集成电路铜互连中硅碳氮介质阻挡层的制备与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路技术不断发展,互连RC(R为电阻,C是介质电容)延迟却逐步增大。从130nm技术阶段开始,其已成为影响电路速度的主要矛盾。为提高互连性能,采用新的低电阻率金属互连材料(Cu)和低介电常数互连介质材料的铜互连技术应运而生。Si_3N_4常被用作大马士革工艺中的电介质阻挡层,在其成型过程中也被用作刻蚀停止层,同时也是其下方铜导线的覆盖层,器件的稳定性受其影响较大,而Si_3N_4是一种高介电常数(k=7~8)介质,会增加互连系统的有效介电常数,影响互连延迟的降低。于是新型三元材料SiCN(k=4~5)作为铜互连大马士革工艺中的电介质扩散阻挡层的应用受到了人们的广泛关注。
     在综合分析比较了各类阻挡层制备方法、性能特征的基础上,本文采用磁控溅射法在n型Si(111)衬底上制备出了SiCN薄膜和Cu/SiCN/Si纳米薄膜,并对薄膜样品进行了快速热退火(RTA)。用四探针电阻测试仪(FPP)、原子力显微镜(AFM)、X射线衍射(XRD)、扫描电镜(SEM)、EDS能谱、傅里叶变换红外光谱(FTIR)等测试分析方法对各样品的方块电阻、表面形貌、晶体结构、成分、化学键等特性进行了表征分析。
     实验结果表明,射频磁控反应溅射方法可以制备出表面光滑致密的无定形非晶SiCN薄膜。对其化学成分分析表明所得薄膜为富Si的SiCN薄膜,样品中存在Si—N、Si—C、C—N、C=N、C—Si—N键,说明SiCN薄膜不是二元薄膜的简单结合,而是形成了复杂的无规网络结构。样品中有少量的C团簇成分,并含有微小的Si颗粒。SiCN薄膜具有非常优异的热稳定性,其晶化温度在1200℃左右。通过C-V特性曲线的分析,所得SiCN非晶薄膜的相对介电常数为4.22,略小于晶体SiCN的相对介电常数5。
     SiCN薄膜作为Cu的介质阻挡层有很好的阻挡效果,其失效温度在600℃左右。Cu/SiCN/Si薄膜体系的界面稳定性好,Cu膜与SiCN薄膜之间附着性良好。对Cu/SiCN/Si结构热稳定性的研究发现其主要失效机制为:Cu通过非晶层的结构缺陷向内部扩散,同时与SiCN膜发生反应消耗Si、N等元素,耗尽阻挡层后,与Si层反应并生成Cu_3Si。
The interconnect resistance-capacitance (RC) delay is a dominant factor in determining the performance of ultra large-scale integrated circuits as critical dimension below 130 nm. Although many low-k materials have been used as interlayer dielectrics (ILD), high dielectric constant (k =7-8) of silicon nitride (Si_3N_4) film is still the primary candidate for the Cu cap barrier and etch stop layer (ESL) required in the Cu damascene process. Thus, this increases the effective k value of stack dielectric films, and limits the reduction of the RC delay in ultra large-scale integration. As a result, amorphous silicon nitricarbide (SiCN) have received much attention for applications as Cu dielectric diffusion barrier and ESL in Cu damascene process.
     On the basis of a comparative study of the diffusion barriers on their fabrication methods and characteristics, SiCN thin films and Cu/SiCN thin films were deposited on n-type Si(111) substrates by magnetron reactive sputtering. Then rapid thermal annealing (RTA) was performed on the samples. The sheet resistance, surface morphology, crystalline structures, chemical composition and chemical bonding status of the films were characterized by four-point probe (FPP) sheet resistance measurement, atomic force microscopy (AFM), scanning electron microscope (SEM), X-ray diffraction method (XRD), energy disperse spectroscopy (EDS), and fourier transform infrared spectroscopy(FTIR), respectively.
