先进光纤激光器技术及其在光传感、光学微波产生的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器技术是光学(光子学)领域最为重要的技术之一,在光纤传感、光纤通信、工业加工等领域都有着重要的应用。本文主要研究了包括多波长光纤激光器技术、傅立叶域锁模(FDML:Fourier Domain Mode Locking)光纤激光器技术、双波长单频(单纵模)光纤激光器技术在内的先进光纤激光器技术以及它们在光传感和光学微波产生方面的应用。
     本文首先简单介绍了光纤激光器的发展历史和几种重要光纤激光器技术的研究进展,总结了光纤激光器发展的趋势。
     接着研究了基于混合增益和四波混频效应的多波长掺铒光纤激光器技术。实现了结合半导体光放大器、波长间隔可调谐的多波长掺铒光纤激光器,提出了基于拉曼和掺铒光纤混合增益、波长间隔可调谐的光纤激光器。研究了基于色散位移光纤和光子晶体光纤四波混频效应的多波长光纤激光器技术,首次利用光子晶体光纤同时作为四波混频介质和滤波器件实现了多波长掺铒光纤激光器的稳定多波长激光输出。介绍了对发展先进光纤激光器技术有着重要作用的光子晶体光纤,提出了几种高双折射光子晶体光纤的设计方案,并给出了光子晶体光纤在多波长拉曼光纤激光器、波长切换光纤激光器以及主动锁模光纤激光器方面的应用例子。
     然后发展了FDML光纤激光器技术并研究其在光传感方面的应用。介绍了FDML光纤激光器的基本概念和工作原理,搭建了连续波FDML光纤激光器并首次将其应用于光纤布拉格光栅(FBG:Fiber Bragg Grating)解调。首次提出了频谱受限FDML光纤激光器,是对FDML光纤激光器技术的重要发展,并探讨了该技术在FBG多点传感方面的应用。首次利用频谱受限FDML光纤激光器技术结合拉曼放大实现了远距离应力传感。
     最后研究了双波长单频光纤激光器技术及光学微波产生的应用。利用我们的光纤光栅制作系统刻写了光纤布拉格光栅对(FBGP:Fiber Bragg Grating Pair),实现了窄带的滤波功能,利用FBGP分别实现了单波长、双波长单频光纤激光器,并基于双波长单频激光器实现了光学微波产生,给出了基于FBGP和单频激光器的高灵敏度温度/应力传感系统。在双折射高浓度掺铒光纤上刻写了两个偏振敏感的FBG,测量了FBG偏振相关的透射谱,实现了双波长单频激光输出,并利用该双波长单频激光产生了频率达46GHz的微波信号。举例介绍了其它实现光学微波产生的方法,给出了基于主动锁模光纤激光器结构的微波光子滤波器。
     本文以实验研究为主、理论研究为辅,侧重实现特定光纤激光器功能及其技术方案,对于进一步发展先进光纤激光器技术和推进先进光纤激光器技术的应用具有重要意义。
Fiber laser technology is one of the most important technologies in optics (photonics), due to its important applications in optical fiber sensing, optical fiber communications, manufacture industry and so on. This thesis focuses on research of advanced fiber laser technologies, which include multi-wavelength fiber laser technology, Fourier domain mode locking (FDML) fiber laser technology and dual-wavelength single frequency (single longitudinal-mode) fiber lase technology, and their applications in optical sensing and photonic generation of microwave signals.
     To begin with, the history of fiber lasers and the research progress of several important fiber laser technologies are introduced, and the development trend of fiber laser research is summarized.
     Then, multi-wavelength Erbium-doped fiber laser technology based on hybrid gain or four-wave-mixing (FWM) effect is investigated. Wavelength-spacing tunable multi-wavelength Erbium-doped fiber laser incorporating a semiconductor optical amplifier is achieved, and wavelength-spacing tunable multi-wavelength Raman and Erbium-doped fiber laser is proposed. Multi-wavelength Erbium-doped fiber technology based on dispersion-shifted fiber (DSF) or photonic crystal fiber (PCF) FWM effect is investigated. It is the first time, as far as we know, stable multi-wavelength lasing is achieved for the multi-wavelength Erbium-doped fiber by employing a PCF which is used as both the FWM media and the filter component. PCF, which plays an important role in the development of the advanced fiber laser technologies, is introduced and several designs of the highly bireferingent PCF are proposed. Examples for PCF's applications in a multi-wavelength Raman fiber laser, a wavelength switchable fiber laser and an active mode-locking fiber laser are demonstrated.
