新型光纤光学参量振荡器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光纤光学参量放大器(FOPA:Fiber Optical Parametric Amplifier)由于具有高增益、大增益带宽、任意增益范围、超快时间响应、多路信号同时放大等优点而受到了人们的广泛关注。光纤光学参量放大的诸多优点使得它在实现各种新型光纤激光器方面具有无与伦比的优势。本论文主要研究了光纤光学参量放大的增益特性及各种新型光纤光学参量振荡器(FOPO:Fiber Optical Parametric Oscillator),其中着重研究了波长可调谐FOPO、多波长FOPO和傅立叶域锁模FOPO。
     首先简单介绍了FOPA和FOPO的发展历史和研究现状,总结了FOPO的发展趋势。
     接着通过对光纤中四波混频的耦合振幅方程的分析,建立了光纤光学参量放大的理论模型,并进行了模拟仿真。根据对模拟结果的分析,深入研究了增益光纤的色散特性和非线性特性以及泵浦光中心波长和功率等参数对光纤光学参量放大特性的影响,为后续工作提供了理论参考。
     然后研究了光纤光学参量放大在实现波长可调谐光纤激光器方面的应用:提出了一种结构简单的线性腔波长可调谐FOPO和一种具有可切换功能的波长可调谐FOPO,详细阐述了振荡器的波长切换原理和波长调谐原理。
     再接着介绍了光纤光学参量放大在实现多波长光纤激光器方面的应用:介绍了常用于实现多波长光纤激光器的梳状滤波器技术;提出了基于Sagnac光纤环形滤波器的单泵多波长FOPO;提出了基于马赫-曾德干涉仪的波长间隔可调谐单泵多波长FOPO,获得了波长间隔为0.08nm的多波长输出光谱;提出了基于Sagnac光纤环形滤波器的波长间隔可切换双泵多波长FOPO;提出了基于马赫-曾德干涉仪的波长间隔可调谐双泵多波长FOPO;证明了光纤光学参量放大在实现多波长光纤激光器方面的优势。
     最后研究了傅立叶域锁模FOPO:介绍了傅立叶域锁模光纤激光器的研究背景和研究意义,说明了光纤光学参量放大在实现傅立叶域锁模光纤激光器方面的优势;详细阐述了傅立叶域锁模技术和频域受限的傅立叶域锁模技术;提出了一种双泵傅立叶域锁模FOPO;提出了一种频域受限的傅立叶域锁模FOPO并将之应用在光纤传感解调系统中。本文以实验研究为主、理论模拟为辅,针对光纤光学参量放大的特点,提出了多种实现新型FOPO的实验方案,进行了大量实验验证,对于推进FOPO技术及其应用具有重要意义。
In the past several years, fiber optical parametric amplifiers (FOPAs) have attracted considerable attention due to their remarkable features, such as high gain, large gain bandwidth, arbitrary waveband operation, ultra-fast response, multi-channel signal amplification and so on. These significant features make FOPAs have incomparable in the implementation of novel fiber lasers. This thesis focuses on the research of gain properties of fiber optical parametric amplification and its application in realizing various fiber optical parametric oscillators (FOPOs), which include tunable FOPOs, multi-wavelength FOPOs, Fourier domain mode locking FOPOs.
     To begin with, the history and the research progress of FOPAs and FOPOs are introduced, as well as the development trend of FOPOs research.
     Then, based on the study of the coupled amplitude equations of four-wave mixing in optical fibers, the theory model of fiber optical parametric amplification is established and a simulation is carried out. According to the analysis of simulation results, effects of parameters such as the dispersion and nonlinear characteristics of gain fiber, the center wavelength and the power of pump lights on fiber optical parametric amplification are investigated, which provide a theoretical reference for subsequent works.
     Subsequently, tunable fiber lasers based on fiber optical parametric amplification are investigated. A simple line cavity tunable FOPO and a switchable and tunable FOPO are proposed. The principle of wavelength switching and tuning of the FOPOs is introduced.
