航青译.传热与传质分析.北京:科学出版社,1993:191-205
    [57] R.D库克 著.程耿东 何穷 张国荣 译.有限元分析的概念和应用(第二版).科学出版社,1989:515-529.
    [58] Heinrich. J. C., Huyakom. P. S, et al. An Upwind Finite Element Scheme for Two-Dimensional Convective Tranport Equation[J]. Int. J. Numer. Methods Eng. 1977, 11:131-143.
    [59] 饶忠.列车制动.中国铁道出版社,1998
    [60] 肖峻.轮箍弛缓的红外监测报警系统.内燃机车,2004,2
    [61] 铁道部.东风4B型内燃机车大修规程.1999-08-15
    [62] 郭然,施惠基,郁向东.多层圆柱结构接触预紧力失效分析.工程力学.2003.8:192-197
    [63] 刘达德.东风4B型内燃机车结构、原理、检修.中国铁道出版社.2002
    [64] 广重岩.铁路机车车辆轮对.北京:中国铁道出版社.1981.
    [65] 翟婉明,王其昌.轮轨动力分析研究[J].铁道学报,1994,16
    [66] 李述松,唐东平,宋春如.DF系列机车轮对轮箍加装扣环方案可行性分析.内燃机车.2003(5):18-19
    [67] 曾攀.有限元分析及应用.清华大学出版社.2004
    [68] 倪栋,段进,徐久成等编著.通用有限元分析ANSYS7.0实例精解.电子工业出版社.2003
    [69] 金学松,刘启跃.轮轨摩擦学.中国铁道出版社.2004
    [70] 王家玉,王顺福.机车磨耗型踏面与踏面剥离.铁路运营技术.2004,10(4):26-28
    [71] 刘达德主编.东风4B型内燃机车结构—原理—检修.中国铁道出版社.2002,4
    [72] 刘建新.无孔辐板轮对的结构强度分析.电力机车技术.2000(1):17-21
    [73] 王宗彦,余红英,刘卫玲,王爱玲.复杂载荷下火车轮轴的有限元分析.华北工学院学报.2002,23(5):318-321
    [74] 赵华,何翠微,刘建新.机车轮对装配应力的数值分析.铁道学报.1998,20(1):45-51
    [75] 傅立东,肖峰.车轮与有限元计算.哈铁科技情报.2003(3)
    [76] 许小强,赵洪伦.铁道车辆轮轴装配应力的接触非线性有限元分析.上海铁道大学学 报.1999,20(12):76-79
    [77] 李俊,金咸定,李维扬.瞬态接触一冲击问题的有限元分析.上海交通大学学报.1997,31(11):78-81
    [78] 雷晓燕.轮轨相互作用有限元分析.铁道学报.1994,16(1):7-16
    [79] 张焱,孔祥安,金学松.轮轨三维弹塑性接触应力的算法研究.力学与实践.2000,22(1):23-26
    [80] Klaus Knothe,等[德].轮轨接触力学的最新发展.国外铁道车辆.2002,39(5):27-33
    [81] 吴昌华,张军.轮轨接触的有限元研究.大连铁道学院学报.1997,18(4):25-30
    [82] 王忠东,张承志,谷中秋.有限元法在具有摩擦的有限变形接触问题中的应用.吉林大学自然科学学报.1995,8(3):12-18
    [83] 汪召华,高莲士,宋文晶.二维摩擦接触的有限元分析.清华大学学报(自然科学版).2002,42(S1):25-28
    [84] 欧垣安,李润方.三维冲击—动力接触问题的有限元混合算法.重庆大学学报.1994,17(2):52-57
    [85] 向俊.机车车辆随机振动分析的有限单元法研究.长沙铁道学院学报.1995,13(4):38-45
    [86] 张治国,郑明军,谢基龙.弹性车轮瞬态动力响应的有限元仿真方法研究.北方交通大学学报.2003,27(1):25-35
    [87] 王珍君,侯炳麟.钢轨轨头三维应力有限元分析.中国铁道科学.2000,21(4):66-72
    [88] 陆辉,孙国瑛.非椭圆接触面下钢轨三维弹塑性应力分析.西南交通大学学报.2000,35(4):340-345
    [89] Ullah I, Kota S. Optimal Synthesis of mechanisms of path generation using fourier descriptors and gloabal search methods. ASME Journal of Mechaniacl Design, 1997, 119(4):504-510
    [90] Amanan L, Krishna Kumar R, Sriraman R. Thermo-mechanical finite element analysis is of a rail wheel[J]. International Journal of Mechanical Science, 1999, 41:487-505
    [91] Lunden R. Crack in railway wheels under rolling contact[A]. Proceedings of 10th International wheelset Congress[C], Sydney, October, 1992. 163
    [92] Ikeda K, Sumi T, Sasaki S. Characteristics of irregular inclination of rail vibration in the rail joint[C]. In: Proceedings of the Western Branch in JSCE, 1998, 136-138.