     The results revealed the formation of complex networks among the three elements, Si, C and N, and the existence of different chemical bonds in the SiCN films such as Si-C, Si-N, C-N, C=N and C-Si-N. Further more, there are C and Si clusters in the samples. The as-deposited SiCN thin-films were amorphous structure with smooth and compact surfaces, and their crystallization temperature is about 1200℃, which shows their good thermal stability. The sheet resistance measurement and C-V measurement results shows that the dielectric constant of the as-deposited SiCN thin-films is 4.22.
     The SiCN thin-films play a good performance as Cu dielectric diffusion barriers and they can prevent the diffusion reaction between Cu and Si interface after 5min RTA processing below 600℃. The Cu/SiCN thin films have a good thermal stability and the adhension of Cu with SiCN is strong, and no Cu film falling is observed. The failure of the barriers is mainly attributed to Cu diffusion and reactions among multilayered films. Cu atoms diffuse through the flauts of the amorphous structure of SiCN layers directly, and react with Si and N of SiCN barriers untill the barriers fail, and finally react with Si substrates to form the Cu_3Si phase.
引文
[1]方志军,汤继跃,许志.集成电路中金属硅化物的发展与演变[J].集成电路应用,2008,9:15-18.
    [2]王红.集成电路技术发展动态[J].微电子学,2007,37(4):14-19.
    [3]冯亚林,张蜀平.集成电路的现状及其发展趋势[J].微电子学,2006,36(2):12-16.
    [4]王阳元,康晋锋.超深亚微米集成电路中的互连问题--低k介质与Cu的互连集成技术[J].半导体学报,2002,23(11):1121-1134.
    [5]刘洪图,吴自勤.超大规模集成电路的一些材料物理问题(Ⅰ)--Cu互连和金属化[J].物理,2001,30(21):757-761.
    [6]白宣羽,汪渊,徐可为,范多旺.集成电路的铜互连布线及其扩散阻挡层的研究进展[J].真空科学与技术学报,2004,24(5):78-94.
    [7]Hu C -K and Harper J M E.Copper interconnections and reliability[J].Mater Chem Phys,1998,52(1):5-16.
    [8]徐小城.深亚微米集成电路工艺中铜金属互联技术[J].微电子技术,2001,29(6):1-7.
    [9]Vaidya S,Sheng T T,Sinha A K.Line width dependence of electromigration in evaporated Al_(0.5)Cu[J].Appl Phys Lett,1980,36(6):464-466.
    [10]宋登元,宗晓萍,孙荣霞,王永青.集成电路铜互连线及相关问题的研究[J].半导体技术,2001,26(2):29-32.
    [11]Markert M,Bertz A,Gessner T,Ye Y,Zhao A,Ma D.High throughput,high quality dry etching of copper/barrier film stacks[J].Microelectron Eng,2000,50(1-4):417-423.
    [12]陈智涛,李瑞伟.集成电路片内铜互连技术的发展[J].微电子学,2001,31(4):239-241.
    [13]Hu C K,Luther B,Kaufman F B,Hummel J,Uzoh C,Pearson D J.Copper interconnection integration and reliability[J].Thin Solid Films,1995,262(1-2):84-92.
    [14]Nihei M,Kondo D,Kawabata A,Sato S,Shioya H,Sakaue M,Iwai T,Ohfuti M,Awano Y.Low-resistance multi-walled carbon nanotube vias with parallelchannel conduction of inner shells[J].Interconnect Technology Conference,2005,234-236.
    [15] Kreupl F, Graham A P, Liebau M, Duesberg G S, Seidel R, Unger E. Carbon nanotubes for interconnect applications [J]. IEDM Tech Dig, 2004, 683-686.
    
    [16] Ijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(1): 56-58.
    
    [17] Saito R, Dresselhaus G, Dresselhuas M S. Physical properties of carbon nanotubes [M]. London, U. K.: Imperial College Press, 1998. 19-25.
