微纳结构形貌干涉显微测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干涉显微法是一种基于光学干涉原理的表面形貌测量方法,具有测量速度快、精度高、非接触的优点,主要用于MEMS等基于IC平面工艺制造的微纳结构表面形貌及其运动的测量。本文通过深入研究干涉显微法原理,对相移干涉法(PSI)和垂直扫描干涉法(VSI)的数学模型和算法进行了分析比较,提出了VSI相位包络算法,并且在频闪干涉视觉三维测量系统的基础上,完成了干涉显微测量的关键技术研究及系统实现。
     根据Michelson干涉仪模型,对光学干涉法的数学模型进行了推导分析,确定了干涉光强函数与包络函数和相位函数之间的关系,得到了PSI和VSI测量方法的理论模型。在此基础上,通过分析研究目前主要的PSI和VSI算法原理,利用干涉光强函数及其Hilbert变换函数的频谱分布特点,提出了相位包络算法。该算法应用采样定理,利用Whittaker波形重构原理计算采样点的包络值和相位值,从中提取干涉光强函数的零光程差位置,得到样品表面各点的相对高度值。仿真结果表明,相位包络算法的具有较高的测量精度。
     在频闪干涉视觉三维测量系统的基础上,设计开发了一套集PSI和VSI测量模式为一体的干涉显微测量系统。系统采用Linnik结构干涉显微镜,利用LED和窄带滤波片实现PSI和VSI的光源切换,通过参考镜扫描的方法将VSI扫描器与PSI相移器集为一体,实现PSI和VSI测量硬件的统一集成。在频闪干涉视觉测量软件中增加了VSI测量模块,可以用相位包络算法、五步相移算法、空间频域算法、SEST算法对VSI采样数据进行处理,并改进了表面形貌测量结果存储文件的格式。
     对频闪干涉视觉三维测量系统的误差现象进行了分析,研究了Linnik结构干涉显微镜在PSI测量中的误差机理。根据平面样品的测量结果,可以确定系统在PSI测量中存在一个近似于二次曲面的误差面,通过研究PSI测量过程中误差产生机理,建立了相移误差、摄像机成像误差以及光波阵面匹配误差模型。根据误差模型的特点,对系统进行了改进,设计了以标准平面作为测量样品的相关实验,验证误差模型与误差曲面分布之间的关系。实验结果表明,光波阵面匹配误差中Linnik结构干涉显微镜的两个显微物镜后焦点误差是产生误差曲面的主要原因。在误差分析的基础上,利用标准平面样品的测量结果,对PSI测量进行了补偿,取得了较好的补偿效果。
     系统采用两种LED光源对美国VEECO公司的标准台阶做了测量,比较了两种LED光源和不同处理算法下的台阶测量结果,通过分析相位谱误差对包络的影响,对测量结果中相位包络算法和空间频域算法的测量误差进行了研究,并且应用双峰值和特征参数对相位包络算法进行了修正。
Microscopic Interferometry technique is a profilometry measurement technology for micro-nano structure surface profile and has been employed widely in the static and dynamic measurement of Micro-electronics and Micro Electronic Mechanic System for its non-contact, fast speed and high accuracy. By studying the interferometry and micro-vision principle, this dissertation discuss the model and interference processing algorithm of Phase Shift Interferometry (PSI) and Vertical Scanning Interferometry (VSI) which are the main techniques of the microscopic interferometry technique, and developed a new VSI interference processing algorithm, Phase Envelop algorithm. On the basis of previous Stroboscopic Interferometry and Micro-vision System, some key technologies of microscopic interferometry technique are realized.
     The model of light interferometry was deduced from the Michelson interference model, and the equation of light interference intensity function, envelop function and phase function was confirmed, from which the PSI model and VSI model were infered. On the basis of these studies, the Phase Envelop algorithm was presented, which extract the position of zero optical path difference of light interference intensity function from the phase and envelop values of sample points, which could be calculated by Whittaker reconstructed technique of sampling theory based on the spectrum of light interference intensity function and its Hilbert transform function. The outcome of computer simulation verified that the Phase Envelop algorithm has a high precision in the measurement.