     Furthermore, multi-wavelength FOPOs are developed. Comb filter technology used to realize the multi-wavelength fiber laser is introduced. We present a single-pumped multi-wavelength FOPO using a Sagnac fiber loop filter as the comb filter. A single-pumped multi-wavelength FOPO with a tunable wavelength spacing based on Mach-Zehnder interferometer (MZI) is proposed and multi-wavelength lasing with a wavelength spacing of0.08nm is demonstrated. We also propose a double-pumped multi-wavelength FOPO with a switchable wavelength spacing employing a Sagnac fiber loop filter as the comb filter and a wavelength spacing tunable double-pumped multi-wavelength FOPO based on MZI. The advantages of fiber optical parametric amplification in realizing multi-wavelength fiber lasers are demonstrated.
     Finally, Fourier domain mode locking FOPO is investigated. The research background, the significance of Fourier domain mode locking fiber laser and the advantages of fiber optical parametric amplification in realizing FDML fiber laser are introduced. The concept and the operation principle of Fourier domain mode locking and spectrum-limited Fourier domain mode locking are described. We propose a double-pump Fourier domain mode locking FOPO and a spectrum-limited Fourier domain mode locking FOPO which can be applied in sensing system.
     This experimental research-based thesis, supplemented by theoretical simulation research, aims to investigate the gain properties of fiber optical parametric amplification and its application in realizing novel FOPOs. I believe that this thesis will be of great significance for the development of advanced FOPOs technology and their applications.
引文
1. Doussiere P, Garabedian P, Graver C, et al.1.55/spl mu/m polarisation independent semiconductor optical amplifier with 25 dB fiber to fiber gain[J]. Photonics Technology Letters, IEEE,1994,6(2):170-172.
    2. Morito K, Tanaka S, Tomabechi S, et al. A broad-band MQW semiconductor optical amplifier with high saturation output power and low noise figure[J]. Photonics Technology Letters, IEEE,2005,17(5):974-976.
    3. Emery J Y, Ducellier T, Bachmann M, et al. High performance 1.55μm polarisation-insensitive semiconductor optical amplifier based on low-tensile-strained bulk GaInAsP[J]. Electronics Letters,1997,33(12):1083-1084.
    4. Morito K, Ekawa M, Watanabe T, et al. High-output-power polarization-insensitive semiconductor optical amplifier[J]. Lightwave Technology, Journal of.2003,21(1): 176-181.
    5. Desurvire E, Simpson J R, Becker P C. High-gain erbium-doped traveling-wave fiber amplifier[J]. Optics Letters,1987,12(11):888-890.
    6. Wysocki P F, Judkins J B, Espindola R P, et al. Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter[J]. Photonics Technology-Letters, IEEE,1997,9(10):1343-1345.
    7. Mears R J, Reekie L, Jauncey I M, et al. Low-noise erbium-doped fibre amplifier operating at 1.54μm[J]. Electronics Letters,1987,23(19):1026-1028.
    8. Tachibana M, Laming R 1, Morkel P R, et al. Erbium-doped fiber amplifier with flattened gain spectrum[J]. Photonics Technology Letters, IEEE,1991,3(2):118-120.
    9. Limpert J, Liem A, Reich M, et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express,2004,12(7):1313-1319.
    10. Limpert J, Schreiber T, Clausnitzer T, et al. High-power femtosecond Yb-doped fiber amplifier[J]. Optics Express,2002,10(14):628-638.
    11. Sousa J M, Nilsson J, Renaud C C, et al. Broad-band diode-pumped ytterbium-doped fiber amplifier with 34-dBm output power[J]. Photonics Technology Letters, IEEE, 1999,11(1):39-41.
    12. Hanna D C, McCarthy M J, Perry I R, et al. Efficient high-power continuous-wave operation of monomode Tm-doped fibre laser at 2μm pumped by Nd:YAG laser at 1.064μm[J]. Electronics Letters,1989,25(20):1365-1366.
    13. Creeden D, Budni P, Ketteridge P A, et al. High power pulse amplification in Tm-doped fiber[C]//Lasers and Electro-Optics,2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on. IET,2008:1-2.
    14. Zhou X, Lu C, Shum P, et al. A simplified model and optimal design of a multiwavelength backward-pumped fiber Raman amplifier[J]. Photonics Technology Letters, IEEE,2001, 13(9):945-947.