    
    [18] Datta S, Quantum Transport: Atom to Transistor [M]. Cambridge, U.K.: Cambridge Univ.Press, 2005. 24-36.
    
    [19] Li H J, Lu W G, Li J J, Bai X D, Gu C Z. Multichannel ballistic transport in multiwall carbon nanotubes[J]. Physical Review Letters, 2005, 95(8): 086601-1-086601-4.
    
    [20] Fang K L, Tsui B Y, Yang C C, Chen M C, Lee S D, Beekmann K, Wilby T, Giles K, Ishaq S. Electrical reliability of low dielectric constant diffusion barrier (a-SiC:H) for copper interconnect [A]. Proceedings of International Interconnect Technology Conference (IITC2001) [C]. California: IEEE, 2001. 250-252.
    
    [21] Wu Z C, Shiung Z W, Wang C C, Fang K L, Wu R G, Liu Y L, Tsui B Y, Chen M C, Chang W, Chou P F, Jang S M, Yu C H, Liang M S. Electrical reliability issues of integrating low-k dielectrics with Cu metallization [A]. Proceedings of Interconnect Technology Conference (IITC2000) [C]. California: IEEE, 2000. 82-84.
    
    [22] Goldblatt R D, Agarwala B, Anand M B, Barth E P, Biery G A, Chen Z G, Cohen S, Connolly J B, Cowley A,Dalton T, Das S K, Davis C R, Deutsch A, DeWan C, Edelstein D C, Emmi P A. A high performance 0.13μm copper technology with low-k dielectric [A]. Proceedings of International Interconnect Technology Conference (IITC2000) [C]. California: IEEE, 2000. 261-263.
    
    [23] Tsai M H, Tsai W J, Shue S L, Yu C H, Liang M S. Reliability of dual damascene Cu metallization [A]. Proceedings of International Interconnect Technology Conference (IITC2000) [C]. California: IEEE, 2000. 214-216.
    
    [24] Ueno K, Suzuki M, Matsumoto A, Motoyama K, Tonegawa T, Ito N, Arita K, Tsuchiya Y, Wake T, Kubo A, Sugai K, Oda N, Miyamoto H, Saito S. A high reliability copper dual-damascene interconnection with direct-contact via structure [A]. IEDM2000 [C]. California: IEEE, 2000. 265-268.
    [25]Naeemi A,Meindl J D.Compact physical models for multiwall carbon-nanotube interconnect[J].IEEE Electron Device Letters,2006,27(5):338-340.
    [26]Jiang J,Dong J,Yang H T,Xing D Y.Universal expression for localization length in metallic carbon nanotubes[J].Physical Review B,2001,64(4):045409.
    [27]Zhou X,Park J Y,Huang S,Liu J,McEuen P L.Band structure phonon scattering and the performance limit of single-walled carbon nanotube transistors[J].Physical Review Letters,2005,95(9):146805.
    [28]White C T,Todorov T N.Carbon nanotube as long ballistic conductors[J].Nature,1998,393:240.
    [29]王阳元,黄如,刘晓彦.面向产业需求的21世纪微电子技术的发展[J].物理,2004,33(6):407-413.
    [30]Ou K L.Integrity of copper-hafnium,hafnium nitride and multi-layered amorphous-like hafnium nitride metallization under various thickness[J].Microelectronic Eng,2006,83(2):312-318.
    [31]Nicolet M -A.Diffusion Barriers in Thin Films[J].Thin Solid Films,1978,52(3):415-443.
    [32]Ryu C,Lee H,Kwon K-W.Barriers for copper interconnections[J].Solid State Technology,1999,42(4):53-56.
    [33]Zhang W X,Huang N,He J G,Jiang Z H,Jiang Q,Lian J S.Electroless deposition of Ni-W-P coating on AZ_(91)D magnesium alloy[J].Appl Surf Sci,2007,253(11):5116-5121.
    [34]Mencer D.Electroless deposition of amorphous Ni-Re-P alloys from acidic hypophosphite solutions[J].J Alloys Compd,2000,306(1-2):158-162.