     On the basis of the Stroboscopic Interferometry and Micro-vision system a profilometer system was developed for micro-nano structure profile testing which could operate in either PSI mode or VSI mode. The light source is a broadband LED which could switch to a narrowband light source by a filter to satisfy both interferometry mode. A Linnik interferometer was adopted in this profilometer, in which the scanner and the phase shifter were integrated through scanning the reference mirror. The VSI software module was added in the Stroboscopic Interferometry and Micro-vision System software and could process sampling interference intensity data by Phase-Shifting algorithm, SEST algorithm, Spatial Frequency Domain algorithm and Phase Envelop algorithm, and an effective file format was proposed to store the three-dimensional surface profile data.
     The error mechanism of Linnik Interferometer in PSI measurement was studied by analyzing the error phenomena in the PSI measurement of the Stroboscopic Interferometry and Micro-vision System in which a measure error approximated to a conicoid was discovered. On the basis of PSI error mechanism study, the phase-shift error, camera error and optical wave matching error models were presented and some experiments were projected in which the plane was selected as the sample. The outcome of these experiments verified that the optical wave matching error was the main error source and the conicoid error was mainly caused by the focus axial matching error of the objectives in Linnik Interferometer. So the standard plane measurement could be used to compensate the outcome of PSI measurement.
     The standard step height of VEECO Corp. was measured by this system which employed two LED light source, and the experimental results which were processed by different VSI algorithm described above, were compared and analyzed. The error of Spatial Frequency Domain algorithm and Phase Envelop algorithm in the measurement were studied based on the analysis of phase spectum error and Phase Envelop algorithm was modifyed by two peak sum character.
引文
[1] Ruffin P B, Burgett S J. Recent progress in MEMS technology development for military applications[C]. Proceedings of SPIE, 2001, 4334: 1-12.
    [2]王立鼎,吴一辉.抓住机遇,推动我国微型机械的快速发展[J].中国机械工程, 1999, 10(2): 121-122.
    [3] Lin RM, Wang W J. Structural dynamics of microsystems—current state of research and future directions[C]. Mechanical Systems and Signal Processing 20,2006: 1015–1043.
    [4]王涛,王晓东,王立鼎,刘冲. MEMS中微结构动态测试技术进展[J].中国机械工程, 2005, 16(1): 83-88.
    [5] Bosseboeuf A, Petitgrand S. Characterization of the static and dynamic behaviour of M(O)EMS by optical techniques: status and trends[J]. Journal of Micromechanics and Microengineering, 2003, 13: S23-S33.
    [6] Osten W, Seebacher S, Juptner W P O. Application of digital holography for the inspection of microcomponents[C]. Proeedings of SPIE, 2001, 4400: 1-15.
    [7] Hedley J, Burdess J S, Harris A J, etc. An optical workstation for characterization and modification of MEMS[C]. Proceedings of SPIE, 2004, 5458: 244-252.
    [8] Schnitzer R, RUmmler N, GroBer V, etc. Vibration measurement of microstructures by means of laser optical modal analysis[C]. Proceedings of SPIE, 1999, 3825: 72-79.
    [9] Lee C W, Zhang X M, Tjin S C, etc. Nano-scale displacement measurement of MEMS devices using fiber optic interferometry[C]. Proceedings of SPIE, 2003, 5145: 196-201.
    [10]王军,鲍海明,魏仲慧等.光学形貌测量技术综述[J].光电子技术与信息, 2004,17(6):12~15.
    [11]周明宝,林大键,郭厦容等.微结构表面形貌的测量[J].光学精密工程, 1999, 7(3):7~13.
    [12] Lyuboshenko I, Bosseboeuf A. A new technique for 3D profilometry of MEMS[C], Proceedings of SPIE, 2006,61110V: 1-8.
    [13] Jobin M, Passeraub P, Foschia R. Nanometrology for MEMS : combination of optical interference, atomic force microscopy and nanoindentor-based actuator[C], Proceedings of SPIE, 61880T: 1-8.
    [14]王云庆,李庆祥,周兆英,薛实福.触针式轮廓测量机构的动态分析及非线性误差的消除{J}.仪器仪表学报, 1996, 17(6):606~611.
    [15]杨涛,牛利,李壮,董绍俊等.扫描探针显微镜在导电聚合物研究中的应用[J].应用化学.2006,23(2):117~121.
    [16]鲍振武,刘剑飞,霍洪涛,刘钊.光学针描法的理论与实验研究[J].光学学报,1999,19(11):1523~1529.