    15. Perlin V E, Winful H G. Optimal design of flat-gain wide-band fiber Raman amplifiers[J]. Journal of Lightwave Technology,2002,20(2):250.
    16. Varshney S K, Saitoh K, Koshiba M. A novel design for dispersion compensating photonic crystal fiber Raman amplifier[J]. Photonics Technology Letters, IEEE,2005,17(10):2062-2064.
    17. Lewis S A E, Chernikov S V, Taylor J R. Temperature-dependent gain and noise in fiber Raman amplifiers[J]. Optics Letters,1999,24(24):1823-1825.
    18. Hansryd J, Andrekson P A. Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency[J]. Photonics Technology-Letters, IEEE,2001,13(3):194-196.
    19. Marhic M E, Kagi N, Chiang T K, et al. Broadband fiber optical parametric amplifiers[J]. Optics Letters,1996,21(8):573-575.
    20. Ho M C, Uesaka K, Marhic M, et al.200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain[J]. Journal of Lightwave Technology,2001,19(7):977.
    21. Wong K K Y, Marhic M E, Uesaka K, et al. Polarization-independent two-pump fiber optical parametric amplifier[J]. Photonics Technology Letters, IEEE,2002.14(7):911-913.
    22. Marhic M E, Wong K K Y, Kazovsky L G. Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2004,10(5):1133-1141.
    23. Marhic M E, Park Y. Yang F S, et al. Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra[J]. Optics Letters,1996, 21(17):1354-1356.
    24. Torounidis T, Andrekson P. Broadband single-pumped fiber-optic parametric amplifiers[J]. Photonics Technology Letters, IEEE,2007.19(9):650-652.
    25. Wong K K Y, Shimizu K, Uesaka K, et al. Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two-segment design[J]. Photonics Technology-Letters, IEEE,2003,15(12):1707-1709.
    26. Hansryd J, Andrekson P A. O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier[J]. Photonics Technology Letters, IEEE,2001,13(7):732-734.
    27. Wong K K Y, Marhic M E, Uesaka K, et al. Polarization-independent one-pump fiber-optical parametric amplifier[J]. Photonics Technology Letters, IEEE,2002,14(11):1506-1508.
    28. Boggio J M C, Marconi J D, Fragnito H L. Double-pumped fiber optical parametric amplifier with flat gain over 47-nm bandwidth using a conventional dispersion-shifted fiber[J]. Photonics Technology Letters, IEEE,2005,17(9):1842-1844.
    29. Inoue K, Mukai T. Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier[J]. Optics Letters,2001,26(1):10-12.
    30. Hansryd J, Andrekson P A, Westlund M. et al. Fiber-based optical parametric amplifiers and their applications[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2002, 8(3):506-520.
    31. Inoue K. Mukai T. Experimental study on noise characteristics of a gain-saturated fiber optical parametric amplifier[J]. Journal of Lightwave Technology,2002,20(6):969.
    32. Kylemark P, Hedekvist P O, Sunnerud H, et al. Noise characteristics of fiber optical parametric amplifiers[J]. Journal of Lightwave Technology,2004,22(2):409.
    33. Yaman F, Lin Q, Radic S, et al. Impact of dispersion fluctuations on dual-pump fiber-optic parametric amplifiers[J]. Photonics Technology-Letters, IEEE,2004,16(5):1292-1294.
    34. Mussot A, Durecu-Legrand A, Lantz E, et al. Impact of pump phase modulation on the gain of fiber optical parametric amplifier[J]. Photonics Technology Letters, IEEE,2004, 16(5):1289-1291.
    35. Marhic M E, Yang F S, Ho M C, et al. High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation[J]. Lightwave Technology, Journal of,1999,17(2): 210-215.
    36. Blows J L, French S E. Low-noise-figure optical parametric amplifier with a continuous-wave frequency-modulated pump[J]. Optics Letters,2002,27(7):491-493.
    37. Marhic M E, Wong K K Y, Ho M C, et al.92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier[J]. Optics Letters,2001,26(9):620-622.
    38. Gao M, Jiang C, Hu W, et al. Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm[J]. Optics Express, 2004,12(23):5603-5613.