    [35]Blanquet E,Dutron A M,Ghetta V,Bernard C,Madar R.Evaluation of LPCVD Me-Si-N(Me=Ta,Ti,W,Re) Diffusion Barriers for Cu Metallizations[J].Microelectron Eng,1997,38(4):189-195.
    [36]Dlamand Y S.Barrier layers for Cu ULSI metallization[J].J Electron Mater,2001,30(4):336-344.
    [37]李幼真,周继承,陈海波.集成电路Cu金属化中的扩散阻挡层[J].材料导报,2007,21(5):17-20.
    [38]Hecker M,Fischer D,Hoffmann V.Influence of N content on microstructure and thermal stability of Ta-N thin films for Cu interconnection[J].Thin Solid Films,2002,414(2):184-191.
    [39]Vogt M,Kachel M,Plotner M.Dielectric barriers for Cu metallization systems [J].Microelectronic Eng,1997,37(8):181-187.
    [40]Vogt M,Drescher K.Barrier behaviour of plasma deposited silicon oxide and nitride against Cu diffusion[J].Appl Surf Sci,1995,91(4):303-307.
    [41]Zhang G H,Xia Y,Qian H,Gao W F.A novel barrier to copper metallization by implanting nitrogen into SiO_2[J].半导体学报,2001,22(3):271-274.
    [42]Peter Singer.45和32nm面临新的刻蚀挑战[J].集成电路应用,2007,4:43-46.
    [43]Yang L Y,Zhang D H.Comparative investigation of TaN and SiCN barrier layer for Cu/ultra low k integration[J].Thin Solid Films,2006,504:265-268.
    [44]Vitiello J,Ducote V,Farcy A.New techniques to characterize properties of advanced dielectric barriers for sub-65nm technology node[J].Microelectronic Eng,2006,83(11):2130-2135.
    [45]丁万昱,徐军,陆文琪,邓新绿,董闯.Dg基片温度对SiNx薄膜结晶状态及机械性能的影响[J].物理学报,2008,57(8):80-84.
    [46]Steckl A J.Structal characterization of nanometer SiC films grown on Si[J].Appl Phys Lett,1993,62(24):31-35.
    [47]Jedrzejowski P,Cizek J,Amassian A.Mechanical and optical properties of hard SiCN coatings prepared by PECVD[J].Thin Solid Films,2004,447-448:201-207.
    [48]Chen L C,Chen C K,Weis L.Crystalline silicon carbon nitride:A wide band gap semiconductor[J].Appl Phys Lett,1998,72(19):2463-2465.
    [49]马紫微,谢二庆.SiCN薄膜的制备及其性能研究[J].功能材料与器件学报,2002,8(4):341-345.
    [50]朴勇,梁宏军,高鹏,丁万昱,陆文琪,马腾才,徐军.沉积参数对碳氮化硅薄膜化学结构及光学性能的影响[J].应用光学,2006,27(4):274-280.
    [51]牛晓滨,廖源,常超,余庆选,方容川.热丝CVD生长SiCN薄膜的研究[J].无机材料学报,2004,19(2):397-403.
    [52]Sundaram K B,Alizadeh Z,Todi R M.Investigations on hardness of rf sputter deposited SiCN thin films[J].Mater Sci Eng A,2004,36(8):103-108.
    [53]Doucey B,Cuniot M,Moudni R.Optical properties and local atomic order in non hydrogenated amorphous silicon carbonitride films[J].Mater Sci,2002, 37(13):2737-2745.
    [54]Nakaaki I,Saito N.Optical electrical and structural properties of amorphous SiCN:H films prepared by rf glow-discharge decomposition[J].Appl Surf Sci,2001,169(2):468-471.
    [55]Peng X F,Hu X F,Wang W.Mechanical properties of silicon carbonitride thin films[J].Jpn J Appl Phys Part 1,2003,42:620-622.
