近场波动有限元模拟的应力型时域人工边界条件及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的重大工程(高拱坝、核电站、高层建筑和大跨度桥梁等)建设规模已位居世界前列。重大工程在地震或爆炸等动力荷载作用下的时域数值模拟对于其设计及安全评价具有重要意义。该类结构的分析模型需要考虑无限域地基的波动辐射效应,形成近场波动问题,也称土-结动力相互作用问题。其解法是人为引入人工边界将整个开放系统划分为近场有限域和远场无限域两部分。前者包含结构以及可能的非均匀和非线性因素,采用有限元法模拟;后者简化为线弹性介质并满足辐射条件,分析中被截去,通过在有限域的人工边界处施加人工边界条件(或称无反射、透射、吸收、辐射边界条件)模拟其波动辐射效应。人工边界问题也存在于声学、电磁学、流体动力学和气象学等物理和工程领域,属于新兴的跨学科的数值计算科学问题。有效的人工边界条件应该与有限元法结合形成稳定、精确、高效并且容易实现的近场波动分析方法。目前已经出现了多种基于不同数学、物理和力学方法的人工边界条件,但仍然没有一种公认的最优方法。
     本文研究应力型精确时域人工边界条件及其工程应用。首先,时域方法可以考虑近场有限域的非均匀和非线性因素。其次,应力型指人工边界条件是有限域和无限域间相互作用应力的表达式,其作为自然边界条件较好地兼容有限元法,易于形成稳定的近场波动分析方法。最后,随着计算机发展水平和工程精度要求的不断提高,精确模拟方法应该是未来的发展趋势;并且精确方法可以比近似方法设置在距离结构或者辐射源更近的位置,导致有限域的计算成本显著降低。
     本文采用变量分离法求解远场无限域的定解问题,获得时间全局的人工边界条件,即其某一时刻的响应与该时刻以及之前全部时刻的响应相关。为了降低计算成本,采用由有理近似和高阶弹簧-阻尼-质量模型构成的卷积核压缩技术对人工边界条件进行时间局部化处理,获得稳定、精确、兼顾效率和易实现性的人工边界条件。本文采用的远场无限域模型包括出平面波动问题的波导模型和外域模型以及一维弹性波辐射模型。基于前者的人工边界条件可以精确地模拟出平面波动问题,但应用于重大工程结构的近场波动分析仍需开展大量的研究工作;基于后者的人工边界条件可以直接应用于工程实践,近似地模拟一般非对称弹性波在外域模型中的远场辐射问题。本文的具体研究工作如下:
     一、力和位移时间卷积变换的卷积核压缩技术
     1.基于线性系统的稳定性理论,提出了无限域频率响应函数有理近似的充分必要稳定性条件;采用罚函数法和遗传-单纯形优化算法建立了通过强加稳定性约束预先保证稳定的有理近似识别方法;讨论了稳定系统中的共振现象及其消除方法。
     2.提出了三种在时域内实现有理近似的高阶弹簧-阻尼-质量模型;建立了用于计算模型参数的有理函数连分式展开技术;给出了高阶弹簧-阻尼-质量模型的外源激励输入方法。
     3.通过分析几个典型的基础振动问题,验证了卷积核压缩技术的有效性。
     二、出平面波动问题的应力型精确时域人工边界条件
     1.根据波导模型和外域模型的物理边界条件选择人工边界模态函数,采用傅里叶级数描述空间全局性。
     2.将改进的卷积核压缩技术应用于模态频率响应函数,进行时间局部化处理,形成辅助变量的时间二阶对称常微分方程组。
     3.基于空间和时间处理,建立了可以直接进行矩阵装配的人工边界条件有限元公式,实现了精确人工边界条件与有限元法的无缝结合。
     三、基于一维弹性波辐射的应力型时域人工边界条件及其工程应用
     1.将改进的卷积核压缩技术分别应用于一维柱面和球面弹性波辐射模型,建立了相应的应力型精确时域人工边界条件,粘弹性边界为其低阶形式。
     2.完善了粘弹性边界体系,发展了二维平面内切向和三维切向边界。
     3.基于粘弹性边界给出平面地震波斜入射和竖直入射的简化输入方法,进行了小湾拱坝地震反应分析,并与透射边界结果进行了比较,分析中还初步考虑了坝体混凝土材料非线性的影响。
     四、其他研究工作
     1.研究了基于有理近似的时域递归算法。提出采用双线性变换从连续时间有理近似获得离散时间有理近似的变换方法;应用状态空间变换建立了含有辅助变量的单步时域递归公式。
     2.分析了弹性地基表面半无限杆和波导模型中波动的截止频率和频散特性,指出基于一维外行波法向透射建立的人工边界条件难于处理该类问题,并通过数值试验证明了这一推断。
     3.推导了出平面运动的直角坐标和极坐标集中质量有限元方程以及标准单元的单元矩阵;讨论了一维和二维均匀时空离散网格中波动的周期特性、截止频率和频散特性。
The scale of the major construction projects (such as high arch dam, nuclearstation, high-rise building, long-span bridge and so on) in our country has leaped intothe front ranks of the world. The time-domain numerical simulation of the majorconstructions under the seismic or blast load is an effective method for their designand safety evaluation. The analysis models of the major constructions requireconsidering the energy radiation of infinite foundation, forming the near-field wavemotion problem or called dynamic soil-structure interaction problem. The commonnumerical method to analyze the near-field wave motion problem is as follows. Afictitious boundary usually called artificial boundary is introduced to partition thewhole opening system into two parts, i.e. near-field finite domain and far-field infinitedomain. The former includes structure, and inhomogeneity and nonlinearity of media,which can be modeled by finite element method. On the other hand, the latter issimplified as linear elastic media, and satisfies the radiation condition at the artificialboundary. In practical computation, the far-field infinite domain is truncated. Aboundary condition is imposed on the artificial boundary to model the energyradiation effect of the truncated infinite domain, which is called artificial boundarycondition (ABC) or nonreflecting, transmitting, absorbing, radiation boundarycondition. Actually, the artificial boundary problems are ubiquitous in many fields ofphysics and engineering, such as acoustics, electromagnetics, computational fluiddynamics, meteorology and so on, which belonging a new interdisciplinarynumerically computational science subject. An effective ABC should combine withfinite element method to form a stable, accurate, efficient and easily implementednear-field wave motion analysis method. At present, many ABCs have been proposedbased on the different mathematical, physical and mechanical methods. However,there is still no consensus on the optimal ABC.