    [17] Meadows D M,Johnson W O,Allen J B.Generation of Surface Contours by Moire Patterns[J].Applied Optics,1970, 9(4): 942~946.
    [18] Takeda M, Mutoh K.Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics ,1983,22 (24):3977~3982.
    [19] Srinivasan V, Liu H C,Halioua M. Automated phase-measuring profilometry of 3-D diffuse objects[J].Applied Optics, 1984, 23(18):3105~3108.
    [20] Bruning J H, Gallagher J E, Rosenfeld D P, etc. Digital wavefront measuring interferometer for testing optical surface and lens[J], Applied Optics, 1974, 13(11): 2693-2703.
    [21] Balasubramanian. Optical system for surface topography measurement[P]. U.S. Patent, 4340306, 1980
    [22] Gordon S K, Stanley S C. Mirau correlation microscope[J], Applied Optics, 1990, 29(26): 3775-3783
    [23] Deck L, Groot P. High-speed noncontact profiler based on scanning white-light interferometry[J]. Applied Optics, 1994,33(31):7334~7338.
    [24] Groot P, Deck L. Surface profiling by analysis of white-light interferograms in the spatial frequency domain, Journal of Modern Optics[J],1995,42(2): 389– 401.
    [25] Groot P. Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window[J]. Applied Optics,1995,34(22): 4723– 4730.
    [26] Larkin K G. Efficient nonlinear algorithm for envelope detection in white light interferometry[J], J. Opt. Soc. Am. A, 1996, 13(4):832 -843.
    [27] Kim S W, Kang M G, Lee S Y. White light phase-shifting interferometry with self-compensation of PZT scanning errors[C], Proceedings of SPIE, 1999,3740: 16-19.
    [28]许万里,郑伟,苑惠娟,用相移干涉法测量表面三维轮廓的研究{J}.传感器技术,2001,20(8):19-21,24.
    [29]何永辉,蒋剑峰,赵万生.基于扫描白光干涉法的表面三维轮廓仪[J].光学技术,2001,27(2):150~153.
    [30] Hirabayashi A,. Fast algorithm for surface profiling by white-light interferometry using an optical filter with symmetric spectral distribution, IEEE-NANO 2001,2001,459-464.
    [31] Hirabayashi A, Ogawa H, Kitagawa K. Fast surface profiler by white-light interferometry using a new algorithm, the SEST algorithm[C], Proceedings of SPIE , 2001, 4451: 356-367.
    [32] Pfortner A, Schwider J. Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures[J], Applied Optics, 2001, 40(34): 6223-6228.
    [33] Lindner M W. White-light interferometry via an endoscope[C], Proceedings of SPIE, 2002, 4777:90-101.
    [34] Hirabayashi A, Ogawa H, Kitagawa K. Fast surface profiler by white-light interferometry by use of a new algorithm based on sampling theory[J], Applied Optics, 2002, 41(23): 4876-4883.
    [35] Hirabayashi A, Nakayama Y, Ogawa H, Kitagawa K. Algorithm with optimum noise suppression for surface profiling by white-light interferometry[C], Proceedings of SPIE , 2003,5180: 365-376.
    [36] Jarad A E , Gülker G, Hinsch K D. Microscopic ESPI: better fringe quality by the Fourier transform method[C]. Proceedings of SPIE, 2003, 4933: 335-341.
    [37]张红霞.微表面三维形貌相移干涉检测的研究[D].天津:天津大学. 2003.
    [38] Lega X C, Grigg D, Groot P. Surface profiling using a reference scanning Mirau interference microscope[C],Proceedings of SPIE , 2004, 5532:106-116.
    [39] Groot P, Lega X C. Signal modeling for low-coherence height-scanning interference microscopy[J], Applied Optics, 2004,43(25):4821-4830.
    [40] Adachi M. Phase-shift algorithm for white-light interferometry insensitive to a linear error in phase shift increment[C], Proceedings of SPIE,2005, 604806:1-9.
    [41] Sinclair M B, Boer M P, Corwin A D. Long-working-distance incoherent-light interference microscope[J]. Applied Optics, 2005, 44 (36):7714-772.
    [42] Sinclair M B, De Boer M P. Long working distance incoherent interference microscope[P]. U.S. Patent, 7034271, 2006.