    [56]Lin H Y,Chen Y C,Lin C Y.Field emission of nanostructured amorphous SiCN films deposited by reactive magnetron sputtering of SiC in CH_4/N_2atmosphere[J].Thin Solid Films,2002,416:85-91.
    [57]Jedrzejowski P,Cizek J,Amassian A.Mechanical and optical properties of hard SiCN coatings prepared by PECVD[J].Thin Solid Films,2004,447-448:201-207.
    [58]Wu X C,Cai R Q,Yan P X.SiCN thin film prepared at room temperature by r.f.reactive sputtering[J].Appl Surf Sci,2002,185(3-4):262-266.
    [59]Xie E Q,Ma Z W,Lin H F.Preparation and characterization of SiCN films[J].Mater,2003,23(4):151-156.
    [60]Cheng W J,Jiang J C,Zhang Y.Effect of the deposition conditions on the morphology and bonding structure of SiCN films[J].Mater Chem Phys,2004,85(2-3):370-376.
    [61]Niu X B,Liao Y,Chang C.Silicon carbon nitride films grown by hot-filament chemical vapor deposition[J].J Inorg Mater,2004,19(2):397-403.
    [62]Zhang D H,Gao Y,Wei J.Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECR-CVD[J].Thin Solid Films,2000,377:607-610.
    [63]Park N M,Kim S H,Sung G Y.Band gap engineering of SiCN film grown by pulsed laser deposition[J].J Appl Phys,2003,94(4):2725-2728.
    [64]Fernandez-Ramos C,Sanchez-Lopez J C,Rojas T C.Structural modifications of silicon-doped carbon nitride films during postdeposition annealing[J].Diamond Rel Mater,2003,12(3-7):1055-1060.
    [65]带文进,欧阳慧平.热丝化学气相沉积法低温制备立方碳化硅薄膜[J].南昌大学学报(理科版),2005,29(4):173-175.
    [66]Cui H,Burke P.Time-dependent dielectric breakdown of hydrogenated silicon carbon nitride thin films under the influence of copper ions[J].Appl Phys Lett,2004,84(14):2629-2631.
    [67]Chiang C,Ko I,Chen M.Leakage and breakdown mechanisms of Cu comb capacitors with bilayer-structured alpha-SiCN/alpha-SiC Cu-cap barriers[J].J Electrochem Soc,2004,151(2):93-97.
    [68]Shen L,Zeng K,Wang Y.Determination of the hardness and elastic modulus of low-k thin films and their barrier layer for microelectronic applications[J].Microelectronic Eng,2003,70(4):115-124.
    [69]Chiang C,Chen M,Ko C.Physical and barrier properties of plasma-enhanced chemical vapor deposited alpha-SiCN:H films with different hydrogen contents[J].Jpn J Appl Phys Part 1,2003,42:5246-5250.
    [70]Chang W,Fang Y,Ting S.The hetero-epitaxial SiCN/Si MSM photodetector for high-temperature deep-UV detecting applications[J].IEEE Electron Dev Let,2003,24:565-567.
    [71]Barreca F,Fazio E,Neri F.Electronic properties of PLD prepared nitrogenated a-SiC thin films[J].Thin Solid Films,2003,433:34-38.
    [72]Ting S,Fang Y,Hsieh W.A high breakdown-voltage SiCN/Si heterojunction diode for high-temperature applications[J].IEEE Electron Dev Let,2002,23:142-144.
    [73]Sundaram K,Alizadeh J.Deposition and optical studies of silicon carbide nitride thin films[J].Thin Solid Films,2000,370:151-154.
    [74]Reyes R,Legnani C,Ribeiro Pinto P.Room-temperature low-voltage electroluminescence in amorphous carbon nitride thin films[J].Appl Phys Lett,2003,82(23):4017-4019.
    [75]Smirnova T,Badalian A,Yakovkina L.SiCN alloys obtained by remote plasma chemical vapour deposition from novel precursors[J].Thin Solid Films,2003,429:144-151.