     This dissertation studies the stress-type exact time-domain ABC and itsengineering application. First, the time-domain method can consider theinhomogeneity and nonlinearity in the near-field finite domain. Second, thestress-type ABC indicates that the ABC is an expression of interaction stress betweenthe near-field finite domain and the far-field infinite domain. It can compatible withthe finite element method very well as a natural stress boundary condition, leading tothe numerically stable near-field wave motion method. Last, with the computer leveland engineering accuracy requirement improving, the exact method should be a trend.Although the exact method has lower efficiency than the approximate method, it canbe placed nearer source or structure than the latter, leading to the lower computational cost in the near-field finite domain.
     The problem statement of the far-field infinite domain is first solved by theseparation of variables. The temporal global ABC is obtained, where the response at aconstant is related with the current and all before constants. To decrease thecomputational cost, the convolution kernel compression technique, combining therational approximation and high-order spring-dashpot-mass model, is then applied tolocalize the obtained ABC. A stable, accurate, efficient and easily implemented ABCis finally obtained. In this dissertation, the far-field infinite domains include thewaveguide and exterior models of out-of-plane wave motion problem and theone-dimensional elastic wave radiation model. The ABC from the former can exactlymodel the out-of-plane wave motion problem, but many works still need to be furtherstudied for the application to the major construction. On the other hand, the ABC fromthe latter can be directly applied to engineering practice to approximately model theradiation of the general non-symmetric elastic waves in the exterior model. Theconcrete works in this dissertation are as follows.
     1. The convolution kernel compression to localize the convolution transformbetween force and displacement.
     (1) The necessary and sufficient stability condition for the rational approximationof frequency response function of infinite domain is presented based on the stabilitytheory of linear system. A parameter identification method guaranteeing stability apriori by enforcing the stability constraint condition is further developed based on thepenalty function method and the genetic-simplex optimization algorithm. Theresonance phenomenon in a stable system is also discussed, and a method avoidingresonance is proposed.
     (2) Three new high-order spring-dashpot-mass models are proposed, as therealizations of the rational approximation into the time domain. Thecontinued-fraction expansion of rational function is developed to calculate the modelparameters. A seismic input method for the high-order spring-dashpot-mass models isalso presented.
     (3) The effectiveness of the modified convolution kernel compression techniqueis demonstrated by analyzing several typical foundation vibration problems.
     2. Stress-type exact time-domain ABC for out-of-plane wave motionproblem.
     (1) The modal function of artificial boundary is first chosen according to thephysical boundary conditions of the waveguide and exterior models. The Fourierseries expansion is then applied to represent the spatial globality.
     (2) The modified convolution kernel compression technique is applied to themodal frequency response functions to localize the exact ABC, leading to a symmetricsystem of second-order ordinary differential equations of the auxiliary variables intime.
     (3) Based on the spatial and temporal treatments mentioned above, thefinite-element formulas of exact ABC are developed. They can assemble directly andcouple seamless with the finite-element model of the near-field finite domain.
     3. Stress-type time-domain ABC based on radiation of one-dimensionalelastic waves and its engineering application.
     (1) Based on the modified convolution kernel compression technique, the exacttime-domain ABC is developed to model the radiation of cylindrical and sphericalelastic waves from the near-field finite domain into the far-field infinite domain. Theviscous-spring boundary is the low-order form of this ABC.
     (2) The viscous-spring boundary is further improved. The two-dimensionalin-plane tangential boundary and the three-dimensional tangential boundary aredeveloped.
     (3) The simplified input methods of the plane seismic waves of inclined andvertical incidence are proposed for the viscous-spring boundary. The seismicresponses of Xiaowan arch dam are calculated and compared with the results by usingthe multi-transmitting formula. The effect of material nonlinearity of concrete is alsoconsidered simply.
     4. Other research works.
     (1) The time-domain recursive evaluation based on the rational approximation isdiscussed. The bilinear transform is used to obtain the discrete-time rationalapproximation from the continuous-time one. The single-step time-domain recursiveformulas are constructed by applying the state space transform.
     (2) The cutoff frequency and dispersive property of wave propagation in thesemi-infinite rod on an elastic foundation and in the waveguide model are studied. Aconclusion that the local ABC based on the one-dimensional outgoing wave can notsolve such problems satisfactorily is drawn, which is demonstrated by numericalexperiments.
     (3) The lumped-mass finite-element equations for out-of-plane wave motion arepresented in Cartesian and polar coordinates, respectively. The element matrices ofthe normal finite elements are also derived. The periodic property, cutoff frequencyand dispersive property of the wave propagation in the one- and two-dimensionalfinite-element mesh of spatially and temporally uniform discretization are discussed.
引文
1廖振鹏.工程波动理论导论(第二版).科学出版社,北京, 2002.
    2张楚汉等.混凝土坝-地基-库水系统的数值模拟.清华大学出版社,北京, 2001.
    3张楚汉.结构-地基动力相互作用问题(结构与介质相互作用理论及其应用). 1993.
    4林皋.土-结动力相互作用.世界地震工程, 1991.
    5杜修力.工程波动理论与方法.科学出版社,北京, 2009.
    6 Wolf JP. Dynamic Soil-Structure Interaction. Prentice Hall, Englewood Cliffs, NJ, 1985.
    7 Wolf JP. Soil-Structure-Interaction Analysis in Time Domain. Prentice Hall, EnglewoodCliffs, NJ, 1988.
    8 Wolf JP. Foundation Vibration Analysis Using Simple Physical Models. Prentice Hall,Englewood Cliffs, NJ, 1994.
    9 Wolf JP, Song C. Finite-Element Modelling of Unbounded Media. John Wiley, Chichester,West Sussex, England, 1996.
    10 Wolf JP. The Scaled Boundary Finite Element Method. John Wiley, Chichester, West Sussex,England, 2003.
    11 Wolf JP, Deeks AJ. Foundation Vibration Analysis: A Strength-of-Materials Approach.Elsevier, Oxford, Burlington, MA, 2004.
    12 Zhang C, Wolf JP (eds). Dynamic Soil-Structure Interaction: Current Research in China andSwitzerland. International Academic Publishers, Beijing, 1997.
    13 Kausel E. Local transmitting boundaries. Journal of Engineering Mechanics, 1988, 114(6):1011–1027.
    14 Givoli D, Harari I (eds). Special issue on new computational methods for wave propagation.Wave Motion, 2004, 39(4): 279–280.
    15 Astley RJ, Gerdes K, Givoli D, Harari I (eds). Special issue on finite elements for wavepropagation. The Journal of Computational Acoustics, 2000, 8(1): 1–255.
    16 Givoli D, Harari I (eds). Special issue on exterior problems of wave propagation. ComputerMethods in Applied Mechanics and Engineering, 1998, 164(1–2): 1–2.