    39. Tong Z, Bogris A, Karlsson M, et al. Full characterization of the signal and idler noise figure spectra in single-pumped fiber optical parametric amplifiers[J]. Optics Express, 2010,18(3):2884-2893.
    40. Torounidis T, Sunnerud H. Hedekvist P O, et al. Amplification of WDM signals in fiber-based optical parametric amplifiers[J]. Photonics Technology Letters, IEEE,2003,15(8): 1061-1063.
    41. Voss P L, Tang R, Kumar P. Measurement of the photon statistics and the noise figure of a fiber-optic parametric amplifier[J]. Optics Letters,2003,28(7):549-551.
    42. Radic S, McKinstrie C J. Two-pump fiber parametric amplifiers[J]. Optical Fiber Technology,2003,9(1):7-23.
    43. Torounidis T, Andrekson P A. Olsson B E. Fiber-optical parametric amplifier with 70-dB gain[J]. Photonics Technology Letters, IEEE,2006,18(10):1194-1196.
    44. Yaman F, Lin Q, Agrawal G P. Effects of polarization-mode dispersion in dual-pump fiber-optic parametric amplifiers[J]. Photonics Technology Letters, IEEE,2004,16(2):431-433.
    45. Chavez Boggio J M, Marconi J D, Bickham S R, et al. Spectrally flat and broadband double-pumped fiber optical parametric amplifiers[J]. Optics Express,2007,15(9):5288-5309.
    46. Chestnut D A, de Matos C J S, Taylor J R. Raman-assisted fiber optical parametric amplifier and wavelength converter in highly nonlinear fiber[J]. JOSA B,2002,19(8): 1901-1904.
    47. Hansryd J, Andrekson P A. Broadband CW pumped fiber optical parametric amplifier with 49 dB gain and wavelength conversion efficiency[C]//Optical Fiber Communication Conference,2000. IEEE,2000,4:175-177.
    48. Wong K K Y, Marhic M E, Kalogerakis G, et al. Fiber optical parametric amplifier and wavelength converter with record 360 nm gain bandwidth and 50 dB signal gain[C]//Lasers and Electro-Optics,2003. CLEO'03. Conference on. IEEE,2003:2 pp.
    49. Chavez Boggio J M, Dainese P, Karlsson F, et al. Broad-band 88% efficient two-pump fiber optical parametric amplifier[J]. Photonics Technology Letters, IEEE,2003,15(11): 1528-1530.
    50. Bogris A, Syvridis D, Kylemark P, et al. Noise characteristics of dual-pump fiber-optic parametric amplifiers[J]. Journal of Lightwave Technology,2005,23(9):2788.
    51. Cerullo G, De Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments,2003,74(1):1-18.
    52. Cerullo G, Nisoli M, Stagira S, et al. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible[J]. Optics Letters,1998,23(16):1283-1285.
    53. Jiang R, Alic N, McKinstrie C, et al. Two Pump Parametric Amplifier with 40dB of Equalized Continuous Gain over 50nm[C]//Optical Fiber Communication Conference. Optical Society of America,2007.
    54. Maiman T H. Stimulated optical radiation in ruby[J].1960.
    55. Hansch T, Toschek P. Theory of a three-level gas laser amplifier[J]. Zeitschrift fur Physik, 1970,236(3):213-244.
    56. Witteman W J. The CO2 laser[C]//Berlin and New York, Springer-Verlag (Springer Series in Optical Sciences. Volume 53),1987,320 p.1987,53.
    57. Fan T, Byer R. Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser[J].Quantum Electronics, IEEE Journal of,1987,23(5):605-612.
    58. Fan T Y, Byer R L. Continuous-wave operation of a room-temperature, diode-laser-pumped,946-nm Nd:YAG laser[J], Optics letters,1987.12(10):809-811.
    59. Numai T. Fundamentals of semiconductor lasers[M]. Springer,2004.
    60. Serkland D K, Bartolini G D, Agarwal A. et al. Pulsed degenerate optical parametric oscillator based on a nonlinear-fiber Sagnac interferometer[J]. Optics Letters.1998.23(10): 795-797.