    [76]Chena K,Wu J,Wen C.Wide band gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition[J].Thin Solid Films,1999,355-356:205-209.
    [77]Wu J,Kuo C,Yang P.Growth competition between crystalline silicon carbon nitrides and silicon nitrides deposited on Si wafer by MPCVD[J].Mater Chem Phys,2001,72(4):245-250.
    [78]Chang H,Hsu C,Kuo C.Forming silicon carbon nitride crystals and silicon carbon nitride nanotubes by microwave plasma-enhanced chemical vapor deposition[J].Appl Phys Lett,2002,80(12):4638-4640.
    [79]Jonson D,Chen Y,He Y.Deposition of carbon nitride via hot filament assisted CVD and pulsed laser deposition[J].Diam Relat Mater,1997,33(6):1799-1805.
    [80]Gong Z,Wang E,Xu G.Influence of deposition condition and hydrogen on amorphous-to-polycrystalline SiCN films[J].Thin Solid Films,1999,348:114-121.
    [81]Chen L,Chen K,Wei S.Forming silicon carbon nitride crystals and silicon carbon nitride nanotubes by microwave plasma-enhanced chemical vapor deposition[J].Thin Solid Films,1999,355-356:112-116.
    [82]Wu J,Chen K,Wen C.Effect of carbon sources on silicon carbon nitride films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor[J].Diamond Rel Mater,2000,9(3):556-561.
    [83]Th(a|¨)rigen T,Lorenz M.Macroscopic and microstructural properties of CSi_xN_y thin films deposited by RF nitrogen-plasma-assisted pulsed laser deposition[J].Appl Surf Sci,2001,179(4):156-160.
    [84]Th(a|¨)rigen T,Lippold G,Riede V,Lorenz M,Koivusaari K,Lorenz D,Mosch S,Grau P,Hesse R,Streubel P,Szargan R.Hard amorphous CSi_xN_y thin films deposited by RF nitrogen plasma assisted pulsed laser ablation of mixed graphite/Si_3N_4-targets[J].Thin Solid Films,1999,348(2):103-113.
    [85]Wu J,Chen K,Wen C,Chen L,Guo X,Lo H,Lin S,Yu Y,Wang C,Lin E.Effect of carbon sources on silicon carbon nitride films growth in an electron cyclotron resonance plasma chemical vapor deposition reactor[J].Diamond Rel Mater,2000,9(6):556-561.
    [86]杨邦朝,王文生.薄膜物理与技术[M].电子科技大学出版社,1997.56-66.
    [87]唐伟忠.薄膜材料制备原理、技术及应用[M],第一版.冶金工业出版社,1998.44-58.
    [88]徐万劲.磁控溅射技术进展及应用上.www.moderninstrs.org.cn,2005.05.
    [89]徐万劲.磁控溅射技术进展及应用下.www.moderninstrs.org.cn,2005.06.
    [90]刘刚.A1N基板表面处理对薄膜附着力的影响[J].电子元件与材料,2005,24(9):45-47.
    [91]许小红等.溅射沉积A1N薄膜结构与基片种类的关系[J].压电与声光,2000,22(4):256-258.
    [92]袁安富,王珉.薄膜沉积中基片的清洗方法探讨[J].材料开发与应用,1999,14(3):44-46.
    [93]Kaya K,Kanno Y,Takahashi H.Synthesis of A1N thin films on sapphire substrates by chemical vapor deposition of AlCl_3-NH_3 systerm and surface acuustic wave properties[J].Jpn J Appl Phys,1996,35(5A):2782-2787.
    [94]Gr(u|¨)niger A,Bieder A,Sonnenfeld A,Rudolf von Rohr Ph,M(u|¨)ller U and Hauert R.Influence of film structure and composition on diffusion barrier performance of SiO_x thin films deposited by PECVD[J].Surf Coat Technol,2006,200(14-15):4564-4571.