    17 Turkel E (ed). Special issue on absorbing boundary conditions. Applied NumericalMathematics, 1998, 27(4): 327–560.
    18 Geers TL (ed). Proceedings of the IUTAM Symposium on Computational Methods forUnbounded Domain. Kluwer Academic Publishers, 1997.
    19 Hagstrom T. New results on absorbing layers and radiation boundary conditions. Topics inComputational Wave Propagation, Ainsworth M et al. (eds), Spring Verlag, New York, 2003,1–42.
    20 Hagstrom T. Radiation boundary conditions for the numerical simulation of waves. ActaNumerica, 1999, 8: 47–106.
    21 Givoli D. High-order local non-reflecting boundary conditions: a review. Wave Motion, 2004,39: 319–326.
    22 Givoli D. Recent advances in the DtN FE method. Archives of Computational Methods inEngineering, 1999, 6: 71–116.
    23 Givoli D. Numerical Methods for Problems in Infinite Domains. Elsevier, Amsterdam, 1992.
    24 Givoli D. Non-reflecting boundary conditions: a review. Journal of Computational Physics,1991, 94: 1–29.
    25 Marburg S, Nolte B (eds). Computational Acoustics of Noise Propagation in Fluids–Finiteand Boundary Element Methods. Springer, 2008.
    26 Tsynkov SV. Numerical solution of problems on unbounded domains: a review. AppliedNumerical Mathematics, 1998, 27: 465–532.
    27 Engquist B, Kriegsmann GA. ComputationalWave Propagation. Springer, New York, 1996.
    28 Hall WS, Oliveto G (eds). Boundary Element Methods for Soil-Structure Interaction. KluwerAcademic Publishers, Dordrecht, 2003.
    29 Banerjee PK. The Boundary Element Methods in Engineering. McGraw-Hill, London, 1994.
    30 Dominguez J. Boundary Elements in Dynamics. Computational Mechanics Publications,Southampton, 1993.
    31 Astley RJ. Infinite elements for wave problems: a review of current formulations and anassessment of accuracy. International Journal for Numerical Methods in Engineering, 2000,49: 951–976.
    32 Bettes P. Infinite Elements. Penshaw Press, Sunderland, UK, 1992.
    33 Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation of waves.Mathematics of Computation, 1977, 31(139): 629–651.
    34 Engquist B, Majda A. Radiation boundary conditions for acoustic and elastic wavecalculations. Communications on Pure and Applied Mathematics, 1979, 32: 313–357.
    35 Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic waveequations. Bulletin of the Seismological Society of America, 1977, 67: 1529–1540.
    36 Clayton R, Engquist B. Absorbing boundary conditions for wave-equation migration.Geophysics, 1980, 45(5): 895–904.
    37 Trefethen LN, Halpern L. Well-posedness of one-way wave equations and absorbingboundary conditions. Mathematics of Computation, 1986, 47(176): 421–435.
    38 Halpern L, Trefethen LN. Wide-angle one-way wave equations. The Journal of theAcoustical Society of America, 1988, 84(4): 1397–1404.
    39 Bamberger A, Joly P, Roberts J. Second-order absorbing boundary conditions for the waveequation: a solution for the corner problem. SIAM Journal on Numerical Analysis, 1990,27(2): 323–352.
    40 Sheen D. Second-order absorbing boundary conditions for the wave equation in a rectangulardomain. Mathematics of Computation, 1993, 61(204): 595–606.
    41 Vacus O. Mathematical analysis of absorbing boundary conditions for the wave equation: thecorner problem. Mathematics of Computation, 2004, 74(249): 177–200.
    42 Higdon RL. Absorbing boundary conditions for difference approximations to themulti-dimensional wave equation. Mathematics of Computation, 1986, 47(176): 437–459.
    43 Higdon RL. Numerical absorbing boundary conditions for the wave equation. Mathematicsof Computation, 1987, 49(179): 65–90.
    44 Higdon RL. Radiation boundary conditions for elastic wave propagation. SIAM Journal onNumerical Analysis, 1990, 27(4): 831–870.
    45 Higdon RL. Absorbing boundary conditions for elastic waves. Geophysics, 1991, 56(2):231–241.
    46 Higdon RL. Absorbing boundary conditions for acoustic and elastic waves in stratified media.Journal of Computational Physics, 1992, 101: 386–418.
    47 Higdon RL. Radiation boundary conditions for dispersive waves. SIAM Journal onNumerical Analysis, 1994, 31(1): 64–100.
    48 Keys RG. Absorbing boundary conditions for acoustic media. Geophysics, 1985, 50:892–902.
    49 Givoli D, Neta B. High-order non-reflecting boundary conditions for dispersive waves. WaveMotion, 2003, 37: 257–271.
    50 Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations.Communications on Pure and Applied Mathematics, 1980, 33: 707–725.
    51 Bayliss A, Gunzburger M, Turkel E. Boundary conditions for the numerical solution ofelliptic equations in exterior regions. SIAM Journal on Applied Mathematics, 1982, 42:430–451.
    52 Harari I, Djellouli R. Analytical study of the effect of wave number on the performance oflocal absorbing boundary conditions for acoustic scatting. Journal of Applied NumericalMathematics, 2004, 50: 15–47.
    53 Reiner Jr. RC, Djellouli R, Harari I. The performance of local absorbing boundary conditionsfor acoustic scattering from elliptical shapes. Computer Methods in Applied Mechanics andEngineering, 2006, 195: 3622–3665.
    54景立平,廖振鹏,邹经相.多次透射公式的一种高频失稳机制.地震工程与工程振动,2002, 22(1): 7–13.
    55景立平,吴兆营,邹经相.近场波动数值模拟稳定性问题分析.地震工程与工程振动,2002, 22(2): 17–21.
    56景立平.多次透射公式实用形式稳定性分析.地震工程与工程振动, 2004, 24(4): 20–24.
    57 Gustafsson B, Kreiss H-O, Sundstr?m A. Stability theory of difference approximations formixed initial boundary value problems II. Mathematics of Computation, 1972, 26: 649–686.
    58 Trefethen LN. Group velocity in finite difference schemes. SIAM Review, 1982, 24:113–136.
    59 Trefethen LN. Group velocity interpretation of the stability theory of Gustafsson, Kreiss, andSundstr?m. Journal of Computational Physics, 1983, 49: 199–217.
    60 Trefethen LN. Instability of difference models for hyperbolic initial boundary valueproblems. Communications on Pure and Applied Mathematics, 1984, 37: 329–367.