     Furthermore, FDML fiber laser's application in optical sensing is developed. The concept and the operation principle of the FDML fiber laser are firstly introduced. Then we build up a continuous-wave FDML fiber laser and demonstrate its application for fiber Bragg grating (FBG) interrogation. For the first time, a spectrum-limited FDML fiber laser, which is a big step for the progress of FDML fiber laser technology, is proposed, and is utilized in FBG multi-point sensing system. Long distance strain sensing based on the spectrum-limited FDML fiber laser incorporating a Raman amplifier is demonstrated for the first time.
     Finally, dual-wavelength single frequency fiber laser technology and its application in optical microwave generation are investigated. A fiber Bragg grating pair (FBGP) with the function of narrow-band filtering is achieved by using our FBG fabrication system and is used to achieve single-wavelength and dual-wavelength single frequency fiber lasers. The FBGP based dual-wavelength single frequency fiber laser is used for optical microwave generation. A highly sensitive temperature/strain sensing system based on the FBGP and a single frequency laser is also demonstrated. Two polarization-sensitive FBGs are written in a birefringent fiber with high Erbium concentration to achieve a dual-wavelength single frequency fiber laser and their polarization-dependent transmission specta are measured. Microwave signal with a frequency up to 46 GHz is achieved base on the dual-wavelength single frequency fiber laser. Finally, one other method for photonic generation of microwave signals and a novel microwave photonic filter based on an active mode-locked fiber laser structure are introduced.
     This experimental research-based thesis, supplemented by theoretical research, aims to achieve technical programs for specific fiber lasers and their applications. The thesis will be of great significance for the development of the advanced fiber laser technology and the promotion of applications of the advanced fiber laser technology.
引文
1.T.H.Maiman,Stimulated optical radiation in ruby masers.Nature,1960,187:439-440.
    2.M.G.Littman and H.J.Metcalf,Spectrally narrow pulsed dye laser without beam expander.Applied Optics,1978,17(4):2224-2227.
    3.F.P.Schafer,Dye lasers.1990,New York,NY(USA):Springer-Verlag New York Inc.
    4.T.H(a|¨)nsch and Toschek,Theory of a three-level gas laser amplifier.Zeitschrift f(u|¨)r Physik A Hadrons and Nuclei,1970,236(3):213-244.
    5.W.J.Witteman,The CO2 laser.Vol.53.1987,Berlin and New York:Springer-Verlag (Springer Series in Optical Sciences).
    6.T.Numai,Fundamentals of semiconductor lasers.2004,New York:Springer.
    7.T.Y.Fan and R.L.Byer,Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser.IEEE Journal of Quantum Electronics,1987,23(5):605-612.
    8.P.Gogna and Y.Qiu,Low-threshold photonic crystal laser.Applied Physics Letters,2002,81(15):2680-2682.
    9.P.G.Agrawal,Nonlinear Fiber Optics.2001,San Diego:Academic Press.
    10.G.M.Smith,et al.,Low-loss hollow-core silica/air photonic bandgap fibre.Nature,2003,424:657-679.
    11.J.C.Knight,Photonic crystal fibres.Nature,2003,424:847-851.
    12.J.C.Knight,et al.,Photonic band gap guidance in optical fibers.Science,1998,282:1476-1478.
    13.P.Russell,Photonic crystal fibers.Science,2003,299:358-362.
    14.J.C.Knight,et al.,All-silica single-mode optical fiber with photonic crystal cladding.Optics Letters,1996,21(19):1547-1549.
    15.I.Razdobreev,et al.,Efficient all-fiber bismuth-doped laser.Applied Physics Letters,2007,90(3):031103-031103-3.
    16.E.M.Dianov,et al.,CW bismuth fibre laser.IEEE Journal of Quantum Electronics,2005,35(12):1083-1084.
    17.X.-g.Meng,et al.,Near infrared broadband emission of bismuth-doped aluminophosphate glass.Optics Express,2005,13(5):1628-1634.
    18.H.Liu,et al.,Wavelength-switchable La-codoped bismuth-based erbium-doped fiber ring laser.IEEE Photonics Technology Letters,2005,17(5):986-988.