    [95]邱颖,陈兵,贾东升.红外光谱技术应用的进展[J].环境科学导刊,2008,27(2):23-26.
    [96]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.35-44.
    [97]乔保卫,刘正堂,李阳平.工艺参数对磁控反应溅射A1N薄膜沉积速率的影响[J].西北工业大学学报,2004,22(2):260-263.
    [98]Habib S K,Rizk A,Mousa I A.Physical parameters affecting deposition rates of binary alloys in a magnetron sputtering system[J].Vacuum,1998,49(2):153-160.
    [99]肖兴成,宋力听.溅射工艺对SiCN薄膜沉积及光性能的影响[J].无机材料学报,2000,15(4):717-721.
    [100]宋秀峰,韩艳眷,何洪,沈源.磁控溅射法制备A1N薄膜的研究进展[J].山东陶瓷,2006,29(6):20-23.
    [101]Goh W L,Tan K T,Tse M S,Liu K Y.The effects of Hf/PdC_(12) activation on electroless copper film properties[J].Int J Mod Phys B,2002,16(1-2):197-204.
    [102]Fu T,Shen Y G,Zhou Z F,Li K Y.Surface morphology of sputter deposited W-Si-N composite coatings characterized by atomic force microscopy[J].Mater Sci Eng B,2005,123(2):158-162.
    [103]Ruan J L,Huang J L,Chen J S,Li D F.Effects of substrate bias on the reactive sputtered Zr-Al-N diffusion barrier films[J].Surf Coat Technol,2005,200(5-6):1652-1658.
    [104]Park K C,Kim S H,Kim K B.Effect of Ion Bombardment during Chemical Vapor Deposition of TiN Films[J].J Electrochem Soc,2000,147(7):2711-2717.
    [105]Kim H C,Alford T L.Investigation on diffusion barrier properties of reactive sputter deposited TiAl_xN_yO_z thin films for Cu metallization[J].Thin Solid Films,2004,449(1-2):6-11.
    [106]陆维敏,陈芳.谱学基础与结构分析[M].北京:高等教育出版社,2005.56-70.
    [107]Xiao X C,Li Y W,Song L X,Peng X F,Hu X F.Structural analysis and microstructural observation of SiCxNy films prepared by reactive sputtering of SiC in N and Ar[J].Appl Surf Sci,2000,156(3):155-160.
    [108]Xie E,Zhang Z,Ma Z,Lin H F,He D Y.Epitaxial growth of b-SiC by rf sputtering on siliconsubstrates and its porosity by electrochemical anodization[J].Optical Materials,2003,23(1):157-161.
    [109]Avila A,Montero I,Galan L.Behavior of oxygen doped SiC thin films:An X-ray photoelectron spectroscopy study[J].J Appl Phys,2001,89(1):212-216.
    [110]Dashiell M W,Kulik L V,Hits D.Carbon incorporation in Si_(1-y)C_y alloys grown by molecular beam epitaxy using a single silicon-graphite source[J].Appl Phys Lett,1998,72(7):833-835.
    [111]Gao P,Xu J,Piao Y,Ding W,Wang D,Deng X L,Dong C.Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering[J].Surface & Coatings Technology,2007,201(9-11):5298-5301.
    [112]Mitu B,Dinescu G,Budianu E,Ferrari A,Balucani M,Lamedica G,Dauscher A,Dinescu M.Formation of intermediate SiCN interlayer during deposition of CNx on a-Si:H or a-SiC:H thin films[J].Appl Surf Sci,2001,184(10):96-100.
    [113]Chen Zhe,Prasad K,Li C Y,Su S S,Gui D,Lu P W,He X,Balakumar S.Characterization and performance of dielectric diffusion barriers for Cu metallization[J].Thin Solid Films,2004,462-463:223-226.
    [114]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,2000.130-131.
    [115]程文娟.微波等离子体化学气相沉积制备SiCN结晶膜及SiCN微米棒阵列[J].人工晶体学报,2004,33(4):496-499.