    61 Higdon RL. Initial-boundary value problems for linear hyperbolic systems. SIAM Review,1986, 28 (2): 177–217.
    62 ThunéM. Automatic GKS stability analysis. SIAM Journal on Scientific and StatisticalComputing, 1986, 7 (3): 959–977.
    63 ThunéM. A numerical algorithm for stability analysis of difference methods for hyperbolicsystems. SIAM Journal on Scientific and Statistical Computing, 1990, 11 (1): 63–81.
    64谢志南,廖振鹏.人工边界高频振荡失稳机理的一点注记.地震学报, 2008, 30(3):302–306.
    65廖振鹏,刘晶波.波动有限元的基本问题.中国科学(B辑), 1992, 8: 874–882.
    66 Lysmer J, Kuhlemeyer RL. Finite dynamic model for infinite media. Journal of theEngineering Mechanics Division ASCE, 1969, 95(EM4): 869–877.
    67 White W, Valliappan S, Lee IK. Unified boundary for finite dynamic models. Journal of theEngineering Mechanics Division ASCE, 1977, 103(EM5): 949–964.
    68 Liu J, LüY. A direct method for analysis of dynamic soil-structure interaction based oninterface idea, in: Zhang C, Wolf JP (eds), Proceedings of the Chinese-Swiss Workshop onDynamic Soil-Structure Interaction, International Academic Publishers, Beijing, 1997:258–273.
    69刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报,1998, 31(3): 55–64.
    70刘晶波,王振宇,杜修力,杜义欣.波动问题中的三维时域粘弹性人工边界.工程力学,2005, 22(6): 46–51.
    71 Liu J, Li B. A unified viscous-spring artificial boundary for 3-D static and dynamicapplications. Science in China (Ser. E), 2005, 48(5): 570–584.
    72刘晶波,李彬.三维黏弹性静-动力统一人工边界.中国科学E辑, 2005, 35(9): 966–980.
    73 Liu J, Du Y, Du X, Wang Z, Wu J. 3D viscous-spring artificial boundary in time domain.Earthquake Engineering and Engineering Vibration, 2006, 5(1): 93–102.
    74刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元.岩土工程学报, 2006,6(7): 1070–1075.
    75杜修力.局部解耦的时域波分析方法.世界地震工程, 2000, 16(3): 22–26.
    76杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件.力学学报, 2006, 38(1):49–56.
    77杜修力,李立云.饱和多孔介质近场波动分析的一种黏弹性人工边界.地球物理学报,2008, 51(2): 575–581.
    78 Deeks AJ, Randolph MF. Axisymmetric time-domain transmitting boundaries. Journal ofEngineering Mechanics ASCE, 1994, 120(1): 25–42.
    79 Kellezi L. Local transmitting boundaries for transient elastic analysis. Soil Dynamics andEarthquake Engineering, 2000, 19: 533–547.
    80 Underwood P, Geers TL. Doubly asymptotic boundary-element analysis of dynamicsoil-structure interaction. International Journal of Solids and Structures, 1981, 17: 687–697.
    81 Prempramote S, Song C, Tin-Loi F, Lin G. High-order doubly asymptotic open boundariesfor scalar wave equation. International Journal for Numerical Methods in Engineering, 2009,Published online.
    82 Collino F. High order absorbing boundary conditions for wave propagation models: straightline boundary and corner cases, in: Kleinman R et al. (eds), Proceedings of the SecondInternational Conference on Mathematical and Numerical Aspects of Wave Propagation,SIAM, Delaware, 1993: 161–171.
    83 Guddati MN, Tassoulas JL. Continued-fraction absorbing boundary conditions for the waveequation. Journal of Computational Acoustics, 2000, 8(1): 139–156.
    84 Guddati MN, Lim K-W. Continued fraction absorbing boundary conditions for convexpolygonal domains. International Journal for Numerical Methods in Engineering, 2006, 66:949–977.
    85 Zahid MA, Guddati MN. Padded continued fraction absorbing boundary conditions fordispersive waves. Computer Methods in Applied Mechanics and Engineering, 2006, 195:3797–3819.
    86 Hagstrom T, Hariharan SI. A formulation of asymptotic and exact boundary conditions usinglocal operators. Applied Numerical Mathematics, 1998, 27: 403–416.
    87 Givoli D, Neta B. High-order non-reflecting boundary scheme for time-dependent waves.Journal of Computational Physics, 2003, 186: 24–46.
    88 Givoli D, Neta B, Patlashenko I. Finite element analysis of time-dependent semi-infinitewave-guides with high-order boundary treatment. International Journal for NumericalMethods in Engineering, 2003, 58: 1955–1983.
    89 van Joolen VJ, Neta B, Givoli D. High-order Higdon-like boundary conditions for exteriortransient wave problems. International Journal for Numerical Methods in Engineering, 2005,63: 1041–1068.
    90 Hagstrom T, Warburton T. A new auxiliary variable formulation of high-order local radiationboundary conditions: corner compatibility conditions and extensions to first-order systems.Wave Motion, 2004, 39: 327–338.
    91 Givoli D, Hagstrom T, Patlashenko I. Finite element formulation with high-order absorbingboundary conditions for time-dependent waves. Computer Methods in Applied Mechanicsand Engineering, 2006, 195: 3666–3690.
    92 Hagstrom T, de Castro M, Givoli D, Tzemach D. Local high order absorbing boundaryconditions for time-dependent waves in guides. Journal of Computational Acoustics, 2007,15: 1–22.
    93 Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions for the waveequation: Extensions and improvements. Journal of Computational Physics, 2008, 227:3322–3357.
    94 Bettess P. Infinite elements. International Journal for Numerical Methods in Engineering,1977, 11: 53–64.
    95 Bettess P, Zienkiewicz OC. Defraction and refraction of surface waves using finite andinfinite elements. International Journal for Numerical Methods in Engineering, 1977, 11:1271–1290.
    96 Astley RJ. Transient wave-envelope elements for wave problems. Journal of Sound andVibration, 1996, 192: 245–261.
    97 Astley RJ, Coyette JP, Cremers L. Three dimensional wave envelope elements of variableorder for acoustic radiation and scattering. Part II: Formulation in the time domain. Journalof the Acoustical Society of America, 1998, 103: 64–72.
    98 Zhao C. Applications of infinite elements to dynamic soil-structure interaction problems, in:Zhang C, Wolf JP (eds), Proceedings of the Chinese-Swiss Workshop on DynamicSoil-Structure Interaction. International Academic Publishers, Beijing, 1997: 153–160.
    99 Israeli M, Orszag SA. Approximation of radiation boundary conditions. Journal ofComputational Physics, 1981, 41: 115–135.