    61. Serkland D K, Kumar P. Tunable fiber-optic parametric oscillator[J]. Optics Letters,1999, 24(2):92-94.
    62. Wong G K L, Xu Y Q. Murdoch S G, et al. An all-fiber widely-tunable photonic crystal fiber optical parametric oscillator[C]//Optical Fiber communication/National Fiber Optic Engineers Conference,2008. OFC/NFOEC 2008. Conference on. IEEE,2008:1-3.
    63. De Matos C J S, Taylor J R, Hansen K P. Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber[J]. Optics Letters,2004,29(9):983-985.
    64. Sharping J E. Microstructure fiber based optical parametric oscillators[J]. Journal of Lightwave Technology,2008,26(14):2184-2191.
    65. Lasri J, Devgan P, Tang R, et al. A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime[J]. Photonics Technology-Letters, IEEE,2003,15(8):1058-1060.
    66. Xu Y Q, Murdoch S G, Leonhardt R, et al. Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator[J]. Optics Letters,2008,33(12):1351-1353.
    67. Zhou Y, Cheung K K Y, Yang S, et al. Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber[J]. Optics Letters,2009,34(7):989-991.
    68. Deng Y, Lin Q, Lu F, et al. Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber[J]. Optics Letters,2005,30(10):1234-1236.
    69. Xu Y Q, Murdoch S G, Leonhardt R, et al. Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator[J]. JOSA B,2009,26(7):1351-1356.
    70. Zhou Y, Cheung K K Y, Yang S, et al. A time-dispersion-tuned picosecond fiber-optical parametric oscillator[J]. Photonics Technology Letters, IEEE,2009,21(17):1223-1225.
    71. Gu C, Goulart C, Sharping J E. Cross-phase-modulation-induced spectral effects in high-efficiency picosecond fiber optical parametric oscillators[J]. Optics Letters,2011,36(8): 1488-1490.
    72. Malik R, Marhic M E. Narrow-linewidth tunable continuous-wave fiber optical parametric oscillator with 1 W output power[C]//Optical Communication (ECOC),2010 36th European Conference and Exhibition on. IEEE,2010:1-3.
    73. Li J, Chen L R. Tunable and reconfigurable multiwavelength fiber optical parametric oscillator with 25 GHz spacing[J]. Optics Letters,2010,35(11):1872-1874.
    74. Yang S, Cheung K K Y, Zhou Y, et al. Tunable single-longitudinal-mode fiber optical parametric oscillator[J]. Optics Letters,2010,35(4):481-483.
    75. Wong G K L, Murdoch S G, Leonhardt R, et al. High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator[J]. Optics Express,2007,15(6):2947-2952.
    76. Chen D, Sun B. Multi-wavelength fiber optical parametric oscillator based on a highly nonlinear fiber and a sagnac loop filter[J]. Progress In Electromagnetics Research,2010, 106:163-176.
    77. Li J, Huang T, Chen L R. Detailed analysis of all-optical clock recovery at 10 Gb/s based on a fiber optical parametric oscillator[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2012,18(2):701-708.
    78. Devgan P S, Lasri J, Tang R, et al.10-GHz dispersion-managed soliton fiber-optical parametric oscillator using regenerative mode locking[J]. Optics Letters,2005.30(5):528-530.
    79. Sharping J E, Pailo C, Gu C. et al. Microstructure fiber optical parametric oscillator with femtosecond output in the 1200 to 1350 nm wavelength range[J]. Optics Express,2010, 18(4):3911-3916.
    80. Kuo B P P, Alic N, Wysocki P F, et al. Simultaneous wavelength-swept generation in NIR and SWIR bands over combined 329-nm band using swept-pump fiber optical parametric oscillator[J]. Journal of Lightwave Technology,2011,29(4):410-416.
    81. Luo Z, Zhong W D, Tang M, et al. Fiber-optic parametric amplifier and oscillator based on intracavity parametric pump technique[J]. Optics Letters,2009,34(2):214-216.
    82. Van der Westhuizen G, Nilsson J. Fiber optical parametric oscillator for large frequency-shift wavelength conversion[J]. Quantum Electronics, IEEE Journal of 2011,47(11): 1396-1403.