    [116]Kuo Y L,Lee C,Lin J C,Yen Y W,Lee W H.Evaluation of the thermal stability of reactively sputtered(Ti,Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon[J].Thin Solid Films,2005,484:265-271.
    [117]Misra E,Wang Y,Theodore N D,Alford T L.Evaluation of diffusion barrier and electrical properties of tantalum oxynitride thin films for silver metallization[J].Thin Solid Films,2004,457:338-345.
    [118]Van Zutphen A J M M,Sutta P,Tichelaar F D,Von Keitz A,Zeman M,Metselaar J W.Structure of thin polycrystalline silicon films on ceramic substrates[J].J Cryst Growth,2001,223(3):332-340.
    [119]宋忠孝,徐可为,陈华.退火气氛与扩散阻挡层对Cu膜表面完整性的影响[J].真空科学与技术,2003,23(3):165-168.
    [120]Laurila T,Zeng K;Kivilahti J K,Molarius J,Suni I.Chemical stability of Ta diffusion barrier between Cu and Si[J].Thin Solid Films,2000,373:64-67.
    [121]Wang S J,Tsai H Y,Sun S C.A comparative study of sputtered TaCx and WCx films as diffusion barriers between Cu and Si[J].Thin Solid Films,2001,394:179-187.
    [122]Lin S T,Lee C.Characteristics of sputtered Ta-B-N thin films as diffusion barriers between copper and silicon[J].Appl Surf Sci,2006,253(3):1215-1221.
    [123]Thouless M D,Gupta J,Harper J M E.Stress Development and Relaxation in Copper Films during Thermal Cycling[J].J Mater Res,1993,8(8):1845-1852.
    [124]Yang C Y,Jeng J S,Chen J S.Grain growth,agglomeration and interfacial reaction of copper interconnects[J].Thin Solid Films,2002,420-421:398-402.
    [125]Rha J J,Park J K.Stability of the grain configurations of thin films-A model for agglomeration[J].J Appl Phys,1997,82(4):1608-1616.
    [126]Le Brizoual L,Guilet S,Lemperiere G,Granier A,Coulon N,Lancin M,Turban G.Analysis of Ti-Si-N diffusion barrier films obtained by r.f.magnetron sputtering[J].Microelectron Eng,2000,50(4):509-513.
    [127]Mane Anil U,Shivashankar S A.Atomic layer chemical vapour deposition of copper[J].Materials Science in Semiconductor Processing,2004,7(6):343-347.
    [128]Fleming J G,Roherty-Osmun E,Smith P M.Growth and properties of W-Si-N diffusion barriers deposited by chemical deposition[J].Thin Solid Films,1998,320:10-14.
    [129]俞伟元,王冠,路文江,陈学定.铜在纯铝基体中的扩散行为[J].有色金属,2006,58(1):31-34.
    [130]Chung H C,Liu C P.Effect of crystallinity and preferred orientation of Ta_2N films on diffusion barrier properties for copper metallization[J].Surf Coat Technol,2006,200(10):3122-3126.
    [131]刘洪图,吴自勤.超大规模集成电路的一些材料物理问题(Ⅰ)-Cu互连和金属化[J].物理,2001,30(21):757-761.
    [132]No J T,O J H,Lee C.Evaluation of Ti-Si-N as a diffusion barrier between copper and silicon[J].Mater Chem Phys,2000,63(1):44-49.
    [133]Holloway K,Fryer P M.Tantalum as a diffusion barrier between copper and silicon[J].Appl Phys Lett,1990,57(17):1736-1738.
    [134]Nicolet M A.Ternary amorphous metallic thin films as diffusion barriers for Cu metallization[J].Appl Surf Sci,1995,91(1-4):269-276.
    [135]Chen C S,Liu C P.Diffusion barrier properties of amorphous ZrCN films for copper metallization[J].J Non-Cryst Solids,2005,351(49-51):3725-3729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700