    100 Bérenger JP. A perfectly matched layer for the absorption of electromagnetic waves. Journalof Computational Physics, 1994, 114(2): 185–200.
    101 Collino F, Monk P. The perfectly matched layer in curvilinear coordinates, SIAM Journal onScientific Computing, 1998, 19(6): 2061–2090.
    102 Qi Q, Geers TL. Evaluation of the perfectly matched layer for computational acoustics.Journal of Computational Physics, 1998, 139(1): 166–183.
    103 Turkel E, Yefet A. Absorbing PML boundary layers for wave-like equations. AppliedNumerical Mathematics, 1998, 27: 533–557.
    104 Basu U, Chopra AK. Perfectly matched layers for time-harmonic elastodynamics ofunbounded domains: theory and finite-element implementation. Computer Methods inApplied Mechanics and Engineering, 2003, 192: 1337–1375.
    105 Basu U, Chopra AK. Perfectly matched layers for transient elastodynamics of unboundeddomains. International Journal for Numerical Methods in Engineering, 2004, 59: 1039–1074.
    106 Abarbanel S, Gottlieb D. A mathematical analysis of the PML method. Journal ofComputational Physics, 1997, 134: 357–363.
    107 Bécache E, Fauqueux S, Joly P. Stability of perfectly matched layers, group velocities andanisotropic waves. Journal of Computational Physics, 2003, 188(2): 399–433.
    108 Appelo D, Hagstrom T, Kreiss G. Perfectly matched layers for hyperbolic systems: generalformulation, well-posedness, and stability. SIAM Journal on Applied Mathematics, 2006, 67:1–23.
    109 Zhang C, Ren Y, Pekau OA, Jin F. Time-domain boundary element method for undergroundstructures in orthotropic media. Journal of Engineering Mechanics, 2004, 130(1): 105–116.
    110 Ting L, Miksis MJ. Exact boundary condition for scattering problems. The Journal of theAcoustical Society of America, 1986, 86(6): 1825–1827.
    111 Givoli D, Cohen D. Nonreflecting boundary conditions based on Kirchhoff-type formulae.Journal of Computational Physics, 1995, 117: 102–113.
    112 Teng Z-H. Exact boundary condition for time-dependent wave equation based on boundaryintegral. Journal of Computational Physics, 2003, 190: 398–418.
    113 Mangiante G, Charles S. Absorbing boundary conditions for acoustic waves and Huygensprinciple. The Journal of the Acoustical Society of America, 1998, 103(5): 2971–2971.
    114 Ryaben’kii VS, Tsynkov SV, Turchaninov VI. Global discrete artificial boundary conditionsfor time-dependent wave propagation. Journal of Computational Physics, 2001, 174:712–758.
    115 Bérenger JP. On the Huygens absorbing boundary conditions for electromagnetics. Journal ofComputational Physics, 2007, 226(1): 354–378.
    116 Lysmer J. Lumped mass method for Rayleigh waves. Bulletin of the Seismological Societyof America, 1970, 60(1): 89–104.
    117 Lysmer J, Waas G. Shear wave in plane infinite structures. Journal of Engineering MechanicsDivision, ASCE, 1972, 98(1): 85–105.
    118 Kausel E, Waas G, Ro?sset JM. Dynamic analysis of footings on layered media. Journal ofEngineering Mechanics Division, ASCE, 1975, 101(5): 679–693.
    119 Kausel E, Ro?sset JM. Dynamic stiffness of circular foundations. Journal of EngineeringMechanics Division, ASCE, 1975, 101(6): 771–785.
    120 Kausel E, Ro?sset JM. Stiffness matrices for layered soils. Bulletin of the SeismologicalSociety of America, 1981, 71(6): 1743–1761.
    121 Kausel E. Thin-layer method: formulation in the time domain. International Journal forNumerical Methods in Engineering, 1994, 37: 927–941.
    122 Kausel E. Dynamic point sources in laminated media via the thin-layer method. InternationalJournal of Solids and Structures, 1999, 36: 4725–4742.
    123 Song C. The scaled boundary finite element method in structural dynamics. InternationalJournal for Numerical Methods in Engineering, 2009, 77: 1139–1171.
    124 Keller JB, Givoli D. Exact non-reflecting boundary conditions. Journal of ComputationalPhysics, 1989, 82(1): 172–192.
    125 Givoli D, Keller JB. Non-reflecting boundary conditions for elastic waves. Wave Motion,1990, 12: 261–279.
    126 Grote MJ, Keller JB. On nonreflecting boundary conditions. Journal of ComputationalPhysics, 1995, 122: 231–243.
    127 Gachter GK, Grote MJ. Dirichlet-to-Neumann map for three-dimensional elastic waves.Wave Motion, 2003, 37(3): 293–311.
    128 Liu T, Xu Q. Discrete artificial boundary conditions for transient scalar wave propagation ina 2D unbounded layered media. Computer Methods in Applied Mechanics and Engineering,2002, 191: 3055–3071.
    129 Nicholls DP, Nigam N. Exact non-reflecting boundary conditions on general domains.Journal of Computational Physics, 2004, 194: 278–303.
    130 Grote MJ, Kirsch C. Dirichlet-to-Neumann boundary conditions for multiple scatteringproblems. Journal of Computational Physics, 2004, 201: 630–650.
    131 Grote MJ, Kirsch C. Nonreflecting boundary condition for time-dependent multiplescattering. Journal of Computational Physics, 2007, 221: 41–62.
    132 Yan JY, Zhang CH, Jin F. A coupling procedure of FE and SBFE for soil-structure interactionin the time domain. International Journal for Numerical Methods in Engineering, 2004, 59:1453–1471.
    133 Bazyar MH, Song C. Time-harmonic response of non-homogeneous elastic unboundeddomains using the scaled boundary finite-element method. Earthquake Engineering andStructural Dynamics, 2006, 35: 357–383.
    134 Bazyar MH, Song C. Transient analysis of wave propagation in non-homogeneous elasticunbounded domains by using the scaled boundary finite-element method. EarthquakeEngineering and Structural Dynamics, 2006, 35: 1787–1806.
    135 Song C. Dynamic analysis of unbounded domains by a reduced set of base functions.Computer Methods in Applied Mechanics and Engineering, 2006, 195: 4075–4094.
    136 Song C, Bazyar MH. Development of a fundamental-solution-less boundary element methodfor exterior wave problems. Communications in Numerical Methods in Engineering, 2008,24: 257–279.
    137 Song C, Bazyar MH. A boundary condition in Padéseries for frequency-domain solution ofwave propagation in unbounded domains. International Journal for Numerical Methods inEngineering, 2007, 69: 2330–2358.