    83. Yang S, Cheung K K Y, Zhou Y, et al. Dispersion-tuned harmonically mode-locked fiber-optical parametric oscillator[J]. Photonics Technology Letters, IEEE,2010,22(8):580-582.
    84. Zhou Y, Cheung K K Y, Li Q, et al. Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator[J]. Optics Letters,2010,35(14): 2427-2429.
    85. Lui L, Zhang A, Wai P, et al.40 Gb/s all optical clock recovery based on an optical parametric oscillator with photonic crystal fiber[C]//Opto-Electronics and Communications Conference,2008 and the 2008 Australian Conference on Optical Fibre Technology. OECC/ACOFT 2008. Joint conference of the. IEEE,2008:1-2.
    86. Gershikov A, Shumakher E. Willinger A. et al. Fiber parametric oscillator for the 2μm wavelength range based on narrowband optical parametric amplification[J]. Optics Letters, 2010,35(19):3198-3200.
    87. Chen D, Sun B. Multi-wavelength fiber optical parametric oscillator with ultra-narrow wavelength spacing[J]. Optics Express,2010,18(17):18425-18430.
    88. Sharping J E, Sanborn J R, Foster M A, et al. Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator[J]. Optics Express,2008,16(22): 18050-18056.
    89. Harvey J D, Leonhardt R, Clark H C, et al. PCF based optical parametric oscillators and amplifiers[C]//Lasers and Electro-Optics Society,2003. LEOS 2003. The 16th Annual Meeting of the IEEE. IEEE,2003,1:186-187.
    90. Yang S, Xu X, Zhou Y, et al. Continuous-wave single-longitudinal-mode fiber-optical parametric oscillator with reduced pump threshold[J]. Photonics Technology Letters. IEEE. 2009,21(24):1870-1872.
    91. Lasri J, Devgan P, Tang R. et al. Regeneratively modelocked dual-wavelength soliton-pulse fibre-optical parametric oscillator in C-and L-bands[J]. Electronics Letters,2004,40(10): 622-623.
    92. Gu C, Wei H, Chen S, et al. Fiber optical parametric oscillator for sub-50 fs pulse generation:optimization of fiber length[J]. Optics Letters,2010,35(20):3516-3518.
    93. Chen D, Sun B. Wavelength-spacing tunable multi-wavelength fiber optical parametric oscillator based on multiple four-wave mixing[J]. Laser Physics,2011.21(5):919-923.
    94. Li Y, Qian L. Lu D, et al. Widely tunable femtosecond fiber optical parametric oscillator[J]. Optics Communications,2006,267(2):491-497.
    95. Yang S. Zhou Y. Li J. et al. Actively mode-locked fiber optical parametric oscillator[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2009,15(2):393-398.
    96. Marhic M E, Wong K K Y, Kazovsky L G, et al. Continuous-wave fiber optical parametric oscillator[J]. Optics Letters,2002,27(16):1439-1441.
    97. Luo Z, Zhong W D, Cai Z, et al. Multiwavelength fiber optical parametric oscillator[J]. Photonics Technology Letters. IEEE,2009,21 (21):1609-1611.
    98. Cheng K H Y, Standish B A, Yang V X D. et al. Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers[J]. Optics Express,2010,18(3):1909-1915.
    99. Zhou Y, Zhang C, Chui P C. et al. A tunable S-plus L-band continuous-wave single[J]. IEEE Photonics Technology Letters,2011,23(20):1451-1453.
    100. Yamashita S, Hotate K. Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen[J]. Electronics Letters,1996,32(14):1298-1299.
    101. Park N, Wysocki P F.24-line multiwavelength operation of erbium-doped fiber-ring laser[J]. Photonics Technology Letters. IEEE,1996,8(11):1459-1461.
    102. Yao J, Yao J, Deng Z, et al. Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase modulator[J]. Photonics Technology Letters, IEEE,2005,17(4):756-758.
    103. Bellemare A, Rochette M, LaRochelle S. Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid[J]. Journal of Lightwave Technology,2000. 18(6):825.
    104. Sasamori H, Isshiki K, Watanabe H, et al. Multi-wavelength Erbium-Doped Fiber Ring Light Source with Fiber Grating Filter[J].1997.