    [43]戴蓉,谢铁邦,常素萍.垂直扫描白光干涉表面三维形貌测量系统[J].光学技术. 2006, 32(4):545-552.
    [44]郭彤,胡春光,陈津平等. MEMS显微干涉测量系统中相移器性能的研究[J].传感技术学报. 2006,19(5):1500-1508.
    [45] Tung C H, Huang C H, Kao C F, etc. Fast surface profiling using monochromatic phase and fringe order in white-light interferometry[C], Procedings of SPIE, 2006, 62921F: 1-9.
    [46] Sugiyama M, Ogawa H, Kitagawa K, etc. Single-shot surface profiling by local model fitting[J], Applied Optics , 2006,45(31):7991-8005.
    [47]胡晓东,齐浩,刘钢,胡春光,胡小唐.基于傅里叶干涉法的微结构离面运动测量[J],光电子·激光,2007,18(8) 8:966-969.
    [48]孙杰,刘铁根,张以谟等.白光干涉零光程差位置四步测量法及其精度分析[J],天津大学学报,2007,37(4):363-367. [49]孙杰,刘铁根,张以谟,江俊峰.采用宽带光源的双光束干涉中零光程差位置测量研究[J],仪器仪表学报, 2005, 26(1): 8-12.
    [50] Freeman D M, Davis C Q. Using video microscopy to characterize micromechanical systems[C]. Proceedings of IEEE/LEOS International Conference on Optical MEMS, 1998, 9-10.
    [51] Davis C Q, Freeman D M. Using a light microscope to measure motions with nanometer accuracy[J]. Optical Engineering, 1998, 37: 1299-1304.
    [52]金翠云,靳世久,栗大超,冯亚林,郝一龙.基于机器微视觉的微结构平面运动测试技术[J],天津大学学报,2005,38(3):248-252.
    [53] Burdess J S, Harris A J, Wood D, etc. A system for the dynamic characterization of microstructures[J]. IEEE/ASME Journal of Microelectromechanical Systems, 1997, 6(4): 322-328
    [54] Schnitzer R, Rummler N, GroBer V, etc. Vibration measurement of microstructures by means of laseroptical modal analysis[C], Proc. of SPIE, 1999,3825: 72-79.
    [55] Ngoi B K A, Venkatakrishnan K, Tan B, etc. Two-axis-scanning laser Doppler vibrometer for microstructure[J], Optics Communications, 2000, 182(1-3): 175-185.
    [56] Eric M, Lawrence E M, Speller K E, etc. MEMS characterization using laser Doppler vibrometry[C]. Proceedings of SPIE, 2003, 4980: 51-62.
    [57] Shaporin A V, Hanf M, Doetzel W. Novel characterization method for MEMS devices[C], Procedings of SPIE, 2005,5716: 198-206.
    [58] Wood D, Burdess J, Pitcher R, etc. A laser vibrometer system to examine the dynamic modal analysis of resonant micromechanical structures[C], Proceedings of SPIE, 2005,2639: 202-210.
    [59] Ebert M, Gerbach R, Bagdahn J, etc. Numerical identification of geometric parameters from dynamic measurement of grinded membranes on wafer level[C]. 7th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006, IEEE,2006, 1-6.
    [60] Hart M R, Conant R A, Lau K Y, etc. Stroboscopic interferometer system for dynamic MEMS characterization[J]. Journal of Microelectromechanical Systems, 2000, 9(4): 409-418.
    [61] Rembe C, Hart M R, Helmbrecht M A, etc. Stroboscopic interferometer with variable magnification to measure dynamics in an adaptive-optics micromirror[C]. Proceedings of IEEE/LEOS International Conference on Optical MEMS, 2000, 73-74.
    [62] Hart M R, Conant R A, Lau K Y, etc. Stroboscopic interferometer system for dynamic MEMS characterization[J], Journal of Microelectromechanical Systems, 2000,9(4): 409-418.
    [63] Petitgrand S, Yahiaoui R, Bosseboeuf A, etc. Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization[C], Proceedings of SPIE, 2001,4400: 51-60.
    [64] Rembe C, Muller L, Muller R S, Measurement system for full three-dimensional motion characterization of MEMS[J], Journal of Microelectromechanical System, 2002, 11(5): 479-488.