    138 Bazyar MH, Song C. A continued-fraction-based high-order transmitting boundary for wavepropagation in unbounded domains of arbitrary geometry. International Journal forNumerical Methods in Engineering, 2008, 74: 209–237.
    139 Huan R, Thompson LL. Accurate radiation boundary conditions for the time-dependent waveequation on unbounded domains. International Journal for Numerical Methods inEngineering, 2000, 47: 1569–1603.
    140 Thompson LL, Huan R, He D. Accurate radiation boundary conditions for thetwo-dimensional wave equation on unbounded domains. Computer Methods in AppliedMechanics and Engineering, 2001, 191: 311–351.
    141 Grote MJ, Keller JB. Exact nonreflecting boundary conditions for the time dependent waveequation. SIAM Journal on Applied Mathematics, 1995, 55: 280–297.
    142 Grote MJ, Keller JB. Nonreflecting boundary conditions for time dependent scattering.Journal of Computational Physics, 1996, 127: 52–65.
    143 Sofronov IL. Conditions for complete transparency on the sphere for the three dimensionalwave equation. Russian Academy of Sciences Doklady Mathematics, 1993, 46: 397–401.
    144 Sofronov IL. Artificial boundary conditions of absolute transparency for two- andthree-dimensional external time-dependent scattering problems. European Journal of AppliedMathematics, 1998, 9: 561–588.
    145 Thompson LL, Huan R. Finite element formulation of exact non-reflecting boundaryconditions for the time-dependent wave equation. International Journal for NumericalMethods in Engineering, 1999, 45: 1607–1630.
    146 Thompson LL, Huan R. Implementation of exact non-reflecting boundary conditions in thefinite element method for the time-dependent wave equation. Computer Methods in AppliedMechanics and Engineering, 2000, 187: 137–159.
    147 Grote MJ, Keller JB. Exact nonreflecting boundary condition for elastic waves. SIAMJournal on Applied Mathematics, 2000, 60: 803–819.
    148 Grote MJ. Nonreflecting boundary conditions for elastodynamic scattering. Journal ofComputational Physics, 2000, 161: 331–353.
    149 Zhao C, Liu T. Non-reflecting artificial boundaries for modeling scalar wave propagationproblems in two-dimensional half space. Computer Methods in Applied Mechanics andEngineering, 2002, 191: 4569–4585.
    150 Zhao C, Liu T. Non-reflecting artificial boundaries for transient scalar wave propagation in atwo-dimensional infinite homogeneous layer. International Journal for Numerical Methods inEngineering, 2003, 58: 1435–1456.
    151 Liu T, Li Q. The control-theory-based artificial boundary conditions for time-dependentwave guide problems in unbounded domain. Communication in Numerical Methods inEngineering, 2005, 21: 691–700.
    152 Lubich C, Sch?dle A. Fast convolution for nonreflecting boundary conditions. SIAM Journalon Scientific Computing, 2002, 24: 161–182.
    153 Alpert B, Greengard L, Hagstrom T. Rapid evaluation of nonreflecting boundary kernels fortime-domain wave propagation. SIAM Journal on Numerical Analysis, 2000, 37(4):1138–1164.
    154 Alpert B, Greengard L, Hagstrom T. Nonreflecting boundary conditions for thetime-dependent wave equation. Journal of Computational Physics, 2002, 180: 270–296.
    155 Wolf JP. Consistent lumped-parameter models for unbounded soil: physical representation.Earthquake Engineering and Structural Dynamics, 1991, 20: 11–32.
    156 Wolf JP, Paronesso A. Errata: Consistent lumped-parameter models for unbounded soil.Earthquake Engineering and Structural Dynamics, 1991, 20: 597–599.
    157 Wu WH, Lee WH. Systematic lumped-parameter models for foundations based onpolynomial-fraction approximation. Earthquake Engineering and Structural Dynamics, 2002,31: 1383–1412.
    158 Wu WH, Lee WH. Nested lumped-parameter models for foundation vibrations. EarthquakeEngineering and Structural Dynamics, 2004, 33: 1051–1058.
    159 Wolf JP, Motosaka M. Recursive evaluation of interaction forces of unbounded soil in thetime domain. Earthquake Engineering and Structural Dynamics, 1989, 18: 345–363.
    160 Wolf JP, Motosaka M. Recursive evaluation of interaction forces of unbounded soil in thetime domain from dynamic-stiffness coefficients in the frequency domain. EarthquakeEngineering and Structural Dynamics, 1989, 18: 365–376.
    161 ?afak E. Time-domain representation of frequency-dependent foundation impedancefunctions. Soil Dynamics and Earthquake Engineering, 2006, 26: 65–70.
    162杜修力,赵建锋,韩强.精度可控地基阻抗力的一种时域差分计算方法.力学学报,2008, 40(1): 59–66.
    163赵建锋,杜修力.地基阻抗力时域递归参数的计算方法及程序实现.岩土工程学报,2008, 30(1): 34–40.
    164 Paronesso A, Wolf JP. Recursive evaluation of interaction forces and property matrices fromunit-impulse response functions of unbounded medium based on balancing approximation.Earthquake Engineering and Structural Dynamics, 1998, 27: 609–618.
    165 Wolf JP, Somaini DR. Approximate dynamic model of embedded foundation in time domain.Earthquake Engineering and Structural Dynamics, 1986, 14: 683–703.
    166 Nogami T, Konagai K. Time domain axial response of dynamically loaded single piles.Journal of Engineering Mechanics, ASCE, 1986, 112: 1241–1249.
    167 de Barros FCP, Luco JE. Discrete models for vertical vibrations of surface and embeddedfoundations. Earthquake Engineering and Structural Dynamics, 1990, 19: 289–303.
    168 Jean WY, Lin TW, Penzien J. System parameters of soil foundations for time domaindynamic analysis. Earthquake Engineering and Structural Dynamics, 1990, 19: 541–553.
    169 Wolf JP. Spring-dashpot-mass models for foundation vibrations. Earthquake Engineering andStructural Dynamics, 1997, 26: 931–949.
    170侯兴民,廖振鹏,丁海平.基础动力刚度的精确数值解及集中参数模型.地震工程与工程振动, 2001, 21(4): 24–28.
    171栾茂田,林皋.地基动力阻抗的双自由度集总参数模型.大连理工大学学报, 1996, 36:477–482.
    172侯兴民,廖振鹏.表面矩形基础阻抗函数的集中参数模型.地震工程与工程振动, 1999,19(4): 6–13.
    173王满生,周锡元, He Liu,胡聿贤.层状地基土双自由度集总参数模型的参数识别.地震工程与工程振动, 2005, 25(4): 135–140.