    105. Chen W G, Lou S Q, Feng S C, et al. Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber[J]. Laser Physics,2009,19(11):2115-2119.
    106. Jia X, Liu Y, Si L, et al. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter[J]. Optics Communications,2008,281(1):90-93.
    107. Chen D. Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter[J]. Laser Physics Letters,2007,4(6):437-439.
    108. Chen D, Sun B, Wei Y. Multi-wavelength laser source based on enhanced four-wave-mixing effect in a highly nonlinear fiber[J]. Laser Physics,2010,20(8):1733-1737.
    109. Han Y G, Van Anh Tran T, Lee S B. Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber[J]. Optics Letters, 2006,31(6):697-699.
    110. Harun S W, Parvizi R, Shahi S, et al. Multi-wavelength erbium-doped fiber laser assisted by four-wave mixing effect[J]. Laser Physics Letters,2009,6(11):813-815.
    111.孙军强,丘军林,黄德修.应用偏振非均匀性实现多波长振荡的掺饵光纤激光器[J].中国激光,2000,27(6):488-492.
    112. Ahmad H, Sulaiman A H, Shahi S, et al. SOA-based multi-wavelength laser using fiber Bragg gratings[J]. Laser Physics,2009,19(5):1002-1005.
    113. Moon D S, Kim B H, Lin A, et al. Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber[J]. Optics Express.2007,15(13): 8371-8376.
    114. Ummy M A, Madamopoulos N.Joyo A. et al. Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror[J]. Optics Express,2011. 19(4):3202-3211.
    115. Chen D, Ou H, Fu H, et al. Wavelength-spacing tunable multi-wavelength erbiumdoped fiber laser incorporating a semiconductor optical amplifier[J]. Laser Physics Letters,2007, 4(4):287-290.
    116. Qin S, Chen D, Tang Y, et al. Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains[J]. Optics Express,2006,14(22):10522-10527.
    117. Chen D, Qin S, He S. Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains[J]. Optics Express,2007.15(3):930-935.
    118. Harun S W, Shirazi M R, Ahmad H. A new configuration of multi-wavelength Brillouin fiber laser[J]. Laser Physics Letters,2008,5(1):48-50.
    119. Park D D, Park J H, Park N, et al.53-line multi-wavelength generation of Brillouin/erbium fiber laser with enhanced Stokes feedback coupling[C]//Optical Fiber Communication Conference,2000. IEEE,2000,3:11-13.
    120. Zhang Z, Wu J, Xu K, et al. Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation[J]. Optics Express,2009, 17(19):17200-17205.
    121. Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography [J]. Science,1991, 254(5035):1178-1181.
    122. Leitgeb R, Hitzenberger C K, Fercher A F. Performance of fourier domain vs. time domain optical coherence tomography [J]. Opt. Express,2003,11(8):889-894.
    123. Wojtkowski M, Srinivasan V, Ko T, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation[J]. Optics Express,2004,12(11):2404-2422.
    124. De Boer J F, Cense B, Park B H. et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters,2003, 28(21):2067-2069.
    125. Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML):A new laser operating regime and applications for optical coherence tomography[J]. Optics Express,2006,14(8):3225-3237.
    126. Huber R A, Adler D C, Srinivasan V J. et al. Fourier domain mode-locked (FDML) lasers at 1050 nm and 202000 sweeps per second for OCT retinal imaging[C]//Proc. SPIE.2007, 6429:642907.
    127. Mao Y, Flueraru C, Chang S, et al. High-power 1300 nm FDML swept laser using polygon-based narrowband optical scanning filter[C]//SPIE BiOS:Biomedical Optics. International Society for Optics and Photonics,2009:716822-716822-8.
    128. Lee H S. Jung E J, Son S N, et al. FDML wavelength-swept fiber laser based on EDF gain medium[C]//OptoElectronics and Communications Conference,2009. OECC 2009.14th. IEEE.2009:1-2.
    129. Klein T, Wieser W. Biedermann B R. et al. Raman-pumped Fourier-domain mode-locked laser:analysis of operation and application for optical coherence tomography[J]. Optics Letters,2008,33(23):2815-2817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700