    [93] Cannon D F, Sinclair J, Sharp K A. Improving the fatigue performance of bolt holes in railway rails by cold expansion[C]. In: The International Conference on Fatigue Correction Cracking, Fracture Mechanics and Failure Analysis, Salt Lake City, USA, December, 1985
    [94] John O Hallquist. LS-DYNA User's Manual-Version 940[M]. Livermore: Livermore Sofeware Technology Corporation, 1997.
    [95] Clark R A, Dean P A, Elkins J A, etal. An investigation into the dynamic effects of railway vehicle running on corrugated rails[J]. Journal of Mechanical Engineering Science, 1992, 24(2): 65-76
    [96] Jenkins H H, The effects of track and vehicle parameters on wheel/rail vertical dynamic forces[J]. Railway Engineering Journal, 1994, 3(1):2-16
    [97] Scurria N V, Doyle J F. Photoelastic analysis of contact stresses in the presence of maching irregulaties. Experimental Mechanics, 1992, (22):342-347
    [98] Grimm T R, Chiu A C. Design of hubs to minimize interference stresses——A finite elelment study. Computers in Engineering 1988-Proceedings, San Franciso, ASME, 1988, 85-91
    [99] Kags H. Stress analysis of a tire undervertical load by a finite element method[J]. Tire Science & Technology, TSTCA, 1997, 5(2):102-118
    [100] 俞展猷.轮轨接触应力的研究[J].铁道机车车辆,2000,(6).
    [101] 温志强,叶杏表,李年青.SS1型机车轮箍迟缓的原因及防止措施,电力机车技术,1998(3):14—17
    [102] 陈瑞球.乌克兰进口轮箍与国产轮箍安全性和经济性之比较.内燃机车.2001(12):30-36
    [103] 郑伟生.国外轮轴技术发展综述(二).国外铁道车辆.1998(5):124-128
    [104] Makoto ISH IDA. The effect of resilient wheel on track dynamic[J]. Foreign Rolling Stock, 1998, 35(6): 105-110
    [105] Michael C F, Sehitoglu H. Thermal mechanical damage in rail-road wheels due to Hot spotting [A]. Wear. 1985, 102
    [106] Efthimeros G A; Photeinos D I; Diamantes Z G; Tsahalis D T. Vibration/noise optimization of a FEM railway wheel model. Engineering computations vol. 19, 2002 (7-8): 922-931
    [107] Dary L. Logan(美)著.伍义生,吴永礼等译.有限元方法基础(第三版).电子工业出版社,2003
    [108] 戴振东,王珉,薛群基箸.摩擦体系热力学导论[M].国防工业出版社.2002
    [109] 詹斐生编著.机车动力学.北京:中国铁道出版社,1990
    [110] 巨建民,吴昌华.机车轮心轮辋温度应力分析及形状优化.大连铁道学报.1998,9(3):14-17
    [111] 周晓琴,李华强,刘杰,肖金生.ANSYS三维热分析及应用.武汉交通科技大学学报.1999,23(1):20-23
    [112] 余红英,樊永生.火车车轮非线性有限元热应力分析.华北工学院学报.2001,22(1):25-28
    [113] 曹学军,李文刚.强化车轮踏面提高踏面剥离抗力.内燃机车.2002(9):14-18
    [114] 李建军.一种防止动轮迟缓的新型报警器.机车电传动.1999,3:43—45
    [115] 黄问盈,杨宁清,黄民.我国铁道列车紧急制动距离限值标准的探讨.中国铁道科学.2003,10:84-90
    [116] 李述松,汪浓潮,唐东平.DF4、7、8型内燃机车车轴使用寿命研究.铁道机车车辆.2003,20(4):113-118
    [117] Watanable L. Application of natural equations to the synthesis of curve generating mechanisms. Machine Theory, 1994, 29(2): 223-235
    [118] Farris, T. N. Effect of overlapping wheel passages on residual stress in rail Comers. Vol. 191, 1996(1-2)
    [119] Yang Ming yang, Park Reedbuck. The prediction of cutting force in ball-end milling[J]. Machine Tools Manufacture, 1991, 31(1):45-54
    [120] Telliskivi, T. Olofsson, U. Wheel-rail wear simulation. Wear. Vol. 257, 2004(11): 1145-1153
    [121] Zhu, X. Q. Law, S. S. Dynamic axle and wheel loads identification: laboratory studies. Journal of Sound and Vibration. Vol. 268, 2003(5): 855-879
    [122] Paul, M. America, F. Genius, F. Distribution of contact pressure in wheel-rail contact area. Wear. vol. 253, 2002(1-2): 265-274
    [123] Kinshasa, H. Fujioka, T. Measuring rail/wheel contact points of running railway vehicles. Wear. Vol. 253, 2002(1-2): 275-283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700