    19.R.Huber,M.Wojtkowski,and J.G.Fujimoto,Fourier domain mode locking(FDML):a new laser operating regime and applications for optical coherence tomography.Optics Express,2006,14(8):3225-3237.
    20.J.Capmany and D.Novak,Microwave photonics combines two worlds.Nature Photonics,2007,1(6):319-330.
    21.X.Chen,Z.Deng,and J.Yao,Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser.Microwave and Optical Technology Letters,2006,54(2):804-809.
    22.S.Baunel,et al.,Optical microwave source.IEE Electronics Letters,2002,38(6):334-335.
    23.D.Chen,et al.,Dual-wavelength single-longitudinal-mode erbium-doped fibre laser based on fibre bragg grating pair and its application in microwave signal generation.IEE Electronics Letters,2008,44(7):459-461.
    24.D.Chen and J.Fu,Microwave Photonic Filter's Application on Microwave Signal Generation Based on an Active Mode-Locked Fiber Laser.Laser Physics,2008,18(11):1353-1356.
    25.A.J.Seeds and K.J.Williams,Microwave Photonics.IEEE/OSA Journal of Lightwave Technology,2006,24(12):4628-4641.
    26.E.Snitzer,Optical Maser Action of Nd+3 in a Barium Crown Glass.Physics Review Letters,1961,7(12):444-446.
    27.C.J.Koester and E.Snitzer,Amplification in a fiber laser.Applied Optics,1964,3(10):1182-1186.
    28.E.Snitzer,Neodymium glass laser.Proceedings of Third International Conference on Solid State Lasers,1963,Pads,France:21.
    29.K.C.Kao and G.A.Hockham,Dielectric-fibre surface waveguides for optical frequencies.IEE proceedings.Part J.Optoelectronics,1966,133(3):191-198.
    30.S.B.Poole,D.N.Payne,and M.E.Fermann,Fabrication of low-loss optical fibres containing rare-earth ions.IEE Electronics Letters,1985,21(17):730-732.
    31.I.P.Alcock,et al.,Q-switched operation of a Neodymium-doped monomode fibre laser.IEE Electronics Letters,1986,22(2):84-85.
    32.E.Snitzer,et al.,Double clad,offset core Nd fiber laser,in Optical Fiber Sensors,1988,paper PD5.
    33.J.D.Kafka,T.Baer,and D.W.Hall,Mode-locked erbium-doped fiber laser with soliton pulse shaping.Optics Letters,1989,14(22):1269-1271.
    34.R.P.Kashyap,et al.,All fiber narrowband reflection gratings at 1500nm.IEE Electronics Letters,1990,26(11):730-732.
    35.G.A.Ball,W.W.Morey,and W.H.Glenn,Standing-wave monomode erbium fiber laser.IEE Electronics Letters,1991,3(7):613-615.
    36.G.A.Ball and W.W.Morey,Continuously tunable single-mode erbium fiber laser.Optics Letters,1992,17(6):420-422.
    37.V.Mizrahi,et al.,Stable single-mode erbium fiber-grating laser for digital communication.OSA/IEEE Journal of Lightwave Technology,1993,11(12):2021-2025.
    38.V.Dominic,et al.,110 W fibre laser.IEE Electronics Letters,1999,35(14):1158-1160.
    39.Y.Jeong,et al.,Ytterbium-doped large-core fibre laser with 610 W of near difffraction-limited output power,IEE Electronics Letters,2004,40(24):1527-1528.
    40.C.H.Liu,et al.,810 W continuous-wave and single-transverse-mode fibre laser using 20μm core Yb-doped double-clad fibre,IEE Electronics Letters,2004,40(23):1471-1472.
    41.Y.Jeong,et al.,Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power,IEE Electronics Letters,2004,40(8):470-472.
    42.Y.Jeong,et al.,Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power.Optics Express,2004,12(25):6088-6092.
    43.楼棋洪,et al.,百瓦级掺镱双包层光纤激光器.中国激光,2003,30(12):1064-1064.
    44.宁鼎,et al.,掺Yb3+双包层石英光纤的研制及其激光特性.中国激光,2000,7(11):987-991.
    45.楼棋洪,et al.,国产双包层掺镱光纤实现440W的连续高功率激光输出.中国激光,2005,32(11):20.
    46.周军,et al.,采用国产大模场面积双包层光纤的714W连续光纤激光器.光学学报,2006,26(7):1119-1120.