    [65] Grigg D, Felkel E, Roth J, etc. Static and dynamic characterization of MEMS and MOEMS devices using optical interference microscopy[C]. Proceedings of SPIE, 2004, 5455: 429-435.
    [66]郭彤,胡春光,胡晓东等.频闪干涉仪在微机电系统动态表征中的应用[J],纳米技术与精密工程,2004,2(4): 294-298.
    [67] Chen L C, Fan K C, Lin C D, etc.3-D surface profilometry for both static and dynamic nano-scale full field characterization of AFM micro cantilever beams[C], Proceeding of SPIE, 2005,587804:1-12.
    [68]胡晓东,栗大超,郭彤等.微结构特性的光学测试平台[J],光学学报,2005, 25(6):803-808
    [69]胡春光,胡晓东,金翠云等. MEMS动态测试中频闪同步控制系统[J],天津大学学报,2005,38(1):47-51.
    [70] Chen L C, Lai H W, Chang C C, etc. Dynamic out-of-plane profilometry for nano-scale full field characterization of MEMS with automatic detection of vibratory modes and MHz-scale measurement bandwidth[C], Proceedings of SPIE, 2006, 6382: 63820N.
    [71] Sreenivasan M M, Sivakumar N R, Packirisamy M. Theoretical modeling of acousto-optic modulated stroboscopic interferometer[C], Proceedings of SPIE, 2006, 6343: 634322.
    [72] Groot P. Stroboscopic white-light interference microscopy[J], Applied Optics, 2006, 45(23): 5840- 5844.
    [73] Conway J A, Osborn J V, Fowler J D. Stroboscopic imaging interferometer for MEMS performance measurement[J], Journal of Microelectromechanical System, 2007, 16(3): 668-674.
    [74] Leslie L. Deck. Fourier-transform phase-shifting interferometry[J], Applied Optics, 2003, 42(13):2354-2365.
    [75] Groot P, Lega X C. Signal modeling for low-coherence height-scanning interference microscopy[J], Applied Optics,2004,43(25): 4821– 4830.
    [76] Kacperski J, Kujawinska M, Leon S C, etc. Dynamic measurements of actuators driven by AlN layers[C]. Proceedings of SPIE, 2005, 5958: 1-8.
    [77] Ghim Y S, Kim S W, Dispersive white-light interferometry for thin-film thickness profile measurement[C]. Proceedings of SPIE, 2005, 5856: 419-426.
    [78] Andrei A, Krupa K, Jozwik M, etc. Fabrication, characterization and reliability studlN driven cantilevers[C], Procedings of SPIE, 2006,61880S: 1-8.
    [79] GroβR, Hybl O, Richter C, etc. Reduced measurement uncertainty of white-light interferometry on rough surfaces[C], Proceedings of SPIE, 2006, 63410V: 1-5.
    [80] Gorecki C, Andrei A, Jozwik M, etc. Static and dynamic measurements of active MEMS by Twyman-Green interferometry: case of AlN-based microactuators[C], Proceedings of SPIE, 2006, 6293: 629308.
    [81] Francis L A, Kromka Al, Steinmüller-Nethl D, etc. Nondestructive dynamic characterization nanocrystalline diamond membranes flexural plate wave sensors[J], IEEE Sensors Journal, 2006, 6(4): 916-923.
    [82] Pecheva E, Montgomery P, Montaner D, etc. Optimised 3D surface measurement of hydroxyapatite layers using adapted white light scanning interferometer[C], Proceedings of SPIE, 2006, 634137: 1-6.
    [83] Ghim Y S, Kim S W. Thin-film thickness profile and its refractive index measurements by dispersive white-light interferometry[J], Optics Express, 2006, 14(24): 11885- 11891.
    [84] Groot P, Lega X C. Angle-resolved three-dimensional analysis of surface films by coherence scanning interferometry[J], Optics Letters, 2007,32 (12): 1638-1640.
    [85] Biegen J F. Determination of the phase change on reflection from two-beam interference[J], Optics Letters, 1994,19(21): 1690 -1692.
    [86] Park M C, Kim S W. Compensation of phase change on reflection in white-light interferometry for step height measurement[J], Optics Letters, 2001,26(7):420-422.
    [87] Park M C, Kang M, Kim S W. Compensation for phase change on reflection in white-light scanning interferometry[C], Proceedings of SPIE, 2002, 4777: 128-135.