    174王满生,胡聿贤,周锡元, He Liu.利用改进的EKF滤波技术识别成层土集总参数模型的参数.振动工程学报, 2006, 19(2): 252–257.
    175 Veletsos AS, Wei YT. Lateral and rocking vibrations of footings. Journal of Soil Mechanicsand Foundations Division, ASCE, 1971, 97: 1227–1248.
    176 Veletsos AS, Tang Y. Vertical vibration of ring foundations. Earthquake Engineering andStructural Dynamics, 1987, 15: 1–21.
    177 Luco JE, Westmann RA. Dynamic response of circular footings. Journal of EngineeringMechanics Division, ASCE, 1971, 97: 1381–1395.
    178 Luco JE. Impedance functions for a rigid foundation on a layered medium. NuclearEngineering and Design, 1974, 31: 204–217.
    179 Luco JE. Vibrations of a rigid disc on a layered viscoelastic medium. Nuclear Engineeringand Design, 1976, 36: 325–340.
    180 Wong HL, Luco JE. Tables of impedance functions for square foundations on layered media.Soil Dynamics and Earthquake Engineering, 1985, 4: 64–81.
    181 Apsel RJ, Luco JE. Impedance function for foundations embedded in a layered medium: anintegral equation approach. Earthquake Engineering and Structural Dynamics, 1987, 15:213–231.
    182 Mita A, Luco JE. Impedance functions and input motions for embedded square foundations.Journal of Geotechnical Engineering, ASCE, 1989, 115: 491–503.
    183 Novak M. Dynamic stiffness and damping of piles. Canadian Geotechnical Journal, 1974, 11:574–598.
    184 Novak M, Sharnouby BE. Stiffness constants of single piles. Journal of GeotechnicalEngineering, ASCE, 1983, 109(7): 961–974.
    185 Gazetas G, Makris N. Dynamic pile-soil-pile interaction. Part I: Analysis of axial vibration.Earthquake Engineering and Structural Dynamics, 1991, 20: 115–132.
    186 Makris N, Gazetas G. Dynamic pile-soil-pile interaction. Part II: Lateral and seismicresponse. Earthquake Engineering and Structural Dynamics, 1992, 21: 145–162.
    187 Makris N, Gazetas G. Displacement phase differences in a harmonically oscillating pile.Géotechnique, 1993, 43(1): 135–150.
    188 Gazetas G. Formulas and charts for impedances of surface and embedded foundations.Journal of Geotechnical Engineering, ASCE, 1991, 117: 1363–1381.
    189 Sieffert J-G, Cevaer F. Handbook of Impedance Functions. Presses Academiques, NantesFrance, 1991.
    190 Wolf JP. Consistent lumped-parameter models for unbounded soil: frequency-independentstiffness, damping and mass matrices. Earthquake Engineering and Structural Dynamics,1991, 20: 33–41.
    191 Wolf JP, Paronesso A. Lumped-parameter model for a rigid cylindrical foundation embeddedin a soil layer on rigid rock. Earthquake Engineering and Structural Dynamics, 1992, 21:1021–1038.
    192 Paronesso A, Wolf JP. Global lumped-parameter model with physical representation forunbounded medium. Earthquake Engineering and Structural Dynamics, 1995, 24: 637–654.
    193 Wolf JP, Paronesso A. Lumped-parameter model and recursive evaluation of interactionforces of semi-infinite uniform fluid channel for time-domain dam-reservoir analysis.Earthquake Engineering and Structural Dynamics, 1992, 21: 811–831.
    194 Ruge P, Trinks C, Witte S. Time-domain analysis of unbounded media using mixed-variableformulations. Earthquake Engineering and Structural Dynamics, 2001, 30: 899–925.
    195 Ruge P, Trinks C. Representation of radiation damping by fractional time derivatives.Earthquake Engineering and Structural Dynamics, 2003, 32: 1099–1116.
    196 Kausel E. Fundamental Solutions in Elastodynamics: A Compendium. Cambridge UniversityPress, NY, 2006.
    197艾龙根,舒胡毕.弹性动力学,第二卷线性理论.石油工业出版社, 1984.
    198胡德绥.弹性波动力学.地质出版社,北京, 1989.
    199 Graff KF. Wave Motion in Elastic Solids. Clarendon Press, Oxford, 1975.
    200 Whitham GB. Linear and NonlinearWaves. JohnWiley & Sons, New York, 1974.
    201 Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite ElementAnalysis. Prentice-Hall, Englewood Cliffs, NJ, 1987.
    202 Cook RD et al. Concepts and Applications of Finite Element Analysis (4th ed.). John Wiley& Sons, New York, 2000.
    203王勖成.有限单元法.清华大学出版社,北京, 2008.
    204 Chopra AK. Dynamics of Structures: Theory and Applications to Earthquake Engineering(2nd ed.). Prentice Hall, Upper Saddle River, NJ, 2001.
    205刘晶波,杜修力.结构动力学.机械工业出版社,北京, 2005.
    206杜修力,王进廷.阻尼弹性结构动力计算的显式差分法.工程力学, 2000, 17(5): 37–43.
    207 Wang JT, Zhang CH, Du XL. An explicit integration scheme for solving dynamic problemsof solid and porous media. Journal of Earthquake Engineering, 2008, 12: 293–311.
    208王进廷,杜修力.有阻尼动力分析的一种显式差分法.工程力学, 2002, 19(3): 109–112.
    209李小军,廖振鹏,杜修力.有阻尼体系动力问题的一种显式解法.地震工程与工程振动,1992, 13(4): 74–79.
    210周正华,李山有和侯兴民.阻尼振动方程的一种显式直接积分方法.世界地震工程,1999, 15(1): 41–44.
    211张晓志,程岩,谢礼立.结构动力反应分析的三阶显式方法.地震工程与工程振动,2002, 22(3): 1–8.
    212陈学良,袁一凡.求解振动方程的一种显式积分格式及其精度与稳定性.地震工程与工程振动, 2002, 22(3): 9–14.
    213刘恒,廖振鹏.结构动力学方程的显式积分格式.地震工程与工程振动, 2009, 29(1):32–41.
    214 Stoer J, Bulirsch R. Introduction to Numerical Analysis (3rd ed.). Springer, New York, 2002.
    215 Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes in FORTRAN(2nd ed.). Cambridge University Press, Cambridge, MA, 1992.
    216 Baker GA, Graves-Morris P. PadéApproximants (2nd ed.). Cambridge University Press,Cambridge, 1996.
    217 Lathi BT. Linear Systems and Signals (2nd ed). Oxford University Press, 2004.
    218 Holland JH. Adaptation in Natural and Artificial Systems: An Introductory Analysis withApplications to Biology, Control, and Artificial Intelligence. University of Michigan Press,Ann Arbor, USA, 1975.