    47.S.Pan,C.Lou,and Y.Gao,Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter.Optics Express,2006,14(3):1113-1118.
    48.Z.Li,et al.,Theoretical and experimental study of pulse-amplitude-equalizationin a rational harmonic mode-locked fiber ring laser.IEEE Journal of Quantum Electronics,2001,37(1):33-37.
    49.Z.Li,et al.,A dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser.Optics Communications,2000,185(5):381-385.
    50.S.Qin,et al.,Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains.Optics Express,2006,14(22):10522-10527.
    51.X.Liu,et al.,Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber.Optics Express,2005,13(1):142-147.
    52.K.K.Qureshi,et al.,Multi-wavelength laser source using linear optical amplifier.IEEE Photonics Technology Letters,2005,17(8):1611-1613.
    53.Q.Mao and J.W.Y.Lit,Switchable multiwavelength erbium-doped fiber laser with cascadedfiber grating cavities.IEEE Photonics Technology Letters,2002,14(11):612-614.
    54.J.Chow,et al.,Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters.IEEE Photonics Technology Letters,1996,8(1):60-62.
    55.H.Takahashi,H.Toba,and Y.Inoue,Multiwavelength ring laser composed of EDFAs and an arrayed-waveguide wavelength multiplexer,IEE Electronics Letters,1994,30(1):44-45.
    56.N.Park,J.W.Dawson,and K.J.Vahala,Multiple wavelength operation of an erbium-doped fiber laser.IEEE Photonics Technology Letters,1992,4(6):540-541.
    57.丁镭,光纤激光器及其在WDM通信系统中的应用研究,信息技术科学学院.2001,南开大学:天津.129.
    58.冯新焕,多波长光纤激光器及锁模光纤激光器的理论与实验研究,信息技术科学学院.2005,南开大学:天津.120.
    59.S.Yamashita and K.Hotate,Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,IEE Electronics Letters,1996,32(14):1298-1299.
    60.N.Park and P.F.Wysocki,24-line multiwavelength operation of erbium-doped fiber-ring laser.IEEE Photonics Technology Letters,1996,8(11):1459-1461.
    61.Y.Jian,et al.,Multiwavelength erbium-doped fiber ring laser incorporating an SOA-based phase Modulator.IEEE Photonics Technology Letters,2005,17(4):756-758.
    62.A.Bellemare,et al.,Room Temperature Multifrequency Erbium-Doped Fiber Lasers Anchored on the ITU Frequency Grid.IEEE/OSA Journal of Lightwave Technology,2000,18(6):825.
    63.孙军强,丘军林,and黄德修,应用偏振非均匀性实现多波长振荡的掺铒光纤激光器.中国科学(E辑),2000,30(5):391-394.
    64.H.Takara,S.Kawanishi,and M.Saruwatari,20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable,actively modelocked Er-doped fibre ring laser,IEE Electronics Letters,1993,29(13):1149-1150.
    65.Z.Ahmed and N.Onodera,High repetition rate optical pulse generation by frequency multiplication in actively modelocked fib.IEE Electronics Letters,1996,32(5):455.
    66.J.Min-Yong,et al.,External fibre laser based pulse amplitude equalisation scheme for rational harmonic modelocking in a ring-type fibre laser,IEE Electronics Letters,1998,34(2):182-184.
    67.H.A.Haus,E.P.Ippen,and K.Tamura,Additive-pulse modelocking in fiber lasers.IEEE Journal of Quantum Electronics,1994,30(1):200-208.
    68.J.Dorring,et al.,Injection locking of an additive-pulse mode-locked fiber laser.IEEE Photonics Technology Letters,2002,14(11):1497-1499.
    69.D.J.Richardson,et al.,Selfstarting,passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch,IEE Electronics Letters,1991,27(6):542-544.
    70.V.J.Matsas,et al.,Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,IEE Electronics Letters,1992,28(15):1391-1393.
    71.H.A.Haus,et al.,Stretched-pulse additive pulse mode-locking in fiber ring lasers:theory and experiment.IEEE Journal of Quantum Electronics,1995,31(3):591-598.
    72.F.Tauser,F.Adler,and A.Leitenstorfer,Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source.Optics Letters,2004,29(5):516-518.
    73.F.Ilday,F.W.Wise,and T.Sosnowski,High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror.Optics Letters,2002,27(17):1531-1533.