    [88]丁志华,王桂英,王之江.相移干涉显微镜中移相误差分析[J],计量学报,1995,16(4): 262-268.
    [89]周明宝,林大键,郭履容等.基于白光的双波长相移干涉的误差分析[J],光学精密工程,1999,7(5): 106-11390.
    [90]周明宝,林大键,郭履容等.用白光相移干涉增大表面形貌可测范围的研究,光学学报[J], 2000,20(8): 1065-1071.
    [91] Guo H W, Yu Y J, Chen M Y. Blind phase shift estimation in phase-shifting interferometry[J], J. Opt. Soc. Am. A, 2007,24(1): 25-33.
    [92] Debnath S K, Kothiyal M P. Experimental study of the phase-shift miscalibration error in phase-shifting interferometry: use of a spectrally resolved white-light interferometer[J], Applied Optics, 2007,46 (22): 5103-5109.
    [93] Langoju R, Patil A, Rastogi P. Statistical study of generalized nonlinear phase step estimation methods in phase-shifting interferometry[J], Applied Optics, 2007,46 (33): 8007-8014.
    [94] Conway J A, Osborn J V, Fowler J D. Stroboscopic imaging interferometer for MEMS performance measurement[J], Journal of Microelectromechanical System, 2007, 16(3): 668-674.
    [95]张艳珍,欧宗瑛.一种新的摄像机线性标定方法[J],中国图象图形学报,6A(8):727-731.
    [96] Hart M, Vass D G, Begbie M L. Fast surface profiling by spectral analysis of white-light interferograms with Fourier transform spectroscopy[J], Applied Optics, 1998, 37(10): 1764-1769.
    [97]杨晓许,周泗忠,相里斌等.转镜式傅里叶变换光谱仪光程差非线性的研究[J],光学学报,2004,24(10):1388-1392.
    [98]吴航行,华建文,王培纲等.傅里叶变换光谱仪中干涉信号的畸变[J],红外技术,2004,26(4):25-30.
    [99]相里斌,袁艳.单边干涉图的数据处理方法研究[J],光子学报,35(12):1869-1874.
    [100] Chang G W, Lin Y H, Yeh Z M. White light interferometric profile measurement system using spectral coherence[C], Proceedings of SPIE, 2007, 646301): 1-11.
    [101] .Xie Y J,Bai J P,Shi T L,etc.Application of computer microvision and microscopic interferometry in measurement system for three-dimensional static and dynamic characterization of MEMS[C].Proceedings of 3rd International Symposium on Instrumentation Science and Technology, 2004, 799-804.
    [102] Bai J P, Xie Y J, Shi T L, etc. Image based MEMS dynamics characterization system[C]. 2004 ASME International Mechanical Engineering Congress & Exposition, November 13-19, 2004.
    [103]周明才,白金鹏,谢勇君等.MEMS动态测试系统及其数据处理[J].光学技术,2004, 30(4): 398~402.
    [104]谢勇君,白金鹏,史铁林等. MEMS三维静动态测试系统[J],光电子·激光,2005,16(5): 570-574.
    [105]谢勇君,刘世元,史铁林等. MEMS三维动态测试系统的精确同步控制及实现[J].仪器仪表学报, 2005, (10): 1089~1092.
    [106]谢勇君,史铁林,白金鹏等.基于亚像素综合定位匹配算法的MEMS平面运动测量[J],纳米技术与精密工程,2005,3(2): 92-96.
    [107] Xie Y J, Shi T L, Liu S Y. Automatic measurement system for dynamic characterization of MEMS[J]. Advances in Systems Science and Applications, 2006, 6(2): 312~318.
    [108] Shi T L, Xie Y J, Shiyuan Liu S Y, etc. Measurement system for 3D static and dynamic characterization of MEMS[C]. 4th Sino-German Symposium on Micro and Nano Technologies, April 18-20, 2005.
    [109]谢勇君. MEMS微结构动态测试方法及关键技术研究[D].武汉:华中科技大学. 2006.
    [110]郁道银,谈恒英.工程光学(M).北京:机械工业出版社, 1994.
    [111]卢文祥,杜润生.机械工程测试·信息·信号分析.武汉:华中理工大学出版社. 1999.
    [112]陈侦,王桂英,王之江.移相显微干涉系统中的衍射效应分析[J].光学学报,1998, 18(7):877~880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700