    219 Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning.Addison-Wesley, Reading, MA, 1989.
    220 Nelder JA, Mead R. A simplex method for function minimization. Computer Journal, 1965, 7:308–313.
    221 Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder-Meadsimplex method in low dimensions. SIAM Journal on Optimization, 1998, 9(1): 112–147.
    222 Yen J, Liao JC, Lee B, Randolph D. A hybrid approach to modeling metabolic systems usinga genetic algorithm and simplex method. IEEE Transaction on Systems, Man, andCybernetics-Part B: Cybernetics, 1998, 28: 173–191.
    223 Chelouah R, Siarry P. Genetic and Nelder-Mead algorithms hybridized for a more accurateglobal optimization of continuous multiminima functions. European Journal of OperationalResearch, 2003, 148: 335–348.
    224 Fan S-KS, Liang YC, Zahara E. A genetic algorithm and a particle swarm optimizerhybridized with Nelder-Mead simplex search. Computers & Industrial Engineering, 2006, 50:401–425.
    225杜修力,曾迪.一种高效的全局数值优化方法:演化-单纯形算法.土木工程学报, 2003,36(5): 46-51.
    226杜修力,韩玲,姜丽萍.高效寻优的经验遗传算法.北京工业大学学报, 2006, 32(11):992–995.
    227 Jones WB, Thron WJ. Continued Fractions: Analytic Theory and Applications. CambridgeUniversity Press, New York, 1980.
    228 Lorentzen L, Waadeland H. Continued Fractions with Applications. Elsevier, Amsterdam,1992.
    229 Saitoh M. Simple model of frequency-dependent impedance functions in soil-structureinteraction using frequency-independent elements. Journal of Engineering Mechanics, ASCE,2007, 133(10): 1101–1114.
    230 Greenberg MD. Advanced Engineering Mathematics (2nd ed.). Prentice Hall, Upper SaddleRiver, NJ, 1998.
    231 Stegun IA, Abramowitz M (eds). Handbook of Mathematical Functions. Dover Publications,NY, 1972.
    232叶其孝,沈永欢(主编).实用数学手册(第2版).科学出版社,北京, 2006.
    233 Novak M. Vertical vibration of floating piles. Journal of the Engineering Mechanics Division,ASCE, 1977, 103(EM1): 153–168.
    234 Novak M, Mitwally H. Transmitting boundary for axisymmetrical dilation problems. Journalof Engineering Mechanics, ASCE, 1988, 114(1): 181–187.
    235 Novak M, Nogami T, Aboul-Ella F. Dynamic soil reaction for plane strain case. Journal ofthe Engineering Mechanics Division, ASCE, 1978, 104(EM4): 953–959.
    236 Novak M, Aboul-Ella F. Impedance functions of piles in layered media. Journal of theEngineering Mechanics Division, ASCE, 1978, 104(EM6): 643–661.
    237赵建锋,杜修力,韩强,李立云.外源波动问题数值模拟的一种实现方式.工程力学,2007, 24(4): 52–58.
    238李山有,廖振鹏,周正华.大型结构地震反应值模拟中的波动输入.地震工程与工程振动, 2001, 21(2): 1–5.
    239李山有,王学良,周正华.地震波斜入射情形下水平成层半空间自由场的时域计算.吉林大学学报(地球科学版), 2003, 33(3): 372–376.
    240李小军.非线性场地地震反应分析方法的研究.国家地震局工程力学研究所博士学位论文, 1993.
    241刘晶波,王艳.弹性半空间二维出平面自由波场的一维化时域算法.应用力学学报,2006, 23(2): 263–266.
    242刘晶波,王艳.成层半空间出平面自由波场的一维化时域算法.力学学报, 2006, 38(2):219–225.
    243刘晶波,王艳.成层介质中平面内自由波场的一维化时域算法.工程力学, 2007, 24(7):16–22.
    244 Du Xiuli, Zhang Yanhong, Zhang Boyan. Nonlinear seismic response analysis of archdam-foundation systems-part I dam-foundation rock interaction. Bulletin of EarthquakeEngineering, 2007, 5(1): 105–119.
    245 Du Xiuli, Tu Jin. Nonlinear seismic response analysis of arch dam-foundation systems-part IIopening and closing contact joints. Bulletin of Earthquake Engineering, 2007, 5(1): 121–133.
    246 Du Xiuli, Wang Jinting. Seismic response analysis of arch dam-water-rock foundationsystems. Earthquake Engineering and Engineering Vibration, 2004, 3: 283–291.
    247 Du Xiuli, Wang Jinting, Hung Tinkan. Effects of sediment on the dynamic pressure of waterand sediment on dams. Chinese Science Bulletin, 2001, 46: 521–524.
    248 Du Xiuli, Zhang Yanhong, Zhang Boyan. Nonlinear Seismic Response Analysis of ArchDam-Foundation Systems. Theories and Applications of Structural Engineering. Edited byYe LY and Ru JP, Yunnan Science and Technology Press, 2000: 1–16.
    249杜修力,王进廷.拱坝-可压缩库水-地基地震波动反应分析方法.水利学报, 2002, 6:83–90.
    250杜修力,王进廷.淤积泥砂对坝面动压力反应的影响研究.“九五”国家重点科技攻关课题96-221-03-03-03 (1).中国水利水电科学研究院,北京, 1999.
    251杜修力,陈厚群,侯顺载.拱坝-地基系统的三维非线性地震反应分析.水利学报, 1997,8: 7–14.
    252王进廷,唐庆,杜修力.库底饱和淤积砂层对高拱坝地震反应的影响研究.水力发电学报, 2006, 25(2): 11–15.
    253王进廷,唐庆,杜修力.库底非饱和淤积砂层对高拱坝地震反应的影响研究.水利水电科技进展, 2007, 27(2): 22–25.
    254王进廷.高混凝土坝-可压缩库水-淤砂-地基系统地震反应分析研究.中国水利水电科学研究院博士学位论文,2001.
    255王进廷.多层多相介质动力分析研究.清华大学博士后研究报告,2003.
    256涂劲,陈厚群,张伯艳.小湾拱坝在不同概率水平地震作用下的抗震安全性研究.水利学报,2006,37(3):278–285.
    257 Hallquist JO. LS-DYNA theoretical manual. California, Livermore Software TechnologyCorporation,1998.
    258王勇,陈灿寿等.南京地铁区间隧道内爆炸效应数值模拟.中国土木工程学会防护工程分会第十次学术年会论文集,乌鲁木齐,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700