    74.F.Roer,et al.,131 W 220 fs fiber laser system.Optics Letters,2005,30(20):2754-2756.
    75.S.W.Huang,et al.,Swept source optical coherence microscopy using a Fourier domain mode locking laser.Optics Express,2007,15(10):6210-6217.
    76.M.Horowitz,et al.,Narrow-linewidth,singlemode erbium-doped fibre laser with intracavity wave mixing in saturable absorber.Electronics Letters,1994,30(8):648-649.
    77.M.Sejka,et al.,Distributed feedback Er~(3+)-doped fibre laser.IEE Electronics Letters,1995,31(17):1445-1446.
    78.C.Spiegelberg,et al.Compact 100 mW fiber laser with 2 kHz linewidth.Optical Fiber Communications Conference(OFC),2003:PD45-P1-3 vol.3.
    79.T.Qiu,et al.,Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers.Optics Letters,2005,30(20):2748-2750.
    80.X.Chen,J.Yao,and Z.Deng,Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber.Optics Letters,2005,30(16):2068-2070.
    81.Y.Yao,et al.,Dual-Wavelength Erbium-Doped Fiber Laser With a Simple Linear Cavity and Its Application in Microwave Generation.IEEE Photonics Technology Letters,2006,18(1):187-189.
    82.D.N.Wang,et al.,Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium.Optics Communications,2003,228(4-6):295-301.
    83.H.Ou,et al.,Wavelength-spacing tunable multi-wavelength erbiumdoped fiber laser incorporating a semiconductor optical amplifier.Laser Physics Letters,2007,4(4):287-290.
    84.D.Chen,S.Qin,and S.He,Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains.Optics Express,2007,15(3):930-935.
    85.D.Chen,et al.,Wavelength-spacing continuously tunable multiwavelength erbium-doped fibre laser based on DSF and MZI.IEE Electronics Letters,2007,43(9):524-525.
    86.D.Chen,Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter.Laser Physics Letters,2007,4(6):437-439.
    87.D.-H.Kim and J.Kang,Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity.Optics Express,2004,12(19):4490-4495.
    88.X.Liu and C.Lu,Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers.IEEE Photonics Technology Letters,2005,17(12):1041-1043.
    89.A.Zhang,et al.,Stable and Broad Bandwidth Multiwavelength Fiber Ring Laser Incorporating a Highly Nonlinear Photonic Crystal Fiber.IEEE Photonics Technology Letters,2005,17(12):2535-2537.
    90.W.J.Wadsworth,et al.,Supercontinuum generation in photonic crystal fibers and optical fiber tapers:a novel light source.Journal of the Optical Society of America B,2002,19(9):2148-2155.
    91.K.M.Hilligs,et al.,Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths.Optics Express,2004,12(6):1045-1054.
    92.E.Yablonovitch,Inhibited Spontaneous Emission in Solid-State Physics and Electronics.Physical Review Letters,1987,58(20):2059.
    93.S.John,Strong localization of photons in certain disordered dielectric superlattices.Physics Review Letters,1987,58:2486-2489.
    94.E.Yablonovitch,T.J.Gmitter,and K.M.Leung,Photonic band structure:The face-centered-cubic case employing nonspherical atoms.Physical Review Letters,1991,67(17):2295.
    95.D.Chen and L.Shen,Highly Birefringent Elliptical-Hole Photonic Crystal Fibers With Double Defect.IEEE/OSA Journal of Lightwave Technology,2007,25(9):2700-2705.
    96.D.Chen and L.Shen,Ultrahigh Birefringent Photonic Crystal Fiber With Ultralow Confinement Loss.IEEE Photonics Technology Letters,2007,19(4):185-187.
    97.T.P.Hansen,et al.,Highly birefringent index-guiding photonic crystal fibers.IEEE Photonics Technology Letters,2001,13(6):588-590.
    98.P.R.Chaudhuri,et al.,Near-elliptic core polarization-maintaining photonic crystal fiber:modeling birefringence characteristics and realization.IEEE Photonics Technology Letters,2004,16(5):1301-1303.
    99.M.J.Steel and J.R.M.Osgood,Elliptical-hole photonic crystal fibers.Optics Letters,2001,26(4):229-231.
    100.M.J.Steel and R.M.Osgood,Polarization and Dispersive Properties of Elliptical-Hole Photonic Crystal Fibers.IEEE/OSA Journal of Lightwave Technology,2001,19(4):495.
    101.K.Saitoch and M.Koshiba,Full-vectorial imaginary-distance beam propagation method based on finite element scheme:application to photonic crystal fibers.IEEE Journal of Quantum Electronics,2002,38(7):927-933.
    102.R.D.Meade,et al.,Accurate theoretical analysis of photonic band-gap matetrials. Physical Review B,1993,48(11):8434-8437.
    103.D.Chen,et al.,Band-rejection fiber filter and fiber sensor based on a Bragg fiber of transversal resonant structure.Optics Express,2008,16(21):16489-16495.
    104.D.Chert,et al.,An All-Fiber Multi-wavelength Raman Laser Based on a PCF Sagnac Loop Filter.Microwave and Optical Technology Letters,2006,48(12):2416-2418.
    105.D.Chen and L.Fang,Swtichable and tunable erbium-doped fiber ring laser incorporating a birefringent and highly nonlinear photonic crystal fiber.Laser Physics Letters,2007,4(5):368-370.
    106.I.Kim,et al.,Investigation of polarization tuning mechanism in fiber ring cavity laser,Pacific Rim Conference on Lasers and Electro-Optics(CLEO/PR).1999.
    107.F.Wang,et al.,Actively Mode-Locked Fiber Lasers Stabilized with a Highly Nonlinear Photonic Crystal Fiber.Journal of Optoelectronics·Laser,2007,18(9):1052-1054.
    108.Y.Li,et al.,Novel method to simultaneously compress pulses and suppress super mode noise in actively mode-locked fiber laser.IEEE Photonics Technology Letters,1998,10(9):1250-1252.
    109.X.Yu,et al.,Silica-Based Nanostructure Core Fiber.IEEE Photonics Technology Letters,2008,20(2):162-164.
    110.M.Eguchi and Y.Tsuji,Squeezed lattice elliptical-hole holey fiber with extremely high birefringence.Optics Letters,2008,33(16):1792-1794.
    111.A.Agrawal,et al.,Golden spiral photonic crystal fiber:polarization and dispersion properties.Optics Letters,2008,33(22):2716-2718.
    112.M.-Y.Chen,Polarization and leakage properties of large-mode-area microstructured-core optical fibers.Optics Express,2007,15(19):12498-12507.
    113.M.-Y.Chen,Polarization-Maintaining Large-Mode-Area Microstructured-Core Optical Fibers.IEEE/OSA Journal of Lightwave Technology,2008,26(13):1862-1867.
    114.M.Eguchi and Y.Tsuji,Design of single-polarization elliptical-hole core circular-hole holey fibers with zero dispersion at 1.55 μm.Journal of the Optical Society of America B 2008,25(10):1690-1701.
    115.D.Chen,et al.Some Switchable Dual-wavelength Fibre Lasers Based on FBG Feedback.Proc.of SPIE,Asia Pacific Optical Communications(APOC),2006,6351:63512I-1-9.
    116.D.Chen,et al.,Switchable dual-wavelength Raman erbium-doped fibre laser,IEE Electronics Letters,2006,42(4):202-204.
    117. D. Chen, et al., Tunable and injection-switchable Erbium-doped fiber laser of line structure. Microwave and Optical Technology Letters, 2007, 49(4): 765-768.
    
    118. H. Ou, et al., A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser. Optics communications, 2007, 178(1): 48-51.
    
    119. R. Huber, D.C. Adler, and J.G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Optics Letters, 2006, 31(20): 2975-2977.
    
    120. D. Chen, M. Fok, and C. Shu, Fiber Bragg Grating Interrogation for a Sensing System Based on a Continuous-Wave Fourier Domain Mode Locking Fiber Laser, Conference on Lasers and Electro-Optics (CLEO). 2008, paper CMJ5
    
    121. Y. Wang, et al., Quasi-Distributed fiber Bragg grating sensor system based on a Fourier domain mode locking fiber laser. Laser Physics, 2009, 19(3): 450-454.
    
    122. J. Fu, W. Liu, and D. Chen, Ultra-long-distance FBG sensor system based on a spectrum-limited Fourier domain mode locking fiber laser with Raman pumps. IEE Electronics Letters, 2008, 44(16): 961-963.
    
    123. D. Chen, C. Shu, and S. He, Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser. Optics Letters, 2008, 33(13): 1395-1397.
    
    124. R. Huber, et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Optics Express, 2005, 13(9): 3513-3528.
    
    125. A.D. Kersey, T.A. Berkoff, and W.W. Morey, Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry - Perot wavelength filter. Optics Letters, 1993, 18(16): 1370.
    
    126. M.A. Davis and A.D. Kersey, Matched-filter interrogation technique for fibre Bragg grating arrays. Electronics Letters, 1995. 31(10): 822-823.
    
    127. G.Z. Xiao, et al., Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexerbased on arrayed waveguide gratings. Optics Letters, 2004, 29(19): 2222-2224.
    
    128. D. Choi, et al., Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s. Optics Letters, 2008, 33(12): 1318-1320.
    
    129. A. Mariampillai, et al., Speckle variance detection of microvasculature using swept-source optical coherence tomography.Optics Letters,2008,33(13):1530-1532.
    130.B.R.Biedermann,et al.,Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation.Optics Letters,2008,33(21):2556-2558.
    131.C.M.Eigenwillig,et al.,Subharmonic Fourier domain mode locking.Optics Letters,2009,34(6):725-727.
    132.M.Y.Jeon,et al.,High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs.Optics Express,2008,16(4):2547-2554.
    133.O.reilly,et al.,Optical generation of very narrow linewidth millimetre wave signals.Electronics Letters,1992,28(25):2309-2311.
    134.D.Wake,C.Lima,and Davies,Optical generation of millimeter-wave signals for fiber-radiosystems using a dual-mode DFB semiconductor laser.IEEE Transactions on Microwave Theory and Techniques,1995,43(9):1-2.
    135.X.Wang,et al.,Optical generation of microwave/millimeter-wave signals usingtwo-section gain-coupled DFB lasers.IEEE Photonics Technology Letters,1999,11(10):1292-1294.
    136.J.Genest,et al.,Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers.IEEE Journal of Quantum Electronics,1997,33(6):989-998.
    137.Z.Fan and M.Dagenais,Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop.IEEE Transactions on Microwave Theory and Techniques,1997,45(8):1296-1300.
    138.J.Capmany,B.Ortega,and D.Pastor,A Tutorial on Microwave Photonic Filters.IEEE/OSA Journal of Lightwave Technology,2006,24(1):201.
    139.D.Chen,H.Fu,and W.Liu,Single-longitudinal-mode Erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter.Laser Physics,2007,17(10):1246-1248.
    140.D.Chen,et al.,Single-Longitudinal-Mode Erbium-Doped Fiber Laser Based on a Fiber-Bragg-Grating Pair,Asia Optical Fiber Communication & Optoelectronic Exposition & Conference(AOE),2008:ShangHai.
    141.D.Chen,et al.,High resolution strain/temperature sensor system based on high finesse fiber Bragg grating Fabry-Perot cavity and wavelength demodulation in the time domain.IEEE/OSA Journal of Lightwave Technology,2009,In press.
    142.W.Liu,et al.,Dual-Wavelength Single-Longitudinal-Mode Polarization-Maintaining Fiber Laser and Its Application in Microwave Generation.IEEE/OSA Journal of Lightwave Technology,2009,revised.
    143.D.Chen,H.Fu,and S.He,Novel Microwave Photonic Filter Based on a Mode-Locked Fiber Laser.Laser Physics Letters,2007,4(8):597-600.
    144.Y.O.Barmenkov,et al.,Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings.Optics Express,2006,14(14):6394-6399.
    145.J.Sun,et al.,Stable Dual-Wavelength DFB Fiber Laser With Separate Resonant Cavities and Its Application in Tunable Microwave Generation.IEEE Photonics Technology Letters,2006,18(24):2587-2589.
    146.H.Fu,et al.,Tunable Microwave Photonic Filter Based on a Fiber Ring and Erbium-doped Fiber Amplification.Journal of Optoelectronics·Laser,2007,3(6):406-409.
    147.H.Fu,et al.,Continuously tunable incoherent microwave photonic filter using a tunable Mach-Zehnder interferometer as the slicing filter.Microwave and Optical Technology Letters,2007,49(10):2382-2386.
    148.S.Lee,et al.Dual Locking Modes in a Weakly Birefringent Ring Active Mode Locked Fiber Laser.Asia-Pacific Optical Conference(APOC),2006,Gwangju:63511T.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700